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Abstract

In this paper we discuss a model from neurobiology, which describes the outgrowth of

axons from neurons in the nervous system. The model combines ordinary differential equa-

tions, defining the movement of the axons, with parabolic partial differential equations. The

parabolic equations model the concentrations of chemicals. The axons are guided by the gra-

dients of these chemoattractant and chemorepellant concentrations. We briefly discuss the

numerical techniques that we have used to solve this coupled parabolic-gradient system. Spe-

cial attention is given to the parallel implementation on the SGI Origin 3000 (Teras), a multi-

processor machine. For that purpose we use the OpenMP standard. Several parallelization

strategies are introduced and tested on the basis of a test example. Simulation results as well

as performance results are reported.
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1. Introduction

During the development of the nervous system of a human individual, con-

nections for innervation are formed when axons reach their targets. These axons
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are sent out by neurons. One of the mechanisms to guide the axons is the dif-

fusion of a chemoattractant secreted by the target. The growth cones of the

axons can sense the chemoattractant and grow �uphill’ the concentration gradi-

ent. Growing axons often form bundles, which is most likely caused by chemo-

attractants that are produced by the axons themselves. Upon reaching the target
zone, the axons must steer away from each other to innervate their specific tar-

get. This debundling is caused by diffusible chemorepellants, also secreted by the

axons.

In [3], Hentschel and Van Ooyen describe a mathematical model to study the

above processes. In the present paper we will use a slightly modified version of this

model. It is based on a set of partial differential equations (PDEs) of parabolic type.

Each PDE describes the concentration distribution in space and time of one specific

chemical species. Coupled with these parabolic equations we have gradient equa-
tions, describing the positions of the axons. These gradient equations are ordinary

differential equations (ODEs).

The model will be solved numerically, using techniques similar to those used in

[8] (see also [4]). For the spatial discretization of the parabolic equations we use

standard second-order finite differences. The gradients are approximated by bilinear

interpolation. The resulting semi-discrete system will be integrated in time by a

second-order explicit method of Runge–Kutta–Chebyshev (RKC) type [7]. This

method has been designed for integrating mildly stiff ODEs with a Jacobian matrix
which is �close to normal’ and possesses a spectrum which is located in a narrow

strip along the negative real axis in the complex plane. The neuronal problem under

consideration fulfils these requirements and the experiments reported in [8] indicate

that RKC is an efficient time integration technique.

Based on these numerical ingredients, we have implemented the resulting code on

a parallel computer, viz. the SGI Origin 3000, briefly the �Teras’. The main purpose

of the present paper is to report on our experiences with the Teras for this particular

problem.
In Section 4 we discuss the various parallelization strategies that we have tested,

followed – in Sections 5 and 6 – by the simulation results and the parallel perfor-

mance of the code on the Teras. These sections are preceded by a brief description

of the problem (Section 2) and a short outline of the numerical methods (Section

3). The paper is concluded by a discussion (Section 7).
2. Problem definition

Here, we briefly describe the mathematical model; more details can be found in

[3,8].

The concentrations of the three chemicals will be denoted by qt (the target-

secreted attractant), qa (the axon-secreted attractant), and qr (the axon-secreted

repellant). These concentrations depend on space and time and satisfy the parabolic

PDEs
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oqt

ot
¼ DtDqt � jtqt þ St;

oqa

ot
¼ DaDqa � jaqa þ Sa;

oqr

ot
¼ DrDqr � jrqr þ Sr:

ð1Þ
Here, the diffusion coefficients D and the j0s in the linear decay terms are given,

positive constants. The last term, S, in each equation represents a source term. We

adopt the approach advocated in [3] to model this term by a Dirac d-function, which
implies that target cells and growth cones are considered as point sources.

The source term St models the release of the chemoattractant qt in all target

points. Hence, we choose St of the form
St ¼
XNt

j¼1

rtdðx� xT
j Þ; ð2Þ
where Nt denotes the number of targets, which are located in the fixed spatial points

xT
j . In principle, the factor rt may depend on all three chemical species. However,

since the dependence is not known in detail, rt will be chosen constant.

For the source terms Sa and Sr we use similar expressions:
Sa ¼
XNa

j¼1

radðx� xA
j Þ; ð3Þ

Sr ¼
XNa

j¼1

rrdðx� xA
j Þ: ð4Þ
Here, the summation index runs to Na, the number of axons, and xA
j denotes the

spatial position of the jth axon. Notice that, due to the movement of the axons, the

points xA
j change in time, whereas the xT

j in (2) are fixed in time. Again, by lack of
information, ra will be chosen constant. For rr it is reasonable to assume a

dependence on qt, because secretion of chemorepellants only starts when the axons

are in the vicinity of the targets, i.e., when qt is large. The precise form of rrðqtðxÞÞ,
as well as the values of all other parameters will be specified in Section 5.

The positions xA
j of the axons migrating towards the targets are mainly deter-

mined by the gradient of the chemoattractant qt. In addition to that, the path the

axons will follow is also determined by the gradient of the mutual attractant qa

(causing �bundling’) and by the gradient of the mutual repellant qr (causing �debun-
dling’). Hence, for the axon positions we arrive at the gradient equations
dxA
j ðtÞ
dt

¼ ktrqtðxA
j ðtÞ; tÞ þ karqaðxA

j ðtÞ; tÞ � krrqrðxA
j ðtÞ; tÞ; j ¼ 1; . . . ;Na;

ð5Þ

where the k’s are assumed constant and positive. Notice that the gradients have to

be evaluated at the position xA
j . Since the parabolic equations (1) are solved on a
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discrete grid in space, the concentrations are only available at the grid points. Thus,

in case an axon is somewhere inside a grid cell, the gradients at xA
j have to be

interpolated using the grid values of the concentrations. This interpolation will be

described in Section 3.2.

In all our experiments we have implemented the above problem (1)–(5) in two spa-
tial dimensions. A square domain has been used which is sufficiently large to jus-

tify our choice of homogeneous Dirichlet boundary conditions for the chemical

species.
3. Numerical methods

This section shortly outlines the numerical techniques that we have selected to
solve the problem. This comprises the spatial discretization of the Laplace operator,

the interpolation procedure to approximate the gradients, the way the d-function in

the source terms has been implemented, the time integration technique, and a discus-

sion of a phenomenon that we will call �self-boost’. These issues will be discussed in

the next subsections. Details can be found in [4,8].
3.1. Spatial discretization

The problem will be solved on a square domain in R2. For the spatial discretiza-

tion we use a uniform grid with mesh size h. The Laplacian in (1) is approximated by

the standard second-order difference stencil
½ 1 �2 1 �=h2;

applied in both spatial directions. On the boundaries we assume homogeneous

Dirichlet conditions.

To calculate the gradients in (5), we first approximate oq=ox and oq=oy in the grid

points using the second-order difference stencil
½ �1 0 1 �=ð2hÞ;

applied to the discrete grid function qh, which approximates q at the grid points.

Then, the resulting approximations for these derivatives will be used to calculate

rqhðxA
j Þ by means of interpolation, which is discussed in the next subsection.

In passing we remark that this difference stencil cannot be applied to grid points

on the boundary. However, the computational domain has been chosen sufficiently

large as to avoid the situation that axons reach the boundary. Hence, interpolating in

cells adjacent to the boundary will never occur.

3.2. Interpolation

In the gradient equations describing the motion of the axon growth cones we need

the derivatives of the concentrations of the three chemicals at the location of the

growth cones. However, as said in the preceding subsection, we only have available
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the grid function qh, representing the concentration values at the fixed grid points.

The discrete gradient operator
ðrhqhÞi;j :¼
1

2h
qh;iþ1;j � qh;i�1;j

qh;i;jþ1 � qh;i;j�1

� �
ð6Þ
is applied to the grid function to obtain approximate grid values rhqh for the gra-

dient. Next, we apply an interpolation operator Ih yielding an approximation torhqh

in the point xA
j . Hence, the discrete analogue of (5) reads
dxA
j ðtÞ
dt

¼ kt � ½Ihrhqh;t�ðxA
j Þ þ ka � ½Ihrhqh;a�ðxA

j Þ � kr � ½Ihrhqh;r�ðxA
j Þ;

j ¼ 1; . . . ;Na: ð7Þ
For efficiency reasons we use local interpolation, i.e., only grid points in the vicinity

of the point xA
j are used as supporting points. In general the set of supporting points

will depend on the grid cell in which the point xA
j is located. This set changes when

the point xA
j crosses the border of a cell, which results in reduced smoothness of the

right-hand side function of the differential equation. This may have some impact on

the efficiency and reliability of the stepsize selection algorithm in the time integrator.

In our implementation we use a bilinear interpolation approach
Ihf ðx; yÞ ¼ aþ bxþ cy þ dxy: ð8Þ

The coefficients a, b, c, d of the bilinear functions are determined by interpolating in

the four corners of the grid cell the axon is located in. The required values of the

gradients in the grid points are determined by the symmetric second-order difference

formula as described above. Note that this results in a 12-point stencil for the
computation of the gradient: the four corners of the grid cell itself and four addi-

tional grid points that enter the formulas for o
ox and

o
oy, respectively via the discretized

r-operator.
3.3. Implementation of the d-function

Next, we discuss the implementation of the d-function. This function is replaced

by an appropriate continuous function which can be evaluated at the grid points. To
ensure that the amount of chemical produced is conserved, the integral of the func-

tion is required to be equal to one (cf. [1]). We have considered an exponential func-

tion and a tensorproduct linear B-spline approach; in both cases, these functions are

chosen grid size dependent.

3.3.1. The exponential function

We use
dhðxÞ ¼
c
p
expð�ckxk2Þ; ð9Þ
where kxk denotes the Euclidean norm of x and c ¼ h�2. This function has un-

bounded support. To decrease the computational effort we restrict the support to a
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subgrid with 8 · 8 grid points, such that xA
j lies in the center grid cell. The values

outside the 8 ·8 -subgrid are at most expð�16Þ � 10�7 of the maximum value of dh
and therefore negligible.
3.3.2. Linear B-splines

We replace the delta-function by a tensorproduct of linear B-splines centered at

zero with support of size 2h
dhðx; yÞ ¼ BhðxÞBhðyÞ; ð10Þ
where
BhðxÞ :¼
h�jxj
h2 for jxj6 h
0 else

�
: ð11Þ
Suppose the axon xA
k lies in the grid cell ½xi; xiþ1� � ½yj; yjþ1� with xA

k ¼ ðxiþ
hxh; yj þ hyhÞ where 06 hx; hy < 1. Then the contributions of the approximated

d-function at the grid points are simply the values of dhðx� xAk ; y � yAk Þ evaluated at
the four corners of the cell:
dh;i;j ¼
ð1� hxÞð1� hyÞ

h2
;

dh;iþ1;j ¼
hxð1� hyÞ

h2
;

dh;i;jþ1 ¼
ð1� hxÞhy

h2
;

dh;iþ1;jþ1 ¼
hxhy
h2

:

ð12Þ
This approach also allows for a geometrical interpretation: when we consider the

division of the grid cell into four rectangles by the lines x ¼ xAk and y ¼ yAk , then the

contribution at a corner of the cell is proportional to the area of the rectangle laying

opposite. In fact, this is the approach suggested by Dallon (cf. [1]).

3.4. Time integration

Once the techniques described in the preceding subsections have been applied, we

end up with an initial-value problem for a system of ordinary differential equations

(ODEs), which will be written in the form
dU
dt

¼ F ðUÞ; t > 0; Uð0Þ ¼ U0: ð13Þ
For the time integration of (13) we will apply the explicit Runge–Kutta–Chebyshev

(RKC) method. This method is especially efficient in case the Jacobian matrix F 0ðUÞ
is �close to normal’ with eigenvalues in a long, narrow strip along the negative axis in

the complex plane. The underlying neuronal problem indeed satisfies these

requirements.
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RKC is based on the s-stage formula
Y0 ¼ Un;

Y1 ¼ Y0 þ ~l1sF0;

Yj ¼ ð1� lj � mjÞY0 þ ljYj�1 þ mjYj�2 þ ~ljsFj�1 þ ~cjsF0; j ¼ 2; . . . ; s;

Unþ1 ¼ Ys;

ð14Þ

where Fj ¼ F ðYjÞ. Here, s denotes the timestep and Un is an approximation to the

exact solution UðtnÞ, with tn ¼ ns. The coefficients are defined as follows. Let Tj
denote the Chebyshev polynomial of the first kind of degree j, which satisfies the

three-term recursion T0ðxÞ ¼ 1, T1ðxÞ ¼ x, TkðxÞ ¼ 2xTk�1ðxÞ � Tk�2ðxÞ, 26 k6 j.
Defining
� ¼ 2=13; w0 ¼ 1þ �=s2; w1 ¼
T 0
s ðw0Þ

T 00
s ðw0Þ

;

bj ¼
T 00
j ðw0Þ

ðT 0
j ðw0ÞÞ2

ð26 j6 sÞ; b0 ¼ b2; b1 ¼ b2;
the coefficients in (14) are given by
~l1 ¼ b1w1; lj ¼
2bjw0

bj�1

; mj ¼
�bj
bj�2

; ~lj ¼
2bjw1

bj�1

;

~cj ¼ �ð1� bj�1Tj�1ðw0ÞÞ~lj ð26 j6 sÞ:
Notice that these coefficients are available in analytical form for arbitrary sP 2. The

real stability boundary bðsÞ is quadratic in s and is given by 0:65s2. We remark that s
can vary, which implies that (14) is in fact a whole family of integration formulas. A

nice property of RKC is that the local error coefficients are almost independent of s.
Hence, based on error control, RKC determines first the largest possible timestep s
with respect to accuracy requirements. Then, the most efficient stable formula (i.e.,

the one with minimal s-value) is selected to satisfy the linear stability condition.

Another important property of the family is due to the three-term recursion for

Chebyshev polynomials. This makes it possible to implement the integration formula

with only a few vectors for storage, no matter the number of stages.

Finally, we remark that the approximation Unþ1 as well as the intermediate

approximations Yj ðj ¼ 2; . . . ; sÞ are second-order accurate. Source code for RKC

can be obtained from the address ftp://ftp.cwi.nl/pub/bsom/rkc.

3.5. Avoiding self-boost

We have applied the RKC time integration scheme to the semi-discretized prob-

lem with several interpolation formulas for the gradient and several approaches for

the source terms. For some combinations we encountered unsatisfactory results: the

system approaches a stationary point where single axons stop near their starting

points far away from the targets while other axons reach the targets.

ftp://ftp.cwi.nl/pub/bsom/rkc
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To obtain a better understanding of this phenomenon we consider a single axon

moving under the influence of a gradient of only one chemical q (see also [4] for a

more comprehensive discussion on this topic):
_q ¼ Lqþ SðxAÞ;
_xA ¼ rjxAq:

ð15Þ
Here, L denotes the diffusion operator. When this equation is subjected to a space

discretization then q, L, S, and r are replaced by their discrete analogues qh, Lh, Sh,
and rh, respectively.

Recall that our model assumes that the axon-secreted chemicals control the bun-

dling and debundling of the axons, i.e., axons are influenced by the chemicals

secreted by other axons. There is a side-effect we have not yet taken into account:

the chemicals that are secreted by a particular axon induce a movement of that axon

itself. We denote this undesirable behaviour by the term �self-boost’.
In order to avoid the �self-boost’ the discretized version has to satisfy
rhjxAShðxAÞ ¼ 0: ð16Þ
In this condition, three processes are involved: distributing the source term in xA

over the neighbouring grid points, the approximation of the first derivatives of the

contributions in these grid points, and the interpolation in the point xA of these
derivatives. In fact, the compatibility condition (16) requires that the overall effect

of the combination of these processes vanishes, thus avoiding self-boost of the

axon.

We will now show that the discrete gradient operator (6), in combination with the

bilinear interpolation (cf. (8)) and the implementation of the d-function as described

in Section 3.3.2 indeed satisfy the condition (16). We restrict ourselves to the gradient

in x-direction (the computation in y-direction is completely analogous): using the

interpolation procedure, ox in the point xA can be expressed in terms of ox in the four
surrounding grid points:
oxjxAShðxAÞ ¼ fð1� hxÞ½ð1� hyÞox;i;j þ hyox;i;jþ1�
þ hx½ð1� hyÞox;iþ1;j þ hyox;iþ1;jþ1�gShðxAÞ:
Then, replacing ox by the discrete analogue (6) yields for the right-hand side
1

2h
fð1� hxÞ½ð1� hyÞdh;iþ1;j þ hydh;iþ1;jþ1� � hx½ð1� hyÞdh;i;j þ hydh;i;jþ1�g:
Finally, we substitute the dh-values in the grid points as defined in (12) to obtain
1

2h
1

h2
fð1� hxÞ½ð1� hyÞhxð1� hyÞ þ hyhxhy �

� hx½ð1� hyÞð1� hxÞð1� hyÞ þ hyð1� hxÞhy �g;
which is readily verified to vanish indeed.
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4. Parallelization strategies

When the space grid is refined in both x- and y-direction the computational effort

rises approximately as Oðh�3Þ. Two powers of h�1 are caused by the larger number of

grid points while a further factor h�1 originates from the increased stiffness of the
system that forces RKC to use more stages to keep the integration process stable

(using the same time step). Needless to say that the use of a parallel computer is

indispensable for very fine meshes.

Having prescribed the spatial discretization and the time integration, essentially

two components of the total algorithm are suitable for parallelization: the computa-

tion of the right-hand side function and the vector operations in RKC.
4.1. The Teras architecture

The Teras machine has 1024 processors, each of which has a theoretical peak per-

formance of 1 Gflop/s. They are organized in two clusters of 512 processors where

each cluster is organized as a hypercube. Small units of four processors share physi-

cally the same memory via a so-called HUB. Larger units are built from smaller ones

on the basis of a hypercube-structure, where the communication is organized by rou-

ters. Therefore blocks with more than 4 processors have logically shared memory,

but physically distributed memory. This fact has to be taken into account when
building a parallel application. More information about the Teras machine can be

found in [6].

4.2. Parameterisation

Before discussing the actual parallel implementation, we first give a parameterisa-

tion for this particular application and for the parallel machine (Teras) that we have

used. This is a useful exercise since it provides information to predict the behaviour
of a future 3D implementation. Furthermore, such a parameterisation can be of use

in tailoring computer configurations to the specific features of the application.

Following the approach described in [2], we will discuss two important parame-

ters: ca, characterizing the application and cm, characterizing the parallel machine.

The smaller the quotient cm=ca, the better the application fits the parallel configura-

tion. By that we mean that the communication requires a small part of the overall

time.

The parameter ca is defined as the number of operations (in Mflops) that has to be
performed on a single processor divided by the amount of data (in Mwords) that has

to be transferred from one processor to the other processors. Obviously, this number

depends on the application as well as on the algorithm. Based on the space and time

discretization methods discussed in Section 3, this parameter can, in first approxima-

tion, be quantified as
ca ¼
25:5N

p
; ð17Þ



172 J. Wensch, B. Sommeijer / Parallel Computing 30 (2004) 163–186
where N denotes the number of grid points in each of the two spatial dimensions and p
is the number of processors. In this expression we only took into account the work

and transfer corresponding to the 3N 2 grid point values. Since the contribution of the

Na axons and Nt targets is two orders of magnitude smaller, it has been omitted in (17).

The parameter cm essentially describes �how many operations can be performed
on a processor during the time needed to send one word of data from one processor

to another’. More details, as well as a precise definition of cm, can be found in [2].

Since de Teras machine is of so-called CC-NUMA (Cache-Coherent Non Uniform

Memory Access) architecture, the parameter cm is not a constant. This is due to

the fact that the communication time depends on the �distance’ between processors

(i.e., the number of routers that have to be passed). As a consequence, running in

a multi-users situation (as we did) may result in different cm-values. Basically, the
cm-value can be computed by taking the quotient of the effective processor perfor-
mance and the network bandwidth. For the Teras system that we used, we then

arrive at the value 20. Due to latency and �variable distance’ effects, cm ¼ 25 seems

to be a realistic choice. As we shall see in Section 6, the effect of a non-constant

cm is clearly noticeable in case of a �subdomain’-approach (this concept will be dis-

cussed in Section 4.4.1) when running on the coarsest spatial mesh using 13 proces-

sors. Only for this case, repeated runs showed that the time needed for

communication was quite unpredictable. However, in all other cases (i.e., different

approaches to distribute the grid points, or finer meshes and more processors) re-
vealed that the run times show only modest variation, particularly if the number

of processors was chosen as a power of 2.

4.3. The shared memory model on the Teras

We have decided to use the OpenMP standard [5] to implement our application.

The statements influencing parallelization are hidden as compiler directives in com-

ment lines so that the code runs on a single-processor machine, too. These statements
include the specification of parallel regions, synchronization statements and data

type specifications. When execution reaches the beginning of a parallel region then

on each processor a separate thread is created. The tasks inside the region are distri-

buted among the threads by three different models:

• PARALLEL DO for the parallelization of loops. Load-balancing is supported by

different scheduling modes:

� STATIC: suitable for loops with constant cost per cycle; processors start simul-
taneously.

� DYNAMIC: suitable for loops with nonconstant costs per cycle.

� GUIDED: suitable for loops with constant costs per cycle; processors start at

different times.

• PARALLEL SECTIONS for multiple code parallelization, i.e., different code

runs in parallel on different processors.

• PARALLEL for single code parallelization, i.e., the same code runs on multiple

processors. In this mode each processor needs private initialization data. These



J. Wensch, B. Sommeijer / Parallel Computing 30 (2004) 163–186 173
are supported by the THREADPRIVATE clause, which allows private copies of

a common-block.

The distribution model may change inside a parallel region or even inside a sub-

routine (so-called �orphane parallelism’). In parallelizing the right-hand side we have
mainly utilized the parallelization of loops. The parallel version of RKC works with

the single-code approach and orphane parallelism.

In contrast to MPI no explicit communication is required. Data communication is

made obsolete by SHARED variables, which each processor is allowed to read and

to modify. The (principal) other type of variable is PRIVATE, for which each pro-

cessor maintains a separate copy. The parallel computation of sums (or similar oper-

ations) is supported by a REDUCTION clause. Synchronization among the

processors is supported mostly implicitly, but can also be forced explicitly by setting
a BARRIER or marking regions as CRITICAL.

The strength of OpenMP is that a running serial code can be converted into a run-

ning parallel code by incremental steps, keeping the code running in the intermediate

stages.

4.4. The right-hand side function

The right-hand side function consists of three main parts:

• the discrete Laplacian

• the interpolation of the gradients

• the discretized d-function

4.4.1. Parallelizing the Laplacian

We have to compute second derivatives of the three concentrations qj, j ¼ 1; 2; 3,
in each grid point ðxk; ylÞ; k, l ¼ 1; . . . ;N (for notational convenience, qt, qa and qr

are denoted by qj, j ¼ 1; 2; 3 in this subsection).

The natural approach is to assign to each processor a subset of the triples ðj; k; lÞ
where all subsets have approximately the same size. Using p processors we simply

design a loop that runs over all s triples ðj; k; lÞ and schedule the cycles

0; . . . ; bs=pc � 1 on processor number 0, the cycles bs=pc; . . . ; b2s=pc � 1 on processor

1, and so on. We have simply to decide on the design of the loop.

We have selected three different approaches that are illustrated in Fig. 1. Natu-

rally, the diffusion term corresponding to a single grid point is computed on a single
processor. The only decision we have to make is how to distribute the grid points

among the different CPUs. The element-wise approach is equivalent to OpenMP-

style static scheduling of the contiguous vector of the grid point values for all three

chemicals. The column-wise approach is almost identical but differs in two minor

points. First, it schedules complete columns. Second, the master processor (number

zero), which also hosts the axon locations, takes care of the last set of grid points.

The third approach uses a domain-splitting style. The computational domain is

partitioned into M2 square subdomains. To each of these squares and each chemical
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Fig. 1. Different parallelization strategies for the grid points.
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we assign a separate CPU. Finally the master processor is assigned to the axon coor-

dinates. This results in a total of 3M2 þ 1 processors.

4.4.2. Parallelizing the interpolation of the gradients

This task is parallel distributed over the axons, i.e., each processor works on a

subset (which may be empty in case p > Na) of the set of axons. Note that here as

well as in the computation of the Laplacian the processors write on completely dis-

junct subsets of the solution vector. For all shared data the access is read-only.
Under this condition the parallelization of loops is straightforward. The opposite

case is called a race-condition: multiple processors update one memory location,

which can lead to different results, depending on the order in which the processors

access the variable.

4.4.3. Parallelizing the source terms

The computation of the source terms offers a considerable amount of inherent

parallelism; however, it is rather difficult to fully exploit this parallelism. The most
natural approach is to schedule the axons and targets in parallel. There is no prob-

lem with parallel scheduling of the targets because their location is fixed. However,

the axons may be located very close together or even in the same grid cell, which im-

plies that different axons give contributions to the concentrations in the same grid

points. We get race-conditions, resulting in additional synchronization. OpenMP

offers a temptingly simple way to synchronize––the ATOMIC and CRITICAL

clauses. Whereas the first protects one statement from race-conditions, the latter

one protects a region of code.
When we use the exponential approach for the source terms, the computational

effort is quite substantial because the computation of exponentials is costly com-

pared with additions and multiplications. Using 40 axons and an 8 · 8-subgrid as

support we have 2560 grid points to update. An ATOMIC clause guarantees that

only one grid point at a time is updated. The processors set so-called locks to check

whether the protected clause can be safely executed. In this way, however, we burden

additional communication to the system. To our experience, this approach does not
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give any speedup compared with sequential computation. The synchronization by an

ATOMIC clause or a CRITICAL clause should be used with great care.

We briefly discuss a few more sophisticated approaches that we did not work out

in detail. The first approach exploits parallelism over the grid points. It utilizes up to

64 processors. We compute the source contributions in the 64 grid points of the sup-
port in parallel on up to 64 processors for each axon concurrently. A second, less

obvious parallelization approach uses parallelism over the axons. It works with up

to Na processors and requires additional synchronization. We assign each processor

to an axon. Then at step k on processor l (assigned to axon number l) we compute

the contribution at the grid point ði; jÞ with 8iþ j � k þ l mod 64. This schedule

guarantees that no race-conditions occur as long as the processors are synchronized

after each step.

More simple is the parallelization of the tensorproduct B-splines – we simply do
not parallelize them at all. The reason is that the computational costs are very low.

Our experiments showed that there is no speedup when distributing the tasks on dif-

ferent processors.
4.5. Vector operations in RKC

The code RKC uses five vectors of size n to store internal information when inte-

grating a system of ODEs of dimension n. With these vectors the following OðnÞ
operations are performed
u ¼ v;

u ¼ vþ aw;

u ¼ auþ bvþ c1w1 þ c2w2 þ c3w3;

a ¼ kv� wku ¼ max
i

jvi � wij
aþ r � juij

:

The first three expressions are parallelized by simple loop parallelization. The fourth

is parallelized with a REDUCTION clause.

It is important to distribute the work in all loops the same way to avoid data

transfer. To implement this we have chosen an approach where each processor uses

a THREADPRIVATE common-block to store the information on which part of the

vector it operates. This part is fixed for all vector operations in RKC. When a first

initialization of a variable is executed by a processor then the machine assigns that

variable to the main memory of that processor (this is true even for separate array
elements). We initialize each of the five vectors in RKC as well as the vector with

the initial values by the same procedure.

Clearly, the optimal load balancing is obtained when each CPU processes the

same number of elements of the vectors. But on the other hand we have to find a

load balanced parallelization when we compute the right-hand side. Note that the

ith component of the argument U and the ith component of the right-hand side

F ðUÞ (cf. (13)) are stored on the same memory block. This situation is ideal for

the diffusion terms but less favourable for the gradients and the source terms. The
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gradients depend on the concentrations of the chemicals and occur in the right-hand

side of the axon-equations, whereas the source terms depend on the axons and enter

the right-hand side of the chemical-equations. In order to avoid additional commu-

nication we had to assign the tasks to the processor where the data reside, which

could mean that in the case when all axons are very close together one processor
has to do all the work.

When using RKC in a parallel environment the user has to parallelize both the

right-hand side and the vector operations. The parallelization of the right-hand side

is under complete control of the user. To parallelize the vector operations the module

�parallel’ has to be modified. In particular, there has to be written an init-procedure

and two loops. One loop executes independent operations on a vector in parallel.

The other loop computes the norm of a vector in parallel and therefore needs a

REDUCTION-clause. For the simple case that each processor works on a contigu-
ous part of the vector we have given these two loops in Fig. 3.

The corresponding init-routine for the element-wise parallelization (simplest case

again) is given in Fig. 2. The init procedure has to be called in parallel from the main

program. For each individual processor it examines the parallel environment (total
Fig. 3. Sample code from module parallel.
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number of processors, number in team) and computes the start- and endpoints ind0,

ind1 depending on the individual processor number in a subroutine getrange( ).

These individual processor data are stored in the private common-block/pdata/. It

can be accessed from each program part that uses the MODULE parallel. In general

in this common-block there will be stored additional data that are needed for the
parallelization of the right-hand side F ðUÞ. Further, when data are distributed in

noncontiguous blocks over the processors additional statements in the two routines

in Fig. 3 may become necessary. However, all changes are restricted to the user-sup-

plied right-hand side and the MODULE parallel. The parallel version of RKC can

be compiled without modifications.
5. Simulation results

In this section we report on the results of the numerical simulations. First, the test

example will be defined.

For the computational domain we choose the unit square of size 1 mm2. This do-

main has been covered by four different uniform grids of increasing resolution, viz.,

N ¼ 64, 128, 256, 512, where N is the number of grid points in each spatial direction.

Since we want to investigate the influence of the grid size on the numerical solution

(i.e., convergence aspects) as well as on the parallel performance (see Section 6), we
did experiments on all four grids.

The test model is defined by Eqs. (1)–(5), where the parameters have been given

the following values:
Dt ¼ Da ¼ Dr ¼ 10�4; jt ¼ ja ¼ jr ¼ 10�4; kt ¼ 10�5;

ka ¼ 5� 10�6; kr ¼ 3:75� 10�5; rt ¼ 6� 10�5;

ra ¼ 7:5� 10�5; rr ¼
7:5� 10�5 � r

2:42þ r
; r ¼ 1� e�qt :
Notice that all parameters have a fixed value, except for rr which is space- and time-

dependent (see also the discussion in Section 2).

In our experiments we let 40 axons ðNa ¼ 40Þ find their way towards 50 targets

ðNt ¼ 50Þ. We implemented the strategy that a target is �switched off’ as soon as

an axon has reached this particular target. This strategy determines the length of

the time integration interval: once that all axons have found a free target, the inte-

gration stops.
In Fig. 4 we plot the solution obtained on the finest (512 · 512) grid. The figure

shows the typical behaviour of the axons: bundling, moving towards the target re-

gion, debundling, and finally connecting to the targets. We mention that the solu-

tions obtained on the coarser grids are qualitatively of a similar structure. In this

figure, we marked the positions of the axons at three different points in time, viz.

at t ¼ 1200, 5600, and 7880. At time t ¼ 1200, the axon bundle is almost formed.

The axons increase the production of the repelling chemical until a balance between

the attracting and repelling chemical is obtained. Shortly after time t ¼ 5600, the
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Fig. 4. The path of the axons and their position at t ¼ 1200, 5600, 7880 (denoted by x). These simulation

results are obtained on the finest (512· 512) grid. Unit of length is mm.
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repelling chemical dominates the motion and the axons start to debundle. Finally, at

t ¼ 7880, almost all axons have reached a target. Note that there were more axons

running to the center of the target region than the number of free targets. A few

axons could not connect within the center region – they find a free target at the out-

side regions.
In Figs. 5–7 we plot, for these three points in time, respectively, the correspond-

ing concentration fields qt, qa, qr. Additionally, in each figure we show

qresultant :¼ ktqt þ kaqa � krqr. Notice that the gradient of qresultant defines the right-

hand side of the ODEs for the axons. In all three figures we recognize peaks in

the concentration qresultant near the axon locations caused by the fact that diffusion

is very fast compared with the axon movement. Note that the peaks in the expression

qresultant change from upwards in Fig. 5 to downwards in Fig. 6. This is caused by the

increased production of repellant. Furthermore, the movement of the axons is
mainly controlled by the target secreted attractant, whereas the axon secreted chemi-

cals act as a lower order correction that controls bundling and debundling (which in

fact is a movement perpendicular to the main growth direction). At time t ¼ 7880

(Fig. 7), when almost all axons have reached a target, we see the concentration of

the target secreted attractant dropping down because almost all targets have gone

inactive. There are only a few active targets left at the boundaries of the target

region.

The solution of the resulting ODE system turns out to be quite sensitive to small
perturbations of the parameters and the starting values. This especially holds for the

path the axons will follow. Small changes in the positions at the moment that the



Fig. 5. The dimensionless concentrations qt, qa, qr and the field qresultant shortly after the start ðt ¼ 1200Þ.
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axons start debundling may result in substantial differences w.r.t. the moment the

axons reach the target region – some axons may even connect to a different tar-

get. The same effect can be caused by a change of the resolution of the spatial

grid.
Therefore, the solution of this problem requires a very fine mesh, which results in

a high dimension of the system of ODEs as well as in increased stiffness. When the

grid size is decreased by a factor of 2, then the computational effort increases by a

factor of 8, approximately.
6. Parallel performance

We have performed a large number of test runs in which we have varied over the

spatial resolution, over the three different approaches �element’, �column’, �subdo-
main’ (see Fig. 1), and over the number of processors. For each combination we

measured the performance by means of CPU-time, speedup factor, and efficiency.

Here, we distinguish between overall performance, and the separate performance

of the three main parts in the code, viz., the vector operations in RKC, the compu-

tation of the diffusion operator, and the interpolation of the gradient. All this



Fig. 6. The dimensionless concentrations qt, qa, qr and the field qresultant as the axons are about to debundle

ðt ¼ 5600Þ.
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information is collected in Figs. 8–11 (each figure corresponds to a particular spatial

grid).

Before stating the conclusions from these experiments, we first consider the char-

acteristic parameters ca and cm, as discussed in Section 4.2. In [2] it is argued that

ca=cm P 4 leads to high efficiency, that is, communication takes only a small fraction

of the overall time needed. In our application we see that ca=cm evaluates roughly to

N=p. The experiments shown in Figs. 8–11 confirm the assertion made in [2]. Results
corresponding to larger values of N=p show even improved efficiency.

Summarizing, the following conclusions can be drawn:

	Using a small number of processors, say up to 8, it is relatively easy to obtain an

efficient parallel process: on the coarsest grid, the overall efficiency is �30%, on the

next finer grid �50–60% efficiency is obtained, whereas the two finest grids even

show superlinear speedup factors.

	 Concentrating on the finest grid, at least 75% efficiency can be obtained for a

number of processors up to 64.
	 Comparing the various approaches (�element’, �column’, �subdomain’), we ob-

serve that, in many cases, the �element’ and �column’ modes are more efficient than

the �subdomain’ mode.



Fig. 7. The dimensionless concentrations qt, qa, qr and the field qresultant close to the end ðt ¼ 7880Þ.
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	 On the coarsest grid (64·64), the �subdomain’ approach demonstrates an irreg-

ular behaviour: using 13 processors (i.e., M ¼ 2, as shown in Fig. 1), a poor perfor-

mance is obtained. Furthermore, runtimes vary strongly around a factor of 4. A

possible explanation is that the system responds to a call for an �odd’ number of pro-
cessors like 13 with a set of processors that is randomly distributed over the complete

hypercube, maybe because 13 processors cannot form a hypercube. The random dis-

tribution results in completely unpredictable effort for communication. This is due to

the CC-NUMA architecture of the Teras machine, as discussed in Section 4.2. The

situation is less drastic on finer grids or for a higher number of processors, like

28 ¼ 3 � 32 þ 1.

	 When the number of processors is a power of two then the runtimes are much

better reproducible. We performed several runs but did not encounter differences of
more than 10%.

	 With respect to the various subtasks in the code, we conclude that the parallel

performance of the vector operations in RKC (the most expensive part of the code)

is highly efficient. The parallel computation of the diffusion operator is of reasonable

efficiency. The efficiency in the interpolation of the gradients (the least expensive part

of the three main tasks) however, strongly decreases as the number of processors in-

creases.
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Fig. 8. Results on the 64· 64 grid for the 3 approaches (see Fig. 1): �element’ (+++), �column’ ð� � �Þ,
and �subdomain’ ð���Þ. First row: overall results; second row: results for the vector operations in
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the total CPU time in seconds, for various numbers of processors. The second column shows the corre-

sponding speedup factors and the last column the corresponding efficiencies.
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7. Discussion

We have discussed the parallel implementation on the SGI Origin 3000 (Teras) of

an application originating from neurobiology. The model consists of a set of three

parabolic PDEs in two spatial dimensions, coupled with ODEs describing the posi-

tions of axons in the spatial domain of the PDEs. After explaining the various

numerical techniques that we have used to solve the system, we suggest several par-

allel approaches to implement the discrete problem. As it turns out, the approach
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Fig. 9. Results on the 128· 128 grid for the three approaches (see Fig. 1): �element’ (+++), �column’

ð� � �Þ, and �subdomain’ ð���Þ. First row: overall results; second row: results for the vector operations
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the total CPU time in seconds, for various numbers of processors. The second column shows the corre-

sponding speedup factors and the last column the corresponding efficiencies.
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based on subdomains shows irregular behaviour (as a function of the number of pro-

cessors) and is, in general, less efficient than the approach in which a static schedul-

ing of the contiguous vectors has been used.

The program has been tested on spatial grids of increasing resolution: 64 · 64,
128 · 128, 256 · 256, and 512 · 512 grid points. As a general conclusion we might

say that an efficient parallel implementation can be obtained on the finest grid:

>75% overall efficiency for up to 64 processors. On the next coarser grid
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Fig. 10. Results on the 256· 256 grid for the three approaches (see Fig. 1): �element’ (+++), �column’

ð� � �Þ, and �subdomain’ ð���Þ. First row: overall results; second row: results for the vector operations

in RKC; third row: results for the Laplacian; last row: results for the gradients. In the first column we give

the total CPU time in seconds, for various numbers of processors. The second column shows the corre-

sponding speedup factors and the last column the corresponding efficiencies.
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(256 · 256) this efficiency is possible for up to 16 processors, whereas the coarsest

grids limit the number of processors that can be efficiently exploited to 8.
For this particular application this property is not a serious limitation to use a

multi-processor machine, since the problem anyhow needs a fine spatial resolution

to yield a solution that is sufficiently accurate.

In summary, for the application described in this report, the Teras-computer

yields speedup factors up to 50, which are obtained with relatively modest program-

ming effort.
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Fig. 11. Results on the 512· 512 grid for the three approaches (see Fig. 1): �element’ (+++), �column’

ð� � �Þ, and �subdomain’ ð���Þ. First row: overall results; second row: results for the vector operations

in RKC; third row: results for the Laplacian; last row: results for the gradients. In the first column we give

the total CPU time in seconds, for various numbers of processors. The second column shows the corre-

sponding speedup factors and the last column the corresponding efficiencies.
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