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Time integration of index 1 DAEs with Rosenbrock methods using Krylov
subspace techniques

The derivation of Rosenbrock-Krylov methods for index 1 DAEs involves two well known techniques: a limit process
which transforms a singular perturbed ODE to an index 1 DAE and the use of Krylov iterations instead of direct
linear solvers for the stage equations. We show that our derived class of Rosenbrock-Krylov schemes is independent
of the order in which we apply these techniques. We also conclude that for convergence a rather accurate solution of
the algebraic part is always needed.

1. Problem
We deal with large structured systems of differential algebraic systems of index 1

y′ =f(y, z),
0 =g(y, z), where gz is regular.

(1)

The special application we have in mind is the simulation of viscoelastic media by a quasi-stationary approach
that couples evolution equations for inelastic strains with linear elasticity [3]. A spatial discretization using a finite
element ansatz leads to a large DAE-system, where the inelastic strains are given at the Gaussian points that are
used by the finite elements. Index 1 is guaranteed by the fact that the linear elastic problem possesses a unique
solution. The differential part of those systems is mildly stiff in typical applications.

2. Rosenbrock methods

For an ODE y′ = f(y) a timestep with a Rosenbrock method is given by the scheme yn+1 = yn + h

s∑
i=1

biki with s

internal stages ki defined by (cf. [2])

(I − hγJ)ki = f


yn + h

i−1∑
j=1

αijkj




︸ ︷︷ ︸
=:fi

+hJ

i−1∑
j=1

γijkj , i = 1, . . . , s (2)

or, equivalently, (I − hγJ)(ki + k
(0)
i ) = fi + k

(0)
i where k

(0)
i :=

i−1∑
j=1

γij

γ
kj . For large stiff ODE systems it might be

favorable to use Krylov techniques for the solution of the linear stages. Due to a fast damping of stiff modes they
have good stability properties with a fraction of the numerical effort that the direct solution of the linear systems
requires. With fairly low Krylov dimensions (ca. 4 – 15 ) the order of the underlying Rosenbrock method can be
guaranteed [4]. The Jacobian J is replaced by a low rank approximation QQT J where Q is an orthogonal basis of
the Krylov-subspace K = span{ri, Jri, . . . , J

κri} which can be computed sucessively using Arnoldi’s algorithm.

3. Krylov-Rosenbrock methods for DAEs of index 1
A general recipe to apply ODE methods to DAEs is the direct approach. The DAE is interpreted as the limit of a
singularly perturbed problem

y′ = f(y, z)
0 = g(y, z) ← y′ = f(y, z)

z′ = 1
εg(y, z). (3)

The method of choice is (formally) applied to the singularly perturbed problem. The limit case ε → 0 results in
a numerical method for the DAE. As illustrated by diagram (4) below we have two options: first (right-down), we
apply a Rosenbrock method to (3), put ε→ 0 and employ Krylov techniques afterwards in the Rosenbrock scheme
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for the DAE, or second (down-right), we can apply a Krylov method to (3) and study ε→ 0. This gives raise to the
question: does the diagram (4) commute?

ROW(ε-ODE) ε → 0−−−−→ ROW(DAE)�Krylov

�Krylov

Krylov(ε-ODE) ε → 0−−−−→ Krylov(DAE)

(4)

4. The right-down way

After ε → 0 the stages (augmented by additional entries li corresponding zo the z-component) of the Rosenbrock
method have the form((

I 0
0 0

)
− hγ

(
fy fz

gy gz

))(
ki + k

(0)
i

li + l
(0)
i

)
=
(

fi

gi

)
+
(

k
(0)
i

0

)
, i = 1, . . . , s. (5)

In contrast to ODEs the iteration matrix is not in the form I +O (h). This implies that additional preconditioning
is required. Our ansatz is to eliminate li, to apply the Krylov solver to the ODE-part of the equation, only.

⇒ (I − hγ(fy − fzg
−1
z gy))(ki + k

(0)
i ) =fi + k

(0)
i − fzg

−1
z gi (6)

5. The down-right way

Applying the Rosenbrock method (2) to (3), leads for each stage to a linear system (scaled by ε, index i omitted)((
εI 0
0 I

)
− hγ

(
εfy εfz

gy gz

))(
k
l

)
=
(

ε(f + k(0))
g + εl

)
. (7)

The solution is approximated by a Krylov method. We are interested in the limit of the Krylov subspaces for ε→ 0,
i.e., we apply the direct approach to the Krylov method. We expand the Krylov iterates in powers of ε

k(ν) =ε(−hγ)νfzg
ν−1
z g +O (ε2

)
l(ν) =(−hγgz)νg +O (ε)

(8)

to end up (after some tedious calculations) with

Theorem: Let the nz eigenvalues of gz be pairwise distinct. Let Kν be the ν-th Krylov space where Kν+1 =
Kν ⊕ span{vν+1}. For ε→ 0 it holds:
1.) The Krylov-space Knz is spaned by the algebraic variables.
2.) The vektors vν are given by

vnz+1 =
(

f + k(0) − fzg
−1
z g

0

)

vν+1 =
(

(I − hγ(fy − fzg
−1
z gy) 0

0 0

)
vν , ν ≥ nz + 1

(9)

�
We conclude that the down-right approach for the Krylov method leads to the exakt solution of the linear systems
for the algebraic variables (if the Krylov dimension is at least nz) whereas the differential variables are approximated
by Krylov subspaces generated from equation (6). In this sense the diagram (4) commutes. This is accordance with
the findings in [1] that an accurate solution for the algebraic part is always needed.
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