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Abstract

We present an adaptive finite element method for epitaxial island growth. The problem consists of an adatom

diffusion equation on terraces of different height; boundary conditions on steps including the kinetic asymmetry in the

adatom attachment and detachment; and the normal velocity law for the motion of the steps determined by a two-sided

flux, together with diffusion of edge-adatoms along the steps. The problem is solved using two independent meshes: a

two-dimensional mesh for the adatom diffusion and a one-dimensional mesh for the boundary evolution. Some

applications demonstrating the influence of the Ehrlich–Schwoebel and inverse Ehrlich–Schwoebel barrier and the

anisotropy are shown.
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Epitaxial growth
1. Introduction

Epitaxial growth is a modern technology of
growing single crystals that inherit atomic struc-
tures from substrates. Almost defect-free, high-
quality materials that have a wide range of device
applications can be produced. Microscopic pro-
cesses in epitaxial growth include the deposition of
atoms or molecules, atom adsorption and deso-
rption, adatom diffusion, adatom island nuclea-
tion, the attachment and detachment of adatoms
to and from steps, and island coalescence, see
Refs. [1,2].
We will consider a low-temperature regime, in

which the island growth mode predominates. In a
situation where islands are already nucleated and
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grown to a specific size step edges serve as sinks of
diffusion adatoms and mass currents of adatoms
are established on the surface. In a typical
situation in regard to such a growth mode,
adatoms diffuse on a terrace and likely hit a step.
In order to stick to the boundary from an upper
terrace, an adatom must overcome a higher-energy
barrier—the Ehrlich–Schwoebel barrier, see Refs.
[3–5]. This asymmetry in attachment and detach-
ment of adatoms to and from terrace boundaries
has many important consequences: It induces an
uphill current which in general destabilizes nom-
inal surfaces (high symmetry surfaces) [3–5], but
stabilizes vicinal surfaces (surfaces that are in the
vicinity of high symmetry surfaces) with large
slope, preventing step bunching [6]. However, such
surfaces are unstable towards step meandering,
and lead to the Bales–Zangwill morphological
instability of atomic steps [7]. On the other hand
step bunching observed on semiconductor surfaces
d.
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[8,9], requires a downhill current, which may be
caused by an inverse Ehrlich–Schwoebel barrier—
a barrier for adatoms arriving from the lower
terrace. This mechanism destabilizes surfaces
towards step bunching, but suppresses step mean-
dering. These effects where recently studied both
experimentally and theoretically in a step flow
regime on vicinal Sið0 0 1Þ surfaces in Ref. [10]. In
general, there is strong evidence of the influence of
the Ehrlich–Schwoebel barrier on the surface
morphology of a growing film, see e.g. Ref. [11].
There are various kinds of models for epitaxial

growth of thin films that are distinguished by
different scales in time and space. Among them,
continuum models can describe film surface
morphology and predict long time growth laws
in terms of scaling. One class of continuum models
are the Burton–Cabrera–Frank (BCF) type island
dynamics models, cf. Refs. [12–14,2]. Such a model
is essentially a free boundary problem that consists
of a diffusion equation for the adatom density on
terraces, boundary conditions for the moving
steps, and a velocity law for the motion of the
steps. This free boundary problem has the follow-
ing distinguished features: First, terraces have
different heights. Thus, the description of the
growth is continuous in the lateral directions but
discrete in the growth direction; second, the
adatom flux to the terrace boundary is two sided,
from both upper and lower terraces; and third, the
normal velocity of the steps is determined by the
two-sided flux and can include step-edge diffusion
of edge-adatoms along the steps.
Recently in Refs. [15,16] a finite element frame-

work was developed for such a class of island
dynamics models. In this paper we shortly review
this framework and apply it to study anisotropic
effects and the influence of the Ehrlich–Schwoebel
and inverse Ehrlich–Schwoebel barrier on growing
epitaxial islands.
2. Problem description

We denote by OCR2 the projected domain of
the film surface and assume that O is independent
of time t: Moreover O0 ¼ O0ðtÞCO denotes the
projected domain of the substrate or the exposed
film surface with the smallest layer thickness and
Oi ¼ OiðtÞCO; i ¼ 1;y;N; the projected domain
of the terrace of height i at time t; respectively.
Thus, N þ 1 is the total number of layers that are
exposed on the film surface. The corresponding
steps are denoted by GiðtÞ ¼ OiðtÞ-Oi�1ðtÞ; i ¼
1;y;N : Denote by ri ¼ riðx; tÞ the adatom
density on terrace OiðtÞ ði ¼ 0;y;NÞ at time t:
The adatom diffusion on a terrace is described by
the diffusion equation for the adatom density

@tri �r � ðDrriÞ ¼ F � t�1ri in OiðtÞ;

i ¼ 0;y;N; ð1Þ

where D > 0 is the surface diffusivity, F > 0 is the
deposition flux rate, and t�1 > 0 is the desorption
rate. Throughout the paper the unit of length will
be the substrate lattice spacing a: Thus the adatom
density r denotes the number of adatoms per
adsorption site. We assume that the adatom
density satisfies the following kinetic boundary
conditions on the island boundary GiðtÞ for i ¼
1;y;N

�Drri �~nni � viri ¼ kþðri � r�ð1þ mkiÞÞ; ð2Þ

Drri�1 �~nni þ viri�1 ¼ k�ðri�1 � r�ð1þ mkiÞÞ; ð3Þ

~nni and ki are the unit normal pointing from the
upper to the lower terrace and the curvature of the
boundary GiðtÞ; respectively; vi is the normal
velocity of the step GiðtÞ with the convention that
vi > 0 if the movement of GiðtÞ is in the direction of
~nni; kþ and k� are the kinetic attachment rates from
the upper and lower terrace to the boundary GiðtÞ;
respectively; r� is a positive constant denoting the
thermodynamic equilibrium density at straight
steps and m depending on the normal direction of
the boundary GiðtÞ being proportional to the
stiffness of the boundary GiðtÞ: If g denotes the
orientation-dependent step free energy divided by
kBT ; then m is given by mðyÞ ¼ gðyÞ þ gyyðyÞ; with y
the angle of the outer normal with the x-axis. With
this notation 0okþok� models the Ehrlich–
Schwoebel effect, whereas 0ok�okþ models the
inverse Ehrlich–Schwoebel effect. If kþ; k�-N;
Eqs. (2) and (3) pass into the thermodynamic
boundary condition

ri ¼ ri�1 ¼ r�ð1þ mkiÞ:
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A numerical scheme for this case was introduced
in Ref. [16]. For the motion of the steps, we
assume the following law for the normal velocity vi

of the island boundary GiðtÞ

vi ¼ � Drri �~nni � viri þ Drri�1 �~nni þ viri�1

þ @sðn@sðmkiÞÞ; ð4Þ

where n is a positive function denoting the
(orientation-dependent) mobility of the edge diffu-
sion, and @s denotes the tangential derivative along
the steps. The last term in Eq. (4) represents step
edge diffusion of edge-adatoms along the steps.
3. Discretization

We shortly review the weak formulation and
finite element discretization as introduced in Refs.
[15,16]. A first-order implicit scheme in time is
used. In each time step: (i) we update the discrete
step boundaries by solving a geometric partial
differential equation based on the adatom densi-
ties and the discrete step boundaries from the
previous time step; (ii) we solve the diffusion
equation to update the adatom densities using the
adatom densities from the previous time step and
the computed discrete representation of the steps.

3.1. Boundary evolution

Using the boundary conditions Eqs. (2) and (3)
at GiðtÞ in the velocity formula Eq. (4) leads to the
geometric PDE

vi ¼ gi þ bmki þ @sðn@sðmkiÞÞ; ð5Þ

with gi ¼ kþðri � r�Þ þ k�ðri�1 � r�Þ and b ¼
ðkþ þ k�Þr�: This equation can be interpreted as
an equation for anisotropic (one-dimensional)
‘‘surface’’ diffusion with lower-order terms. A
variational formulation and discretization using
parametric finite elements is obtained as follows
(see Refs. [15,16]). Introducing the position vector
~xxi; the curvature vector ~kki; and the velocity vector
~vvi; a system of equations for~kki; ki; vi; and~vvi can be
derived from Eq. (5). Using the geometric expres-
sion ~kki ¼ �@ss~xxi; the velocity law Eq. (5), and the
relations between the vector valued and scalar
quantities ki ¼ ~kki �~nni and ~vvi ¼ vi~nni; we obtain

~kki ¼ �@ssð~xxiÞ; ð6Þ

ki ¼ ~kki �~nni; ð7Þ

vi ¼ gi � bmki þ @sðn@sðmkiÞÞ; ð8Þ

~vvi ¼ vi~nni: ð9Þ

Considering discrete time steps Dt; the boundary at
time t þ Dt is represented in terms of the boundary
at time t by updating the position vector ~xxi’~xxi þ
Dt~vvi: Plugging the updated position vector into
Eq. (6) and multiplying Eqs. (6)–(9) with test
functions c and ~cc leads to the following weak
formulation:Z

Gi

~kki
~cc � Dt

Z
Gi

@s~vvi � @s~cc ¼
Z
Gi

@s~xxi � @s~cc;
Z
Gi

kic�
Z
Gi

~kki �~nnic ¼ 0;

Z
Gi

vicþ
Z
Gi

n@sðmkiÞ@scþ
Z
Gi

bmkic ¼
Z
Gi

gic;Z
Gi

~vvi
~cc �

Z
Gi

vi~nni
~cc ¼ 0:

The system is now discretized using parametric
finite elements. Note that in the above formula-
tion, the adatom densities ri and ri�1 on the upper
and lower terraces, respectively, are needed only
for computing gi: Solving the resulting linear
system on each boundary yields the new boundary.
These new boundaries, together with their curva-
tures will enter in the next time-step for the
adatom diffusion.

3.2. Adatom diffusion

Multiplying Eq. (1) by a test function f and
integration by parts leads toZ

Oi

@trifþ
Z
Oi

Drri � rfþ
Z
Giþ1ðtÞ

Drri �~nniþ1f

�
Z
GiðtÞ

Drri �~nnif ¼
Z
Oi

Ff�
Z
Oi

t�1rif:

For each i this equation is extended to the whole
time-independent domain O by setting
ri;Di;Fi; t�1i ¼ 0 outside of Oi: Taking account
of the distributional time-derivatives of ri at the
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steps, denoted by ’ri; and using the boundary
conditions Eqs. (2) and (3), see Ref. [15] for
details, we obtainZ

O
’rifþ

Z
O

Dirri � rf

þ
Z
Giþ1ðtÞ

k�ðri � r�ð1þ mkiþ1ÞÞf

þ
Z
GiðtÞ

kþðri � r�ð1þ mkiÞÞf

¼
Z
O

Fifþ
Z
O
t�1i rif: ð10Þ

Notice that for the derivation of Eq. (10) the
convective terms in the boundary conditions
Eqs. (2) and (3) are essential. Since Eq. (10) is
solved for each ri on the whole domain, there are
two degrees of freedom at each boundaries GkðtÞ;
namely rk and rk�1: In this way the discontinuity
in the adatom density at the steps can be resolved.
Eq. (10) is discretized using an implicit Euler
discretization in time and linear finite elements in
space. An adaptive strategy is used in order to
refine the numerical mesh close to the step edges.
For details we refer to Ref. [15].
4. Numerical simulation

Growing circular island as a numerical test:
Consider a single, circular island O1ðtÞ of radius
RðtÞ at time t that is growing on a concentric
circular substrate with radius RO: Using polar
coordinates ðr; yÞ with the origin at the center of
the circular island, the radially symmetric solution
0
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Fig. 1. Cross-sections of computed adatom densities: (left) kþ ¼ 103;
of the quasi-stationary diffusion equation is given
by (see Ref. [17])

r0ðr; tÞ ¼
F

4D
ðRðtÞ2 � r2Þ þ

FR2
O

2D
ln

r

RðtÞ

� �

þ r� 1þ
m

RðtÞ

� �
þ

F

2k�

R2
O

RðtÞ
� RðtÞ

� �
;

r1ðr; tÞ ¼
F

4D
ðRðtÞ2 � r2Þ þ r� 1þ

m
RðtÞ

� �
þ

FRðtÞ
2kþ

:

The circular boundary evolves like RðtÞ2 ¼ FR2
Ot þ

Rð0Þ2: Since F=D51; the quasi-stationary solution
is supposed to be a good approximation, and
serves as a benchmark for the numerical simula-
tion. Fig. 1 shows the cross-section of the
computed adatom density under isotropic condi-
tions at various times for the three cases

0okþok�oN; 0okþ ¼ k�oN and

0ok�okþoN:

The initial radius of the island is Rð0Þ ¼ 3 (in
units of lattice spacing a) growing on a substrate
of radius RO ¼ 10 with parameters D ¼ 105; F

¼ 1; r� ¼ 10�4; m ¼ 0:1; n ¼ 0:1 and k7 ¼ 103

or 104:
The influence of kþ and k� on the jump of r at

step-edges is clearly observed. In Fig. 2 the
numerical solution, which remains rotational
symmetric, is compared with the analytical solu-
tion. The relative max-error is less than 2% and
partly results from the initial condition r0i ¼ r�

used in the simulation. Also note, that at time t ¼
0:4 the areas of the substrate and of the island are
equal, which in the case of kþ ¼ k� leads to a
continuous adatom density at the step-edge.
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k� ¼ 104; (middle) kþ ¼ k� ¼ 104; (right) k� ¼ 103; kþ ¼ 104:
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Fig. 2. Numerical and analytical solution at t ¼ 0:4: (left) kþ ¼ 103; k� ¼ 104; (middle) kþ ¼ k� ¼ 104; (right) k� ¼ 103; kþ ¼ 104:
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Fig. 3. (left) Island growth rates, (right) growth rate of intermediate terrace.
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Dependency of growth rate on kþ and k�: The
effect of the Ehrlich–Schwoebel and inverse
Ehrlich–Schwoebel barrier is now analysed by
simulating the evolution of two concentric islands
with radii R1ð0Þ ¼ 5 and R2ð0Þ ¼ 4 sitting on top
of each other on a circular domain of radius R0 ¼
7:
Both islands grow, but the growth rate highly

depends on the values of kþ and k�: Fig. 3 (left)
shows the growth rate of both islands. The
Ehrlich–Schwoebel barrier forces the adatoms to
be incorporated at step-edges mainly from the
lower terrace, which leads to an enlarged growth
rate for the upper island but a reduced growth rate
for the lower island. On the other hand the inverse
Ehrlich–Schwoebel barrier forces the adatoms to
be incorporated at step-edges mainly from the
upper terrace. This leads to a reduced growth rate
for the upper island but an enlarged growth rate
for the lower island. Thus the area growth rate of
the intermediate terrace is reduced if kþok�

(Ehrlich–Schwoebel barrier) and enlarged if kþ >
k� (inverse Ehrlich–Schwoebel barrier), as seen in
Fig. 3 (right).

Anisotropic growth: The final example shows the
evolution of the two islands in the same setting as
above but now including anisotropy. Thus we
consider the step stiffness m to be angle dependent
and given by mðyÞ ¼ 1:0� 0:8 cosð3yÞ: Fig. 4 shows
the adatom density at t ¼ 0:1 and the adaptively
refined two-dimensional mesh. The ‘‘triangular’’
shape as well as the jump at step-edges can clearly
be observed. The time evolution is depicted
in Fig. 5 where the one-dimensional curves,
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Fig. 4. Anisotropic growth: adatom density and adaptively refined mesh at t ¼ 0:1:
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Fig. 5. Anisotropic growth: step edges of the two islands at various times.
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corresponding to step-edges, are shown. It can be
seen that the Wulffshape of the islands is nicely
conserved during growth.
5. Conclusions

We have applied an adaptive finite element
method to simulate island dynamics in epitaxial
growth, taking account of anisotropies, attach-
ment–detachment kinetics and diffusion of edge-
adatoms along step-edge. After testing on analytic
solutions, the method was applied to study the
influence of an Ehrlich–Schwoebel and inverse
Ehrlich–Schwoebel barrier on the evolution of two
concentric islands. The algorithm described here is
stable and fairly accurate and can be used for
simulating island dynamics, in the absence of
island nucleation and coalescence. The presented
results are a first step towards the numerical
simulations of the evolution of surface morphol-
ogies in the framework of step flow models,
investigating the influence of the Ehrlich–Schwoe-
bel effect.
References

[1] A.-L. Barab!asi, H.E. Stanley, Fractal Concepts in Surface

Growth, Cambridge University Press, Cambridge, 1995.

[2] A. Pimpinelli, J. Villain, Physics of Crystal Growth,

Cambridge University Press, Cambridge, 1998.

[3] G. Ehrlich, F.G. Hudda, J. Chem. Phys. 44 (1966) 1036.

[4] R.L. Schwoebel, J. Appl. Phys. 40 (1969) 614.

[5] R.L. Schwoebel, E.J. Shipsey, J. Appl. Phys. 37 (1966)

3682.

[6] J. Villain, J. Phys. I 1 (1991) 19.

[7] G.S. Bales, A. Zangwill, Phys. Rev. B 41 (9) (1990) 5500.

[8] C. Schelling, G. Springholz, F. Sch.affler, Thin Solid Films

269 (2000) 1.



ARTICLE IN PRESS

F. HauX er, A. Voigt / Journal of Crystal Growth 266 (2004) 381–387 387
[9] P. Tejedor, F.E. Allegretti, P. Smilauer, B.A. Joyce, Surf.

Sci. 407 (1–3) (1998) 82.

[10] J. Myslivecek, C. Schelling, F. Sch.affler, G. Springholz, P.

Smilauer, J. Krug, B. Voigtl.ander, Surf. Sci. 520 (2002)

193.

[11] M.G. Lagally, Z. Zhang, Nature 417 (2002) 907.

[12] W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R.

Soc. London Ser. A 243 (866) (1951) 299.
[13] R. Ghez, S.S. Iyer, IBM J. Res. Dev. 32 (1988) 804.

[14] J. Krug, Physica A 318 (2002) 47.

[15] E. B.ansch, F. HauXer, O. Lakkis, B. Li, A. Voigt, J.

Comput. Phys. 194 (2004) 409.

[16] E. B.ansch, F. HauXer, A. Voigt, Technical Report 36,

Research Center Caesar, 2003.

[17] B. Li, A. R.atz, A. Voigt, Technical Report 50, SFB 611,

Universit.at Bonn, 2002.


	Finite element method for epitaxial island growth
	Introduction
	Problem description
	Discretization
	Boundary evolution
	Adatom diffusion

	Numerical simulation
	Conclusions
	References


