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Abstract-In this paper, a numerical method used in computer graphics to solve global illu- 
mination problems is applied to heat radiation. The radiosity equation is solved by an adaptive 
finite-element method and linked to heat conduction. The method is validated on an analytic bench- 
mark problem. Due to the speed up compared with commonly used methods for heat radiation, 
this approach might be a way to solve complex three-dimensional problems in high temperature 
environments. @ 2004 Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

Radiation is the dominant mode of energy transport in most industrial furnaces. In engineering 
problems, radiative heat transfer calculations are very complex due to physical phenomena tak- 
ing place within enclosures of complex shape. Because of its importance, an exact mathematical 
solution to radiation exchange problems in enclosures is desirable. It is, therefore, of primary 
importance to develop an efficient and accurate method to ease the computational effort involved 
in radiation and general heat transfer problems. In many applications, the exchange of radiative 
energy between surfaces is virtually unaffected by the medium that separates them. We shall also 
assume that all surfaces are gray and are diffuse emitters. Under these assumptions, the prob- 
lem of global heat transfer can be formulated mathematically as a system of integrodifferential 
equations and might be solved by an operator-splitting method, decoupling heat diffusion, and 
radiation. 
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A similar model to heat radiation is used in computer graphics to solve global illumination 
problems under the assumption of Lambertian diffuse reflectors. The simulation of light transfer 
is somewhat simpler as temperature plays no significant role in the reemission of light. The work 
in this field has developed fast algorithms which are used to render objects. In this paper, we will 
show that these developments can be applied to global heat radiation problems. In this article, 
we will concentrate on the numerical solution of the radiosity equation by a Galerkin method. 

2. RADIOSITY EQUATION 

The radiosity equation is a mathematical model for the global illumination problem in computer 
graphics under the assumption of Lambertian diffuse reflectors. The equation is 

qx) - &d s ~W’(X, E)V(x> 0 4 = e(x), 2 E I?, -7-f r (1) 
with U(X) the radiosity at x, p(x) the reflectivity at x, e(x) the emissivity at x, and I’ a smooth 
surface. The function G is given by 

(7(x, 5) = (t - x, ’ nz(x - 8 ’ “t 
Ilx - El4 (2) 

(3) 

with n, and nc the inner unit normals on r at x and t, 9, the angle between n, and < -x and Oc 
the angle between nc and x - <, see Figure 1. 

Figure 1. Illustration. 

The function V is given by 

V(x:, E) = 
1, x and c see each other, 

0, otherwise, 
(4 

where “see each other” means, a straight line between x and < does not intersect I’ at any other 
point. Surfaces for which V 3 1 are called unoccluded. 

Equation (1) can be written in the simpler form 

or in operator form as 
(Z-K)u=e. 

(5) 

(6) 



t

It is a Fredholm integral equation of the second kind. If we define the bilinear form a(., .) and 
the linear form b(.), respectively, over L’(T) x L2(l?) and L2(l?) by 

the weak form of equation (5) reads: find u E L2(l?) such that 

4% 4) = b(4), bj E L2(r). (9) 

For smooth surfaces r the kernel K is weakly singular, i.e., it is defined and continuous for all 
x, E E I’, x # E, and there exist a positive constant c such that 

llK(x, 011 5 c> X,E E r, x # t. (10) 

This was shown for convex surfaces in [l]. For nonconvex surfaces, all critical points cancel out 
due to the definition of V. Furthermore, K is symmetric, nonnegative, square-integrable, and 

J K(x, El 4 = P(X), x E r, (11) 
r 

see [2]. Therefore, K is a compact operator from L2(I’) into L2(l?). We now assume ]]P]]~ < 1. 
With these statements, the continuity of a(., .) and b(.) as well as the coercivity of a(., .) follows 
and by the theorem of Lax-Milgram, the existence of a unique solution ‘~1 E L2(I’) of equation (9) 
can be concluded. 

If e is a continuous function, the properties of the weakly singular kernel K guarantee the 
solution u to be continuous. 

3. DISCRETIZATION 

The Galerkin formulation of (9) reads: find uh E Vh such that 

with Vj c L2(I’) a finite-dimensional subspace. The general theory for integral equations of the 
second kind shows the existence of a Galerkin solution and their convergence, see 133. Assume 
that Vh = span (41,. , &}. Th en we express ?&, as a linear combination ?& = c,“=, uj4j and 
solve 

or equivalently the linear system 
(hl’ - K)uh = B, (14) 

with matrices M = (Mi,), K = (K,j) and the right-hand side B = (Bi) defined as follows: 

Mij = J dish dx, 
r 

Ktj = SJ 4i (W(x)K(x, 6) 4 dx, 
r r 

Bi = r &(x)e(x) dx. J 

(15) 

(16) 

(17) 
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For piecewise constant basis functions, this reduces to 

Mij = 6ij, 

Kii = pi Fij, 
Bi = ei 

08) 

(19) 

(20) 

with pi the average reflectance for element i, ei the average emission for element i, and Fij the 
well-known form factor 

V(Z, <) dAj dAi . (21) 

with x E A;, E E Aj and Ai and Aj the area of element i and j, respectively. The form factor has 
a simple physical interpretation: Fij is the proportion of the total power leaving the element i 
that is received by element j. 

4. FORM FACTOR 

Evaluating the terms in F is the major computational bottleneck of the radiosity method. Both 
closed form analytic and numerical methods have been applied to solving the form factor integral, 
see [4]. A fast but approximate method is the hemicube algorithm. If two surface patches are 
distant from each other, relative to their size, the inner integral in (21) varies little across the 
surface of Ai. In such a case, the form factor can be computed as that from a point to a finite 
area. If we project an element radially onto a hemisphere centered at that point and then project 
it orthogonally down onto the base, the fraction of the base area covered by this projection is 
equal to the form factor. This is the so-called Nusselt analog [5] and it illustrates the fact, that 
for an element projected radially onto any intermediate surface, the projection will have the same 
form factor than the element itself. This observation forms the basis of the hemicube algorithm, 
in which elements are projected onto a hemicube centered at the given point. The hemicube sides 
are subdivided into grid cells, see Figure 2. 

Figure 2. Hemicube. 

For each grid cell, a delta-form factor is precomputed and stored in a lookup table. The 
form factor to an element is then approximated by projecting the element onto the sides of the 
hemicube and summing the delta form factors of the grid cells covered by the projection. 

5. A POSTERIORI ERROR ESTIMATE AND ADAPTIVITY 

The error and the residual are defined by eh = u - uh and Th = (M - K)eh, respectively. The 
residual can be computed given uh by 

rh = B - (M - K)uh. (2% 
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The proposed global error estimate is, therefore, taken to be the norm of the residual 

rlh = IhIILyr). (23) 

The local error indicators are taken to be the element based quantities 

Due to the additivity of the L2-norm, q/L can be computed by 

(25) 

The following lemma will show that this estimator is equivalent to the discretisation error. 

LEMMA. Let K : L2(l?) --f L2 (I’) be compact and (I - K) : L2 (I’) + L”(r) injective. There exist 
constants cl and c2 independent of the grid size h with 

PROOF. Due to (18) and (22), the residual can be written as rh = (I-K)eh. Since K is compact, 
and therefore, bounded, 

IMIL2(Iy 5 III - KII lMb(r)~ (27) 
and the lower bound holds with cl = 111 - K]]-r. S ince I - K is injective, (I - K)-’ exist and 
is bounded by the Fredholm alternative. Therefore, 

lldw) I \\(I - WI\ . IIT/rlILZ(Iy, (28) 

and the upper bound holds with c2 = ]](I - K)-‘]I. I 
This result was also shown in [6]. Under the assumption of a global refinement, a stronger result 

of asymptotic exactness can be shown, see [7]. The adaptive strategy based on the L2-residual 
estimate and the equidistribution principle now looks like the following: 

l solve the radiosity equation for a given grid A on the surface I’, 
l for each element A,, compute the error indicator qh,A,, 
l refine all elements Ai with qh,A, > tol, 
l solve the system on the refined grid. 

6. NUMERICAL RESULTS 

A simple three-dimensional problem with two concentric isothermal black spheres serves as a 
t,est problem. A coupled heat radiation-diffusion problem is solved with given temperature values 
at the boundary. In the solid parts, a linear heat equation is solved defining the temperature at 
the radiative boundaries. By the Stefan-Boltzmann law and Kirchhoff’s law, these temperatures 
are related to the right-hand side of the radiosity equation by e = apT4: where 0 is the Stefan- 
Boltzmann constant. Only two surfaces are present. All radiation from the inner sphere with 
radius ri = 1 travels to the outer sphere with radius r2 = 2. We have Fl2 = 1 and, by 
reciprocity, F21 = Al/AZ, with Ai = 47rrF the area of the sphere. The analytic solution for given 
temperatures Tl and T2 at the spheres and a constant reflectivity p = 0.5 reads 

u1 = ; (5aT: + 4aT24), 

u2 = ; (UT; + 8c7T;) 
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Figure 3. Surface elements for used refinement levels. 

Table 1. Number of surface elements, error e,, and maximal difference in uh on each 
sphere in percent. 

192 206 0.128 1.107 0.172 2.880 

768 810 0.207 1.519 0.007 0.543 

3072 3270 0.245 1.733 0.018 0.352 

The toolbox ALBERT, see [8], is used to define a numerical grid consisting of tetrahedrons. The 
grid is constructed out of a coarse macrotriangulation by refinement and projection onto the 
surface, Figure 3 shows only the outer sphere. 

For Tr = 2000K and T2 = lOOOK, the calculations are performed. The L2 norm of the error eh 
as well as the maximal difference of uh on each sphere is shown in Table 1. 

The linear system (14) was solved with a BiCGStab-solver. The calculations demonstrate that 
the hemicube method can be applied to heat radiation problems and produces results in an ac- 
ceptable tolerance by decreasing the computational cost, which will be most relevant for problems 
with moving boundaries. Further developments on the hemicube method will be applied to heat 
radiation problems and they might be the way to solve complex three-dimensional problems in 
high temperature environments, such as crystal growth furnaces. 
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