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Abstract
We consider a step-flow model for epitaxial growth, as proposed by Burton
et al. This type of model is discrete in the growth direction but continuous
in the lateral directions. The effect of the Ehrlich–Schwoebel barrier, which
limits the attachment rate of adatoms to a step from an upper terrace, is
included. Mathematically, this model is a 2+1-dimensional dynamic free
boundary problem for the steps.

In this paper, we propose a diffuse-interface approximation which
reproduces an arbitrary Ehrlich–Schwoebel barrier. This is achieved by
introducing a degenerate mobility into the so-called viscous Cahn–Hilliard
equation. We relate this modified Cahn–Hilliard equation to the sharp interface
model via formal matched asymptotic expansion.

Mathematics Subject Classification: 82D37, 80A22, 35K65, 35R35

1. Introduction

Epitaxial growth is a modern technology of growing single crystals that inherit atomic structures
from substrates. It produces almost defect-free, high quality materials that have a wide range
of device applications.

We think of the crystal film as an atomic landscape of terraces, separated by steps of one
atomic height. Microscopic processes in epitaxial growth include the deposition of atoms or
molecules on the terraces of the film, ‘adatom’ (adsorbed atom) desorption from the terraces,
adatom diffusion on terraces, and the attachment and detachment of adatoms to and from the
steps, respectively [3, 19]. Through the net attachment, the position of a step changes, which
means that the upper terrace expands by overgrowing the terrace below. This induces vertical
growth of the film by ‘step flow’ (see figure 1). If a finite number of adatoms (typically two)
meet, they coalesce and form a new terrace. This induces vertical growth by ‘nucleation’.
In this paper, we consider growth by step flow.
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Figure 1. Microscopic processes in epitaxial growth of thin films.

V

Figure 2. The Ehrlich–Schwoebel barrier.

We are particularly interested in the following phenomenon: experiments show that
the attachment of an adatom to a ‘step down’ (the part of boundary of the terrace under
consideration which separates it from the lower terrace) is penalized compared to the attachment
to a ‘step up’ [10]. In order to attach to a step down, an adatom must overcome an energy
barrier—the Ehrlich–Schwoebel barrier. Figure 2 shows the potential V seen by an adatom: at
a step down the adatom goes through an uncomfortable position with only a few neighbouring
atoms, corresponding to the maximum in the potential.

This asymmetry in attachment of adatoms to steps has important consequences under
growth.

• Since an adatom is more likely to attach to a step up than a step down, a net uphill current of
adatoms is induced (a 1+1-dimensional effect). On the one hand, for a train of ascending
or descending steps (a vicinal surface), this uphill current makes smaller terraces grow
faster. It, therefore, prevents step bunching and thus stabilizes a vicinal surface [21, 22].
On the more macroscopic scale of a landscape made of ascending and descending step
trains, this uphill current prevents the filling of the valleys and increases the nucleation
rate at the summits [24]. It thereby induces a roughening of the landscape.

• A ‘nose’ of a terrace catches less adatoms from the very same terrace itself but more
adatoms from the terrace below, compared to a planar step. Due to the asymmetry in
the attachment rate, the latter effect dominates and the nose grows [2]. This so-called
Bales–Zangwill instability (a 2+1-dimensional effect) is mathematically related to the
Mullins–Sekerka instability of the solidification front in supercooled liquids.
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Figure 3. Schematic diffuse-interface approximation.

In this paper, we consider a Burton–Cabrera–Frank (BCF) type model for step flow and
island dynamics (cf [4, 12, 15, 19]). This type of model is semi-continuous: it resolves the
atomic distance in the growth direction but coarse grains over the atomic distance in the
lateral direction. The location of a step is described by a continuous curve � and the adatom
distribution on a terrace is modelled by a continuous density function ρ. The effect of
the Ehrlich–Schwoebel barrier can be easily incorporated in BCF models. Mathematically
speaking, such a model is a two-dimensional moving sharp interface problem for the position
� of the steps.

From a numerical point of view, it seems desirable to have a diffuse-interface
approximation of this sharp interface problem. A diffuse-interface approximation smears
out the discrete height function (which counts the atomic monolayers) on a length scale ε.
The smeared-out height function φ thus (approximately) describes the position of the steps �

(see figure 3). The advantage is that both φ and the adatom density ρ can be discretized with
respect to the same grid. Moreover, the vanishing of islands and the coalescence of steps are
automatically handled.

Diffuse-interface approximations for BCF-type models have been introduced in
[14, 16, 25]. In [16], the motion of a one-dimensional step train is analysed, whereas in [14], the
growth of a spiral is simulated. In [25], the effect of a lattice mismatch between substrate and
film is incorporated into the phase-field approximation. In [20], the phase-field approximation
is justified by matched asymptotic expansion. However, none of the diffuse-interface or
phase-field approximations model the Ehrlich–Schwoebel barrier. It is the purpose of this
paper to introduce a diffuse-interface approximation that reproduces the Ehrlich–Schwoebel
barrier.

2. A BCF-type model

In introducing the model, we start from a simplified lattice gas point of view (see figure 1). Let
a be the lattice spacing. Let ρ the denote the space- and time-dependent probability to find an
adatom at a certain lattice site. Hence, ρ is the dimensionless number density of adatoms with
ρ = 1 corresponding to the number density of an atomic monolayer. In particular, ρ � 1.

The model is halfway between a thermodynamic and a kinetic model. We start with
the thermodynamic part. We recall that atoms not only attach but also detach from a step
(‘thermal detachment’). The gross attachment flux of course depends on the adatom density
on the adjacent terraces. Hence, there is a value ρ∗ for the adatom density at which the
processes of attachment and detachment at a planar step are in equilibrium. This equilibrium
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density is locally modified by the curvature κ of the step (with the convention that κ is positive
if the upper terrace is convex):

equilibrium density = ρ∗(1 + ξκ) at step, (2.1)

where ξ is the capillary length. Obviously, this continuum formulation is only valid for

ρ∗ � 1 and a � ξ � �R,

where �R is the average radius of curvature of the steps.
We now come to the kinetic part. We consider the following processes:

• adatoms are deposited with a rate F per site,
• adatoms hop from site to neighbouring site with rate D,
• adatoms desorb from terraces after an exponential time τ .

On a continuum level, these processes are modelled by the equation

∂tρ − Da2∇2ρ = F − τ−1ρ on terraces. (2.2)

We are interested in the regime where the adatom density which balances deposition and
desorption, i.e. Fτ , is much larger than the equilibrium density near the steps, i.e.

ρ∗ � Fτ � 1. (2.3)

In this regime, the steps act as sinks. For conciseness, we focus on a regime where the average
time for an adatom to reach a step is much smaller than the time to desorb, i.e.

�2
T

Da2
� τ, (2.4)

where �T is the average terrace width. In this regime (2.4), the desorption-term is negligible
in (2.2):

∂tρ − Da2∇2ρ = F on terraces. (2.5)

The timescale on which (2.5) relaxes is �2
T /Da2. On the other hand, the steps, which eventually

incorporate all the adatoms, have to move with an average speed of F�T . Thus, the shape
of the terraces changes on the timescale 1/F . Note that in the regime (2.3) and (2.4) we
automatically have (�2

T /Da2) � (1/F ). Hence, the adatom density has enough time to relax
to its quasi-stationary equilibrium on the terraces. Thus, (2.5) can be replaced by

−Da2∇2ρ = F on terraces. (2.6)

On the other hand, we assume that the system does not have enough time to reach the quasi-
stationary equilibrium condition (2.1) at the steps. This is due to the following process:

• Adatoms attach and detach with a finite rate k to resp. from the steps. This rate differs for
attachment to a step up (k+), respectively, for attachment to a step down (k−). In general,
the latter happens with a lower rate k− < k+. This is the effect of the Ehrlich–Schwoebel
barrier.

On a continuum level, this assumption is expressed by a balance between the adatom flux,
±Da(∂ρ/∂ν), into a step and the deviation from the equilibrium (2.1):

Da
∂ρ+

∂ν
= k+(ρ+ − ρ∗(1 + ξκ)) at a step up,

−Da
∂ρ−

∂ν
= k−(ρ− − ρ∗(1 + ξκ)) at a step down,

(2.7)

where ν denotes the normal at a step in the direction of the lower terrace. Here, and in
what follows, the superscripts ‘+’ and ‘−’ refer to quantities on the lower terrace (seen
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from which the step is a step upwards) and the upper terrace (seen from which the step is
a step downward), respectively. Note that (2.7) is a combination of a reflecting and absorbing
boundary condition for the adatom density. For k+, k− → ∞, (2.7) turns into the equilibrium
boundary condition (2.1). But for finite k+, k−, the adatom density ρ suffers a jump across
the step.

Notice that at a given time, the adatom density ρ is determined by the position of the steps
via the diffusion equation (2.6) endowed with the boundary conditions (2.7). This determines
in particular the (quasi-stationary) adatom flux into a step from the lower terrace, Da(∂ρ+/∂n),
and from the upper terrace, −Da(∂ρ−/∂n). This incorporation of adatoms expands the upper
terrace and thus leads to a change of position of the step, described by its normal velocity V :

1

a
V = Da

(
∂ρ+

∂ν
− ∂ρ−

∂ν

)
. (2.8)

We see that (2.6)–(2.8) define a dynamic free boundary problem for the position of the steps.
Observe that this free boundary problem is non-local and that the evolution of the steps is
coupled.

3. Non-dimensionalization

We now non-dimensionalize the equations (2.6)–(2.8). We measure time in units of the time
(1/F ) it takes to grow one atomic layer:

t = 1

F
t̂.

As a characteristic length scale �∗, we choose the one which balances density variations due to
curvature effects, i.e. ρ∗(ξ/�R), and density variations due to deposition, i.e. (F/D)(�T /a)2.
For �R ≈ �T this yields

x =
(

D

F

)1/3

(ρ∗)1/3a2/3ξ 1/3x̂.

The appropriate scale for the excess adatom density w = ρ −ρ∗ is then given by ρ∗(ξ/�∗), i.e.

w =
(

F

D

)1/3

(ρ∗)2/3

(
ξ

a

)2/3

ŵ.

In these units, we obtain

−∇2w = 1 on terraces, (3.1)

V = ∂w+

∂ν
− ∂w−

∂ν
at steps, (3.2)

ζ + ∂w+

∂ν
= w+ − κ at a step up, (3.3)

−ζ− ∂w−

∂ν
= w− − κ at a step down, (3.4)

with the non-dimensional parameters

ζ± := F 1/3D2/3

k± (ρ∗)−1/3

(
a

ξ

)1/3

.

Let us address the relevant regime for (3.1)–(3.4). Next to the unavoidable conditions

ρ∗ � Fτ � 1 and a � ξ,
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the derivation was based on an at most moderate barrier to attachment, that is, ζ± � 1, which
translates into

FD2

(k±)3

a

ξ
� ρ∗.

Furthermore, the requirement ξ � �∗ can be reformulated as

F

D

(
ξ

a

)2

� ρ∗. (3.5)

Finally, the condition (2.4), which allowed us to neglect desorption, translates into

F 2Dτ 3

(
a

ξ

)2

� (ρ∗)2.

It is convenient to consider a slightly more general version of (3.1)–(3.4):

−∇2w = 1 on terraces, (3.6)

V = ∂w+

∂ν
− ∂w−

∂ν
at steps, (3.7)

(
ζ + ζ +−

ζ +− ζ−

) 


∂w+

∂ν

∂w−

∂ν


 =

(
w+ − κ

−(w− − κ)

)
at steps. (3.8)

This evolution is thermodynamically consistent as long as the matrix
(

ζ +

ζ +−
ζ +−
ζ−

)
is positive

semidefinite. Indeed, for a closed system (no deposition and no-flux boundary conditions)
we have

d

dt
[total length of steps] =

∫
steps

κV

=
∫

steps
w+ ∂w+

dν
−

∫
steps

w− ∂w−

dν
−

∫
steps

(w+ − κ)
∂w+

dν

+
∫

steps
(w−κ)

∂w−

dν

= −
∫

terraces
|∇w|2 −

∫
steps




∂w+

∂ν

∂w−

∂ν




(
ζ + ζ +−

ζ +− ζ−

) 


∂w+

∂ν

∂w−

∂ν


 � 0.

4. Diffuse-interface approximations

In this paper, we investigate diffuse-interface approximations of (3.6)–(3.8). By a diffuse-
interface approximation we understand an approximation where the discrete height function,
which counts the atomic monolayers, is smeared out on a length scale

ε � min{width of terraces, radius of curvature of steps}.
We denote the smeared-out height function by φ. It (approximately) describes the position of
the steps. The goal is to derive an evolution equation for φ.
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Consider the Cahn–Hilliard [9] equation

∂tφ − ∇2w = 1, (4.1)

−ε∇2φ + ε−1 ∂G

∂φ
(φ) = w (4.2)

with potential G � 0 satisfying

G is a periodic function of φ with period 1,

G vanishes for φ = . . . , −1, 0, 1, . . . ,

G is normalized by
∫ 1

0

√
2G(φ) dφ = 1.

(4.3)

Pego [18] was the first to show by matched asymptotic analysis that (4.1) and (4.2) constitute
a diffuse-interface approximation of (3.6)–(3.8) in the special case

ζ + = ζ− = ζ +− = 0.

Notice that in this case the adatom density does not jump across the steps, i.e. w+ = w− =: w.
In fact, (3.8) reduces to the equilibrium boundary condition

w = κ. (4.4)

In the context of the Stefan problem modelling solidification processes, this boundary condition
is known as the Gibbs–Thomson condition. In this context, (4.4) was also recovered from a
phase-field approximation via matched asymptotic analysis in [5]. A more rigorous type
of analysis, which goes beyond formal matched asymptotic expansions, has been developed
(for instance [1, 23, 6]), but will not be considered here.

The so-called viscous Cahn–Hilliard equation, introduced by Novick-Cohen [17]

∂tφ − ∇2w = 1, (4.5)

εζ1(φ)∂tφ − ε∇2φ + ε−1 ∂G

∂φ
(φ) = w, (4.6)

is an interpolation between the Cahn–Hilliard equation (4.1) and (4.2) and an Allen–Cahn
equation [11]. The coefficient ζ1 � 0 can be interpreted as a friction coefficient for step
movement and is assumed to satisfy the following condition:

ζ1 is a periodic function of φ with period 1.

It is well-known that (4.5) and (4.6) are a diffuse-interface approximation of (3.6)–(3.8), in the
special case of (

ζ + ζ +−

ζ +− ζ−

)
=

(
ζ −ζ

−ζ ζ

)
, where ζ =

∫ 1

0
ζ1(φ)

√
2G(φ) dφ.

See, for instance, the overview article [6]. Note, also, that in this case the adatom density
does not jump across the steps, i.e. w+ = w− =: w. In fact, in view of (3.7) and (3.8) can be
reformulated as

ζV = w − κ. (4.7)

In the context of the Stefan problem modelling solidification processes, this modification of
the Gibbs–Thomson condition (4.4) is known as ‘kinetic undercooling’. In this context, (4.7)
was derived from a phase-field model in [7].
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The factor which relates the excess adatom density gradient −∇w to the adatom flux j is
called the mobility. In the above equations, the mobility is unity. In this paper, we introduce
the viscous Cahn–Hilliard equation with variable mobility, i.e.

∂tφ + ∇ · j = 1, (4.8)

(1 + ε−1ζ2(φ))j = −∇w, (4.9)

εζ1(φ)∂tφ − ε∇2φ + ε−1 ∂G

∂φ
(φ) = w. (4.10)

The coefficient ζ2 can be interpreted as an additional friction coefficient for adatom movement.
We show that, provided ζ2 � 0 satisfies the following conditions,

ζ2 is a periodic function of φ with period 1,

ζ2 vanishes for φ = . . . , −1, 0, 1, . . . ,
(4.11)

the system of equations (4.8)–(4.10) is a diffuse-interface approximation of (3.6)–(3.8) with

ζ + =
∫ 1

0
ζ2(φ)(1 − φ)2 dφ√

2G(φ)
+

∫ 1

0
ζ1(φ)

√
2G(φ) dφ,

ζ +− =
∫ 1

0
ζ2(φ)(1 − φ)φ

dφ√
2G(φ)

−
∫ 1

0
ζ1(φ)

√
2G(φ) dφ,

ζ− =
∫ 1

0
ζ2(φ)φ2 dφ√

2G(φ)
+

∫ 1

0
ζ1(φ)

√
2G(φ) dφ.

(4.12)

Note that, on the one hand, any positive semidefinite matrix
(

ζ +

ζ +−
ζ +−
ζ−

)
with ζ +− � 0 can be

obtained by an appropriate choice of the function ζ2(φ) � 0. On the other hand, any matrix of
the form

(
ζ

−ζ

−ζ

ζ

)
with ζ � 0 can be obtained by an appropriate choice of ζ1 � 0. Therefore,

any positive semidefinite matrix
(

ζ +

0
0

ζ−
)

can be reached by an appropriate (non-unique) choice
of ζ1 and ζ2. Hence, (4.8)–(4.10) reproduce the Ehrlich–Schwoebel effect in full generality!

As an illustration of the above, the original form (3.3) and (3.4) of (3.8) can, for instance,
be recovered by the choice of

ζ1(φ) = ζ2(φ)
φ(1 − φ)

2G(φ)
,

in which case

ζ + =
∫ 1

0
ζ2(φ)(1 − φ)

dφ√
2G(φ)

, ζ− =
∫ 1

0
ζ2(φ)φ

dφ√
2G(φ)

.

We now present some numerical simulation. In order to focus on the new effect of ζ2, we
selected the periodic extensions of

G(φ) = 18(φ(1 − φ))2,

ζ1(φ) = 0,

ζ2(φ) = 6(p + 4)(p + 5)φp(φ(1 − φ))2 with p � 1,

(4.13)

in which case (4.12) yields(
ζ + ζ +−

ζ +− ζ−

)
=

(
O(p−2) O(p−1)

O(p−1) 1

)
.

The periodic functions G(φ) and ζ2(φ) are sketched in figure 4. Figure 5 shows the results
of a 1+1-dimensional numerical simulation for a system of size Lx = 8. The first graph
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Figure 4. Periodic functions G(φ) and ζ2(φ).

includes three curves:

• the exact solution of (3.6)–(3.8) for
(

ζ +

ζ +−
ζ +−
ζ−

) = ( 0
0

0
1

)
(BCF);

• the exact solution of (3.6)–(3.8) for
(

ζ +

ζ +−
ζ +−
ζ−

)
as in (4.12) with the choice of (4.13) and

p = 20 (pBCF) and
• the numerical solution of (4.8)–(4.10) for (4.12) with p = 20 and ε = 0.25.

The second graph zooms in at the step and shows the linear convergence of the method as
ε → 0. We notice that the overall deviation is due to the finiteness of both ε and p.

Figure 6 shows the graph of a typical w in a 2+1-dimensional numerical simulation for a
system of size Lx = Ly = 7, p = 20 and ε = 7

32 . The upper terrace is to the left, the position
of the step is a slight perturbation of a straight line. We see

• the concave shape of w on the terraces due to deposition;
• the jump of w at the step due to the Ehrlich–Schwoebel barrier;
• the variation in the jump height due to curvature.

The discontinuity in w is well resolved.
Our ideas on a robust and efficient discretization and 2+1-dimensional numerical

experiments displaying the Bales–Zangwill instability will be published elsewhere.
We now discuss the ansatz (4.8)–(4.10) and its relation to existing diffuse-interface

approximations. The only novel element is the variable mobility

j = −Mε∇w with Mε(φ) = 1

1 + ε−1ζ2(φ)
(4.14)

occurring in (4.9). Observe that due to the assumptions (4.11), this mobility is unity on the
terraces and is O(ε) near the steps. In this sense, the mobility is degenerate. Degenerate
mobilities occur in the context of the Cahn–Hilliard equation as a model for spinodal
decomposition in a deep quench regime. In this context, the mobility is degenerate in the
bulk (the analogue of the terraces) but not in the interfacial layer (the analogue of the smeared-
out steps). Cahn et al [8] have shown that the Cahn–Hilliard equation with degenerate mobility
is a diffuse-interface approximation of surface diffusion (‘motion by minus Laplacian of
curvature’). In contrast, the mobility (4.14) degenerates at the smeared-out steps. Only
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Figure 5. Convergence of the diffuse-interface approximation.

this allows in the limit for an adatom density w, which is discontinuous across steps. This
discontinuity is mathematically similar to the jump in the pressure at fluid–fluid interfaces. In
the case of a two-phase flow in a Hele–Shaw cell, a diffuse-interface approximation has been
proposed by Glasner [13]. Our ansatz (4.8)–(4.10) is mathematically close to Glasner’s.

We notice that (4.8)–(4.10) are thermodynamically consistent. Analogously to (3.6)–(3.8),
we obtain for a closed system (no deposition, no-flux and equilibrium boundary conditions):

d

dt

[∫
system

(ε

2
|∇φ|2 + ε−1G(φ)

)]
=

∫
system

(
−ε∇2φ + ε−1 ∂G

∂φ
(φ)

)
∂tφ

=
∫

system
(w − εζ1(φ)∂tφ) ∂tφ

=
∫

system
∇w · j −

∫
system

εζ1(φ)(∂tφ)2

= −
∫

system
((1 + ε−1ζ2(φ))|j |2 + εζ1(φ)(∂tφ)2) � 0.
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Figure 6. Resolution of the jump in w.

5. Matched asymptotic expansion

In order to derive (3.6)–(3.8) from (4.8)–(4.10), we carry out a standard matched asymptotic
analysis; see, for instance [8, 18]. The outer solution is an approximation to the solution on
a terrace, the inner solution zooms in on a step. We make the following ansatz for the outer
expansion:

φ = φ0 + εφ1 + O(ε2),

j = j0 + O(ε),

w = w0 + O(ε).

Only the equations (4.9) and (4.10) have an O(ε−1) contribution, namely

ζ2(φ0)j0 = 0, (5.1)

∂G

∂φ
(φ0) = 0. (5.2)

The O(ε0) contributions of (4.8)–(4.10) are

∂tφ0 + ∇ · j0 = 1, (5.3)(
1 +

∂ζ2

∂φ
(φ0)φ1

)
j0 + ζ2(φ0)j1 = −∇w0, (5.4)

∂2G

∂φ2
(φ0)φ1 = w0. (5.5)

In view of assumptions (4.3) on G, (5.2) yields that φ0 is a constant integer:

φ0 = . . . , −1, 0, 1, . . . . (5.6)
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Therefore, in view of assumptions (4.11) on ζ2, (5.1) is void. Also, in view of assumptions
(4.11) on ζ2, (5.3)–(5.5) simplify to

∇ · j0 = 1, (5.7)

j0 = −∇w0, (5.8)

∂2G

∂φ2
(0)φ1 = w0. (5.9)

From (5.7) and (5.8) we conclude that (3.6) is satisfied to leading order.
We now turn to the inner expansion. The smeared out steps only interact via the outer

solution (provided they are at a distance much larger than ε). Hence it suffices to consider
a single smeared-out step. By periodicity in φ, we may w.l.o.g. consider a smeared-out step
connecting a lower terrace where φ ≈ 0 (superscript ‘+’) to an upper terrace where φ ≈ 1
(superscript ‘−’). Let � denote the line along which φ = 1

2 . Let ν denote the normal of �

(pointing from ‘−’ to ‘+’), κ its curvature, V its normal velocity. We further introduce the
notation

s = arc length along � and r = ε−1 × signed distance to �

and make the following ansatz for the inner expansion:

φ = �0(t, r, s) + ε�1(t, r, s) + O(ε2),

j = J0(t, r, s)ν(t, s) + O(ε) with scalar J0,

w = W0(t, r, s) + O(ε).

With this ansatz, we have

∂tφ = −V ε−1∂r�0 + O(1),

∇ · j = ε−1∂rJ0 + O(1),

∇w = ε−1∂rW0ν + O(1),

∇2φ = ε−2∂2
r �0 + ε−1κ∂r�0 + ε−1∂2

r �1 + O(1).

Hence, we obtain to order O(ε−1) from the three equations (4.8)–(4.10), respectively

−V ∂r�0 + ∂rJ0 = 0, (5.10)

ζ2(�0)J0 = −∂rW0, (5.11)

−∂2
r �0 +

∂G

∂φ
(�0) = 0. (5.12)

To order O(ε0), we just need to keep the contribution of (4.10):

−V ζ1(�0)∂r�0 − κ∂r�0 − ∂2
r �1 +

∂2G

∂φ2
(�0)�1 = W0. (5.13)

We start with the kinematic condition (5.13). It implies that there exists a constant λ such that

−V �0 + J0 = λ. (5.14)

We now use the matching of outer and inner solutions on the level of φ, j and w, that is,

limr→±∞ �0 = φ±
0 =

{
0
1

}
,

limr→±∞ J0 = j±
0 · ν,

limr→±∞ W0 = w±
0 .

(5.15)
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This allows us to deduce from (5.14) that

j+
0 · ν = λ and − V + j−

0 · ν = λ,

which in view of (5.8) turns into

λ = −∂w+
0

∂ν
respectively V = ∂w+

0

∂ν
− ∂w−

0

∂ν
. (5.16)

In particular, we recover (3.7) to leading order.
We now turn to the equilibrium condition (5.12) for the interfacial layer. Multiplication

of (5.12) with −2∂r�0 yields

∂r((∂r�0)
2 − 2G(�0)) = 0.

In view of (5.15) and our assumptions (4.3) on G, this entails that

∂r�0 = −
√

2G(�0). (5.17)

We address (5.11), which we combine with (5.14) to obtain

∂rW0 = −ζ2(�0)(V �0 + λ), (5.18)

and integrate over r . In view of the matching conditions (5.15), we obtain by a substitution
using (5.17)

w+
0 − w−

0 = −
∫ ∞

−∞
ζ2(�0)(V �0 + λ) dr

= −V

∫ 1

0
ζ2(φ)φ

dφ√
2G(φ)

− λ

∫ 1

0
ζ2(φ)

dφ√
2G(φ)

.

Together with (5.16), this combines to

w+
0 − w−

0 = ∂w+
0

∂ν

∫ 1

0
ζ2(φ)(1 − φ)

dφ√
2G(φ)

+
∂w−

0

∂ν

∫ 1

0
ζ2(φ)φ

dφ√
2G(φ)

, (5.19)

which is ‘half’ of the boundary condition (3.8) with coefficients given by (4.12).
We will now extract the second half of (3.8) from (5.13). As usual, one appeals to the

solvability condition for (5.13), interpreted as an equation for �1:

∂2
r �1 +

∂2G

∂φ2
(�0)�1 = V ζ1(�0)∂r�0 + κ∂r�0 + W0. (5.20)

This amounts to multiplying (5.20) with ∂r�0 (which spans the null space of the symmetric
operator −∂2

r +(∂G2/∂φ2)(�0)) and integrating over r . Indeed, for the left-hand side of (5.20)
we obtain by integration by parts, and by (5.12)∫ ∞

−∞

(
−∂2

r �1 +
∂G2

∂φ2
(�0)�1

)
∂r�0 dr =

∫ ∞

−∞

(
−∂3

r �0 +
∂2G

∂φ2
(�0)∂r�0

)
�1 dr, (5.21)

∫ ∞

−∞

(
−∂2

r �1 +
∂G2

∂φ2
(�0)�1

)
∂r�0 dr =

∫ ∞

−∞
∂r

(
−∂2

r �0 +
∂G

∂φ
(�0)

)
�1 dr = 0. (5.22)

The boundary terms in (5.21) vanish since (5.15) implies that

lim
r→±∞ ∂r�0 = lim

r→±∞ ∂2
r �0 = 0.

For the two first terms on the right-hand side of (5.20), we obtain from substitution using (5.17)
and the normalization in (4.3)∫ ∞

−∞
(V ζ1(�0)∂r�0 + κ∂r�0)∂r�0 dr = V

∫ 1

0
ζ1(φ)

√
2G(φ) dφ + κ

∫ 1

0

√
2G(φ) dφ

= V

∫ 1

0
ζ1(φ)

√
2G(φ) dφ + κ. (5.23)
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For the last term on the right-hand side of (5.13) we obtain by integration by parts∫ ∞

−∞
W0∂r�0 dr = [W0�0]∞−∞ −

∫ ∞

−∞
∂rW0�0 dr. (5.24)

The matching conditions (5.15) yield

[W0�0]∞−∞ = −w−
0 .

From (5.18), we gather by a substitution based on (5.17)

−
∫ ∞

−∞
∂rW0�0 dr =

∫ ∞

−∞
ζ2(�0)(V �0 + λ)�0 dr

= V

∫ 1

0
ζ2(φ)φ2 dφ√

2G(φ)
+ λ

∫ 1

0
ζ2(φ)φ

dφ√
2G(φ)

,

so that∫ ∞

−∞
W0∂r�0 dr = −w−

0 + V

∫ 1

0
ζ2(φ)φ2 dφ√

2G(φ)
+ λ

∫ 1

0
ζ2(φ)φ

dφ√
2G(φ)

. (5.25)

Collecting (5.21), (5.23) and (5.25), we obtain using (5.16)

κ − w−
0 = −V

∫ 1

0
ζ1(φ)

√
2G(φ) dφ − V

∫ 1

0
ζ2(φ)φ2 dφ√

2G(φ)
− λ

∫ 1

0
ζ2(φ)φ

dφ√
2G(φ)

= ∂w+
0

∂ν

(
−

∫ 1

0
ζ1(φ)

√
2G(φ) dφ +

∫ 1

0
ζ2(φ)φ(1 − φ)

dφ√
2G(φ)

)

+
∂w−

0

∂ν

(∫ 1

0
ζ1(φ)

√
2G(φ) dφ +

∫ 1

0
ζ2(φ) φ2 dφ√

2G(φ)

)
. (5.26)

We now subtract (5.26) from (5.19) and obtain

w+
0 − κ = ∂w+

0

∂ν

(∫ 1

0
ζ1(φ)

√
2G(φ) dφ +

∫ 1

0
ζ2(φ)(1 − φ)2 dφ√

2G(φ)

)

+
∂w−

0

∂ν

(
−

∫ 1

0
ζ1(φ)

√
2G(φ) dφ +

∫ 1

0
ζ2(φ)φ(1 − φ)

dφ√
2G(φ)

)
. (5.27)

Now (5.26) and (5.27) yield the full boundary condition (3.8) with coefficients given by 4.12).
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