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Abstract

The morphological stability of a single, epitaxially growing, circular adatom island with a radially symmetric adatom distribu-
tion is studied using a Burton—Cabrera—Frank type island dynamics model. Various kinds of boundary conditions for the adatom
density that include the thermodynamic equilibrium value, line tension, and attachment—detachment kinetics, and different ve-
locity formulas with or without the one-dimensional “surface” diffusion are examined. Rigorous analysis shows that the circular
island is always stable if its normalized aé&s larger than a critical value. A is less than such a critical value, and if neither
the line tension nor surface diffusion is present, then there exists a critical wavenkywidg(A) such that the island is only
stable for wavenumbers less thian When the line tension or surface diffusion is present, small islands are always stable. In
particular, the Bales—Zangwill instability for straight steps due to the kinetic asymmetry does not exist for small circular islands.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The morphology of an epitaxially growing thin film surface consists of atomic terraces or islands, steps or island
boundaries, and kinks, cFig. 1, and is determined by the interplay between the microscopic processes such as
atom adsorption and desorption, atomic island nucleation, adatom (adsorbed atoms) diffusion, adatom attachment
and detachment to and from island boundaries, and island coalegdeht,4 8]
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Fig. 1. Microscopic processes in epitaxial growth of thin films.

Burton, Cabrera and Frarjk] first developed a systematic and detailed model — BCF model — to describe the
adatom density and the motion of steps in epitaxial growth of thin films. In this model, the adatom density solves
a diffusion equation with an equilibrium boundary condition, and steps move at a velocity determined from a two-
sided diffusive flux of adatoms to the edges. Modifications of the BCF model have been njaddijt1,13,15]
to incorporate into the boundary conditions additional effects, such as the curvature of the step or boundary and in
particular the Ehrlich—Schwoebel barrier—a higher energy barrier that must be overcome by an adatom in order
for it to stick to the boundary from an upper terrd8e20,21] cf. Fig. 2 Such asymmetry in the attachment and
detachment of adatoms to and from terrace boundaries is the origin of the Bales—Zangwill morphological instability
for straight atomic sted8]. Caflisch et al[6] have recently developed a kinetic step model thatincludes the kinetics
missing in the original BCF model. Based on such a kinetic model, Caflisch affd have derived rigorously a
set of boundary conditions for the adatom density that includes line tension and attachment—detachment kinetics
and a normal velocity law that includes one-dimensional “surface” diffusion, cf[ak&a4,17-19]

In this work, we use a BCF type island dynamics model to study the morphological stability of a single, epitaxially
growing, circular adatom island with a radially symmetric adatom distribution with respect to perturbation in both
radial and angular directions. This problem is of practical interest, since in the early stage of epitaxial growth,
adatom islands are often small and circularly shaped, and are also far apart from each other so that their interactior
can be neglectefl6,22,23] Similarly, in the coarsening process of epitaxial growth, shrinking islands are often
small and circularly shaped, and their interaction with other islands, mainly through a mean field, can be weak
[16,22]

Fig. 2. The Ehrlich—-Schwoebel barrier.
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We assume that the growing circular island is contained geometrically in a large concentric circle on the surface.
On the outer boundary of this large circle, we impose the flux-free boundary condition. This models the larger circle
as the capture zone of the growing circular adatom island. We examine both thermodynamic and kinetic boundary
conditions and their related normal velocity laws. The thermodynamic boundary conditions are determined by the
Gibbs—Thomson relation in terms of adatom equilibrium value and line tension. The kinetic boundary conditions
include the attachment—detachment kinetics. The related normal velocity is determined by the two-sided flux,
together with the one-dimensional “surface” diffusion. We remark that, unlike for the motion of a straight step in
step-flow growth, there is no kinetic steady state with a constant normal velocity for a growing circular island.

Our main results are the following:

(1) The circularisland is always stable if its normalized akés larger than a critical value.

(2) If the normalized area is less than this critical value, and if neither the line tension nor surface diffusion is
present, then there exists a critical wavenunerk:(A) such that the island is only stable for wavenumbers
less tharkc.

(3) Iftheline tension or surface diffusion is present, small circular islands are always stable. In particular, the small
wavenumber Bales—Zangwill instabilif§] for straight steps due to the Ehrlich—Schwoebel effect does not exist
for small circular islands.

In [1,2], a single disk on a substrate is considered in the special case of only one-sided attachment and by
neglecting one-dimensional “surface” diffusion. Moreover, a constant mean concentration is used as a far-field
condition. A disk-shaped ice crystal growing in undercooled water is consideffil i@ur underlying physical
problems and the related models differ from the previous ones in having an external flux (the deposition flux), a
flux-free (instead of a mean-field density value) far-field condition, the kinetic attachment—detachment condition,
and the one-dimensional “surface” diffusion.

2. Description of dynamics of a single epitaxial island

Consider a single, epitaxially growing island on a large crystal surface. The island is one atomic layer higher than
the neighboring surface. Denote B (t) and$2_ (1), respectively, the regions occupied by the island (the upper
terrace) and that of the neighboring surface (the lower terrace) at.tiDenote also by (t) = 2, () N £2_(¢) the
boundary of the island at tinteln the framework of a BCF model, the dynamics of the single island is described by
the diffusion equation for the adatom density o(X, t) with x=(x1, X2) on the surface except the island boundary
I'(t), the boundary condition fop on the boundary”(t), and the normal velocity of the boundaryl"(t). The
diffusion equation i$5,11,18]

p—DV?p=F—1t1p—N in2,0)U2_@), (2.1)

whereD >0 is the diffusion constan >0 the deposition flux rate which is assumed to be a constahtthe
desorption rate, and the rate of island nucleation.
There are mainly two classes of boundary conditions.

A. Thermodynamic boundary conditiofEBC) [3,5,11,14,18,19]
p=pe(l+yk) onl(r), (2.2)

wherepe is a thermodynamic equilibrium value of the adatom density for a straightste, represents the
step stiffness, andis the curvature of the boundafy(t). We adopt the convention that> 0 for a convex curve
such as a circle.
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B. Kinetic boundary conditioneKBC) [3,7,11,12,14,18,19]
—_DVo.L-n=k — . —
{ p+ -1 =ki(p+ — px — k) onr (). 2.3)

DVp_-n=k_(p- — px — pk)

where p;+ and p_ denote the restriction of the densityonto the boundary™(t) from the upper and lower
terraces, respectively,is the unit normal of the boundady(t) pointing from the upper into lower terrade,

andk_ are the attachment rates of adatoms to the boundéjyfrom the upper and lower terraces, respectively,

px IS a reference density, and> 0 is a constant. Since the normal velocityf the island boundary is small

in a typical epitaxial growth, we drop in the boundary conditf@r8) the usual convection termp [7,11]. The
termp, can be either a thermodynamic equilibrium value or a kinetic steady state value. For simplicity, we shall
takep, to be a constant. The kinetic constantan be proportional to the stiffness of the bound&() or can

come from a transition energy barrier, §8¢5,6,7,17,18]In general, we havk. <k_ with our notation. The

strict inequality models the Ehrlich—Schwoebel effect. Formally, sekingk, = oo in (2.3), we obtain(2.2)

with pe= p, andy = u/p.

We assume the following law for the normal velocityf the island boundary’(t) that is derived by Caflisch
and Li[7] from kinetics (cf. alsq14])

v=—D[Vp - n] + vk, (2.4)

where the bracket] denotes the jump across the island boundary and is defined far@anfu] :=u|o_ ) — ulo_@)
on I'(t), v> 0 is a constant, and the subscrgatenotes the tangential derivative along the boundary. Theggym
represents one-dimensional “surface” diffusion. The coeffiaiestrelated to line tension and edge diffusiai.

Finally, we assume that both the upper and lower terraces are enclosed in a large, fixedgisglth radius
R-. We impose the flux-free far-field condition

Vo-n=0 only, (2.5)

wheren denotes the unit exterior normal at thig,. Such a boundary condition models the large, circular region as
the capture zone of the single island.

Under typical conditions for epitaxial growth, the diffusion constant is very large, the desorption is negligible,
and the island growth rate is very small due to a low deposition rate. For simplicity, we will leave out the nucleation
termN. Therefore, in what follows, we shall only consider, insteaRof), the quasi-steady diffusion equation

—DAp=F inR2.()U2_(r). (2.6)

The dynamics is recovered through the motion of the island bound}y

In summary, our mathematical formulation of the underlying problem consists of the diffusion eqg@aépn
the boundary condition fop given by (2.2) or (2.3), the far-field condition2.5), and the velocity law(2.4). In
addition, the adatom densipyis assumed to be continuous at the center of the island.

3. Asingle circular island and its perturbation

We now take the single island described above to be a circular island centered at the origin O witR(tadius
timet, cf. Fig. 3. The upper terrace, i.e., the circular island, occufleft), and the lower terrace occupies_(t).
The corresponding island boundaryt) is the circler = R(t) with r = |x|. The outer boundary of the entire circular
region £2, () U £2_(¢), which is also centered at the origin O,li5,:r =R.. We assume that 0Ry « R, with
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Fig. 3. A circular epitaxial island.

Rp =R(0). The unit normah, the normal velocity, and the curvature of the circular boundary(t) are given by
1

n = (cosb, sing), v=R(), K= ok (3.1)

respectively, wheré is the angle in the polar coordinate system.

3.1. Radially symmetric solution

We consider the radially symmetric solutipre o(r, t) with r= |x| for the problem

—DAp=F in2,:(1)UR2_(1), (3.2)
boundary conditionsfgsonI"(¢) : r = R(z), (3.3)
piscontinuous at = 0, (3.4)
Vp-n=0 only :r= R, (3.5)
v=—D[Vp-n]+vks onr():r=R@), (3.6)

where the boundary conditidB.3) is given by(2.2) or (2.3). SinceA p =(1/r)o,(rpr) and the curvature = 1/R(t)
is spatially constant, we get fro(8.2)—(3.6)that

-, Pl 0) = 2 (RWP = )+ C1(0) in 2. (1), -
o(r, 1) = 2 .
¢@o=ﬁwwfﬂ%+%%m<éﬁ+0ﬁ)m94¢

for TBC : C+a)==c_o)=,k<@4-i§5>, (3.8)
Co(t) = pu+ - 4 FRO).

for KBC : fg) At o2 (3.9)
C_(t) = px + m + % (m - R(t)>,

_ RS _ FRS (3.10)

TR T 2
Sincev=R/(t), the radiusR(t) satisfies R(t)%)’ = FR%O. Thus, withR(0) =Ry, we obtain the mass conservation

A(t) = Ao+ Ft Vt>0,
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whereA(t) = (R(t)/Ry)? is the normalized area aig = (R(0)/R,)2. Notice that there exists a uniqgtig > 0 defined
by R(t.c) =R that satisfies

R, —R; 1 1
fo = —2—09=_"(1-Ag) < —. 3.11
~ = "FRZ 71— 40) < (3.11)

3.2. Perturbation
Consider the perturbation in both radial and angular directions
o(r, 0, 1) = p(r, 1) + epa(r;, 0, 1), (3.12)
R(6, 1) = R(t) + £R1(6, 1), (3.13)

wheres is a parameter small in magnitude. Denotelty) = {r = R(6, 1)}, the perturbed island boundary. Denote
also by$2, (1) and2_(¢) the perturbed upper and lower terraces, respectively. The pertiitheds) and R(9, 1),
together with the corresponding normal veloditgnd curvature, satisfy a set of equations, similar({®.2)—(3.6)

on £2,.(t) U £2_(¢). In particular, the boundary conditions are

TBC: p=pe(l+yk) onl(r):r=R(, 1), (3.14)

—DVpy it = ki (py — ps — uk - g
KBC: ~p+ ~n +Sp+ P lfK) onl'(¢t):r=R(,1), (3.15)
DVp_ it = k_(p— — px — pk)

and the normal velocity is
b= —D[Vp-ii] + vkzz onI'(t):r=R(b,1). (3.16)

Standard calculations lead to the following linearized system for the perturbatiops(r, 6, t) andR; =Ry
(8, 1), in which the boundary conditior(8.22) and (3.23and the velocity law3.21)are derived imAppendix A

Apr=0 in24()UR_(), (3.17)
boundary conditions fgs; onI'(¢) : r = R(¢), (3.18)
p1iscontinuous at = 0, (3.19)
0r01(Roo, 0, 1) = 0, (3.20)
O Rs(0.1) = = DIRAO. 03 RO )+ 2RO 0.0) = g o Ra0.0) + D Ra0.0). - (3:20)

where the boundary conditior3.18)are given by

R1(6, )00+ (R(), 1) + pry (R(), 6, 1) = =22 (359 Ra(6, 1) + R1(6, 1)),

TBC : (’;(3)2 (3.22)
R1(0, )9, p—(R(2), 1) + p1-(R(?), 6, 1) = — (RO (0pg R1(6, 1) + R1(6, 1)),
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—DR1(8, 1), p4(R(1), 1) — D3, p14(R(2), 0, 1)

. (Rl(e, 004 RO+ 1 (RO 0.0) + L O Ra6.0) + Ral r))) ,
KBC : (3.23)
DR1(0, )0, p—(R(2), 1) + D0, p1—(R(2), 6, t)

=k_ (Rl('gv t)arp—(R(t)’ t) + ,Ol_(R(I), 0, t) + (RE/LW(aH()Rl(Q’ t) + R1(99 t))) .

3.3. Dispersion relation

Consider perturbatior®; =Ry (0, t) andp1 = p1(r, 6, t) which are periodic in the angular varialsleThe general
solution of the linearized syste(8.17)—(3.21)s of the form

+o0 ‘
R1(0, 1) = Z Ry 0kt

k=—00

+00
Z Up (k. r, ) ®&D+KSin @ (1),

pi(r, 0,1) =
+00

> Ui (k1 1)@ ®0+ik0 in (),

k=—00

where for each integer wavenumbet 0, klyk is a constantp(k, t) is the growth exponent whose time derivative
diw(k, t) represents the growth raties ./—1, andU1+(k, r, t) andU1_(k, r, t) are independent &f. To study the
linearized stability, however, it suffices for us to consider the principal mode solution

Ry (0, 1) = Ry e ® 0Tk, (3.24)

Uy (k, r, 1)e?®D+HK0in 2 (1),

p1x(r, 6, 1) = ' (3.25)
U_(k, r, )e*®&D+k0 in @ (1),

for any integer wave numbér> 0.
Since the Laplacian in the polar coordinate system is giver By, + (1/r)d; + (1/r?)dg9, we have by(3.17)
thatU, + (1)U, — (K3/r?)U; =0, wherel =U1... SetU =r? to geta(o — 1) +a — k¥ =0, i.e.,a= k. Thus, ifk>0,

(ayr* + borFye®Dtiko in Q. (1),

pLi(r, 0, 1) = A '
(a_r* 4+ b_r*)e?®D+ik0 in Q_ (1),

wheredy = ay(k, 1) andbs = b (k, 1) are independent of andr. By (3.19) and (3.2Q)we getb, = Oand
b_ = R%a_. Therefore,

G rkepkn)+iko in£24(1),
el . o (3.26)
a_(rk + Rgér—k)ew(kt)+zk9 in Q_(t).

This is also true fok=0.
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) Rix =0,

iy (Per@=FK%) FR(t)) -
(R + ( ot 3y R =0
2k 2 2
k o )~ pey(1—k%)  FR(t) = FRS
<(R(t)) i (R(t))k) “r ( (R(1))? 2D 2DR(r)
from the KBC(3.23)that
—(DR(R@)Y ™ + ki (R Yas + (g 4 EPRO _ ke

Dic [ (R(YF1 RY k oy g’é a
(R(1) - W (R(@)" + (R( ))k
_F R%, k_F R _ku(l—kz)}A B
i { 7 (1+ (R( ))2> D) ( 0~ 755) O R
and from the velocity formulé3.21)that
=1y k-1 RX s ( ° FRS, vk =K%
Dk(R(1)) +— Dk ((R(z)) RO +1> —+ | dw(k, 1) + 2R (RO’

(R(1))?

) Ry =0,

(3.27)

(3.28)

(3.29)

(3.30)

) Ri;=0.

(3.31)

In order to have a nontrivial solutiof3.24) and (3.25)we must have.;, a—, andi?l,k not all zero. Thus, the
homogeneous system of linear equationsdpra_, andR1 x must be singular. Consequently, for the TBC, we

have from(3.27) (3.28) and(3.31)that

_ k2
(R()* 0 pey(1 2k ) FR()
ok (Rz(t)) 2D ,
0 (R())* + RS pey(l _zk ) B FR(1) FRZ, .
(R())* (R()) 2D ' 2DR()
2% 2 PR
DKRE) —Dk ((ROF— R ) gaeny+ LR ME KD
(R()** 2(R(1)) (R(®)
Similarly, for the KBC, we have fron8.29)—(3.31}hat
F  kyFR
_ k—1 _ k F N ~
DkR kiR 0 >t —p ~k+P
0 DkQ —k R’<+R—gg r 1+ﬁ L R_ﬁ —k_P
Q - Rk 2 RZ 2D R2 _
_ FRgo v(k4 _ kZ)
DkRk-1 —DkQ drw(k, 1) + e T

where

(3.32)
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Rk
_ pk—=1 _ 00
’ 0=R Rk+1°

(1 — k%)
R2
These equations determine the dispersion relation, i.e., the growthadgket), for k> 0. We say the circular island

is (linearly) stable at timee [0, to] with respect to a wavenumbé&r> 0, if diw(k, t) <0, wheret,, is defined by
R(too) = Reo, cf. (3.11)

R = R(1), P=

4. Stability analysis: thermodynamic boundary conditions

Consider the thermodynamic boundary condit{BriL4) and the general velocit{8.16) The definition of the
normalized aread=A(t) = (R()/Rx)? leads toR=R(t) = Ry, A2, Note Ag=A(0). From(3.32) we obtain for all
k> 0 that

F(1—-2A)k — (k+1)AK —1)  2Dpey(k® —k)  v(k* —k?)

orw(k, t) = — _
ok, 1) 24(1+ AR) REAS2(1+ AF)  RA_AZ

(4.1)

Recall that we only consider wavenumler O which is an integer. The following results are true whether the
line tension or surface diffusion is included or not.

Proposition 4.1. Lety >0andv>0.

(1) Ifk=0, 1,thendiw(k, t) <0 for any te [0, t).
(2) Lette]0, to) be such that A A(t) > 1/2, thendiw(k, t) <0 for any wavenumber.k
(3) We have for any¢ [0, t) that

v 2Dpey 3 Vo5 2Dpey F(1 - 2A)
ok, 1) = — 4_ K+ + k+0O@1) ask — oo.
Rzt T gavet Tt T\ art T aa @
4.2)
Proof.
(1) By (4.1), 3;»(0,t) = —F/(2A) <0 anddiw(1,t) = —2F/(1 +A) < 0.
(2) If A>=1/2, then by4.1)
F((k + 1)A* 1)
9 w(k, -~ <.
k1) <~ ar A =
(3) This follows from(4.1)and a series of straight forward calculations. 0
Proposition 4.2. Lette|O0, ty).
(1) Lety>0andv > 0. We havew(k, t) <0 for any wavenumber, kf
24Dpey \
AG) < ( gey) | (4.3)
FR3,
(2) Lety >0andv>0.We havehiw(k, t) <0 for all wavenumber kif
24
Al < =2 (4.4)

~ FRY,
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Proof. By Part (1) ofProposition 4.1we may assume that> 2.

(1) By (4.1) and (4.3)we have
F(k — 1) 2Dpey(k3 — k) k—1 <F 120,067/)

orw(k, t — = _
k) < ST AT AN T REASR(LE AR~ AT AN | 2 REVA
(2) By (4.1) and (4.4)we have
F(k—1) vk(k?—-1) k—1(F 12
— < ———-——=] <o
2A R4 A2 — A \2 R4AZ) ™

<0

alw(k, t) <

O

Proposition 4.3. Assumey=v=0. Let te[0,t,] be such that A<A=A(t) <1/2. Then there exists a unique
ke =ks(A) > 1/(1— 2A) such that

dw(k, 1) <0 fork <kc and odw(k,t) >0 fork > k. (4.5)
Proof. In this case, we have by.1)that

dwk, 1) = (1 = 2A)k — (k + 1)AF — 1) (4.6)

2A(1 4 AF)
Define
flk) = (1 —2A)k — (k+1)A* — 1

for any k> 0. By (4.6), diw(k, t)=0 if and only if f(k)=0. It is easy to see thdtk) is smooth on [0,00),
f(k) < — (k+ 1)A¥ < 0 for anyk € [0, 1/(1— 2A)], and lim_, o f(k) = co. Moreover, for ank> 1/(1— 2A)> 1,

1
flk)=1-24 — AK(1+ (k+1)InA) > —AF(1 +2 n>)= Ak(In4—-1)> 0.
Thus, there exists a uniqlke=Kk:(A) > 1/(1— 2A) that satisfieg4.5). O

Fig. 4is the stability diagram in theX k)-plane for the thermodynamics boundary condition withv=0 and
A<1/2. The curvek=k(A), is obtained by solving the equatidpo(k, t) =0 in which the growth raté;w(k, t) is
given by(4.1)with y =v=0.

We see from our analysis that the circular island is always stable if its normalized\aré#. The island
is asymptotically stable, with a decay rate proportionaktdf the surface diffusion is included, or ¢ if the
surface diffusion is not but the line tension is included. In general, a small circular island is always stable, if
the line tension or surface diffusion is includedAlk 1/2, and if neither the line tension nor surface diffusion is

25
20
15 +

10

Fig. 4. The stability diagram in the\( k)-plane for the thermodynamic boundary condition with v =0. The curvek=Kk(A), separates the
stable region (marked by-") and the unstable region (marked by “+").
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included, then there exists a critical wavenumiker k:(A) such that the island is stable only for the wavenumber

k< ke.

5. Stability analysis: kinetic boundary conditions
Consider now the kinetic boundary conditi¢®15)and the general veloci{i.16) From(3.33) we obtain using

the fact thaR = R, A2 that for allk > 0,

F v(k* =K%  Dk((F/2)+ (k+ FRoAY2/2D) + (ki pu(k? — 1)/ RZ, A))
24 RAAZ Dk + ky Roo A2

Dk(1 = AM[(F/2)(1+ (1/A)) + (k- FRAY?/2D)((1/A) — 1) — (k—p(k* = 1)/R5, A)]
+ k_RooAUZ(AF 1 1) + Dk(1— AF) ‘

a[a)(k, l) = —

(5.1)

Forky — oo, we recovel4.1)with pey = 1, as expected.

Proposition 5.1. Letu >0andv>0.

(1) We have for any¢ [0, t,) and k=0, 1that d;w(k, t) <0.
(2) Lette |0, ts) be such that AA(t) > k_/(k_ +k4), thendiw(k, t) <0 for any wavenumber.k
(3) Foranyte |0, ty), we have

v plks + k) 2
RA A2 R2A
o0 o0

(k2 +k2)  FRy,AY? 1 1
k ko (= —1)—k o= k . 5.2
T DRoAZ T T oD A ) HOx) whko e (6-2)

V
ok, 1) = ————k* + (
R4 A2

Proof.
(1) By (5.1), 0iw(0,t)=—F/(2A)<0 and

F D((F/2)+ (ki FRwAY?)/2D)

24 D + k4 Roo A1/2

N D(1— A)(F/2)(1+ (1/A) + ((k— FReAY?)/2D)((1/A) — 1)]
k—RscAY2(A + 1)+ D(1— A)

F F F D(1—A?) +k_ReoAY?(1— A)?

2A 2 2A k_RAY2(A+4 1)+ D(1— A)
F k_Roo AY2((1 — A)2 4+ (14 A)D) —2Fk_Ro, AY2
R = <
2A k_RxAY2(A+ 1)+ D(1—A)  k_RooAY2(A+ 1)+ D(1— A)
(2) Sinceks <k_ andAg <A<1, we have
Dk(1 — A%) Dk(1 — A%) Dk

< <
Dk(1 — AK) + k_RooAV2(1 + A¥) = Dk(1— A%) + k; RooAY2 = Dk + ky Roo AY2’
where in the second step the inequakitix + 2) <y/(y+z)for x<yandx, y, z>0 is used. By5.1), we get

810)(1, t) = —

0.
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F  Dk[(F/2)+ ((k+ FRsAY?)/2D)]
dw(k, 1) < —— —
2A Dk + k4 Ry AL/2

n Dk(A* — 1)[(—F/2)(1+4 (1/A)) + (k- FRo AY?/2D)[1 — (1/A)]
k_Roo AY2(AK + 1) — Dk(AF — 1)
F Dk(F/2) Dk(ky FRsAY?/2D)
2A ' Dk + kiR A1/? Dk + ki Rog AY/2
Dk(1 — AM)((F/2)(1+ (1/A))
k—Roo AV2(1 + A¥) + Dk(1 — A¥)
Dk(1 — A¥Y(k_ FRo AY2/2D)[(1/A) — 1]
k—RooAY2(1+ A¥) + Dk(1 — A¥)
F Dk(F/2)
2A Dk +kiRxAY/2
Dk(ky FRsAY?/2D)  Dk((F/2)(1+ (1/A))
Dk + ky Roo A1/2 Dk + ky Roo AL/2
Dk(1 — AM)(k_ FR.,AY?/2D)[(1/A) — 1]
k—RooAY2(1 4 A¥) + Dk(1 — A)
F Dk(F/2A) Dk((k+ FR-AY?)/2D)
2A Dk + ki Ry A2 Dk + ky Ry, AY/2
Dk(1 — AMk_FRAY2/2D)((1/A) — 1)
k—RooAY2(1+ A¥) + Dk(1 — A¥)
- Dk((ky FRsAY?)/2D)
- Dk + ky Ry AY/2
Dk(1 — AM)(k_ FR.,AY?/2D)((1/A) — 1)
k—RooAY2(1 4 A¥) + Dk(1 — A¥)

IA

Consequently, a sufficient condition faww(k, t) <0 in this case is that
(1 - A9k_[(1/A) = 1] ky
<
k_Roo AY2(A¥ + 1)+ Dk(1 — AK) ~ Dk + k, RooAY/2
& (1= ANK_((1/A) — 1)(Dk + ky RooAY?) < ky[(k— Roo AY?(A* + 1) + Dk(1 — AX)]

k_Dk(1 — A%)  kik_Roo(1— AF)
A Al/2

< Dk(1— AM)(k_ + ky) + 2k_k; Roo AY/?.

The last inequality can be easily verified to be trua#k_/(k. +k_).

(3) This follows from(5.1)and a series of straight forward calculations. 0

We remark that, ikke — oo, the estimateA > 1/2 for the thermodynamic case is recovered, and the large
expansiorn(5.2) becomeg4.2) with pey = .
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Proposition 5.2. Lette [0, ty).

(1) Letu>0andv > 0. We haveéhw(k, t) <0 for any wavenumber, kf

Ar) < (%)2. (5.3)

(2) Letu >0andv>0.We havedw(k, t) <0 for any wavenumber, kf

24Dy \?%/3
”) : (5.4)

A(r) < ( R,

Proof. By Part (1) ofProposition 5.1we may assume that> 2.
(1) Asin the proof ofProposition 5.1 (2)we get by(5.1) and (5.3}hat

F DK[(F/2)+ ((ks FRxAY?)/2D) + (ks n(k? — 1)/R% A)]

24 Dk + k4 Rog A2

. DK(A=AYI(F/2)(A+ 1/ A)) + (k- FRoc AY?)/2D)((1/A) — 1) — (k- p(k — 1)/ R, A)]
k- Roo AY2(AK + 1) + Dk(1 — AK)

at(,()(k, t) = —

F Dk(F/2) Dk(1 — AM[(F/2)(1+ (1/A)]
2A Dk +kiRooAY2 " k_RooAV2(1 + A) + Dk(1 — Ak)

Dk(1 — A")[(k— FRxAY2/2D)((1/A) — 1(—(k_pu(k? — 1)/ R3, A)]
+ k- RooAY2(1 4 A¥) + Dk(1 — AK)
F DKkF/2) Dk((F/2)(1+ (1/A))
2A Dk + kiR Al Dk + ki Rog AY/2

Dk(1— AM)[((k— FRx AY2/2D)((1/A) — 1) — k_pu(k? — 1)/RZ A]
+ k—RooAY2(1+ A¥) + Dk(1 — A¥)

F Dk(F/2A)
2A Dk + kiR A2

Dk(1 — AM)[((k- FRo AY?/2D)((1/A) — 1) — k_pu(k? — 1)/ RE A]
* k_Roo AY2(1 4 AK) + Dk(1 — A¥)

Dk(1— AM[((k— FRx AY2/2D)((1/A) — 1) — k_pu(k? — 1)/RZ A]
= k_RooAY2(1 + AF) + Dk(1— AF)

_ Dk(- AR)k_FRxAY2/2DA) — 3k_j/(R%, A)] -0
- k—RooAY2(1 4 A¥) + Dk(1 — A) -

(2) By (5.1), we have

F  v(k*—k%  (F/2)(Dk + kky RsoAY?)
dolk 1) < —— — -
2A R4 A2 Dk + k4 Roo A1/?
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Fig. 5. The stability diagram in thé\( k)-plane for the kinetic boundary condition with=v =0 butF # 0. The curvek =k¢(A), separates the
stable region (marked by~") and the unstable region (marked by “+").

+Dk[(F/z)(1+(1/A))+(k_FROOAl/z)/ZD)((l/A)—1]< F uk*—k% F

Dk + k_Rs AY2 2A R4 A? 2
N (F/2)((Dk(1/A) + 1) + kk_Roo AY?((1/A) — 1) F vk*—k% F
< _——_——_—— e — —
Dk + k_Roc AY/? 2A R4 A2 2
F[1 F/2)kk_Rs AY2((1/A) — 1 12 Fk_R
A (F/2)kk_Roo A™=((1/A) )<_ v+k ~ _ g,
2\4 Dk + k_ Ry, AL/2 R4, A2~ 2DAY?

O

Remark 5.1. Assumeu =v=0. Lete [0, t,) be such thafy < A=A(t) <k_/(k_ +Kks). Then our numerical calcu-
lations strongly suggest that there exists a critical vajuek:(A) such that

diw(k, 1) <0 fork <kc and odw(k,t) >0 fork > kc. (5.5)

Fig. 5is a stability diagram showing qualitatively such a critical value for the kinetic boundary condition with
w=v=0. The curvek=Kk:(A), is obtained by solving the equatidpv(k, t) =0 in which the growth raté;w(k, t) is
given by(5.1)with = v=0. The rates ark: =1 andk_ =2 so thak_/(k+ +k_) = 2/3.
We see from our analysis that the circular island is always stable if its normalized arka/(k_ + k). The
island is asymptotically stable, with a decay rate proportion&t i the surface diffusion is included, or & if
the surface diffusion is not but the line tension is included. In general, a small circular island is always stable, if the
line tension or surface diffusion is included Ak k_/(k_ + k), and if neither the surface diffusion nor line tension
is included, then the numerical solution suggests that there exists a critical waverkgmlig(A) such that the
island is stable only for wavenumbeks k.

6. Conclusions

We have rigorously analyzed the linear, morphological stability of a single, epitaxially growing, circular island
with a radially symmetric adatom distribution, with respect to the perturbation in both radial and angular directions.
A BCF type island dynamics model that we use consists of the quasi-steady diffusion equation,

—DAp=F in2,(1)UR_(),
a thermodynamics boundary condition (TBC) or a kinetic boundary condition (KBC),

TBC: p=pe(l+yx) onl(r),
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Table 6.1
A summary of the asymptotic stability analysis
BCs and velocity drw(k, t) ask— oo
F(1-2A .
TBC:y=v=0 %k + O(1) asymptotically unstable A< 1/2
TBC:y#00rv#£0 —k* — 273 + O(k?) asymptotically stable
FRoo AY/? 1 1 ) .
KBC: u=v=0 OZOT (k_ <Z - 1) — k+> +0 (E) asymptotically unstable ik <k_/(ks +k_)
KBC: u#00rv£0 —Tk* + (D — (ky + k_)j1)k% 4+ O(k) asymptotically stable

—DVpy -n=ki(p+ — px — px)
DVp_ -n=k_(p— — px — p«)

KBC : onr(z),

the normal velocity
v=—D[Vp - n] + vk,

the continuity of the adatom density at the center of island, and the flux-free far-field condition.
We summarize iTable 6.1our analysis on the asymptotic behavior of the growth éat€k, t) and the corre-
sponding asymptotic stability or instability for large wavenumbers. For convenience, we use the notation

We make the following concluding remarks:

(1) For both the thermodynamic and kinetic boundary conditions, a circular island is always asymptotically stable,
if the line tension or surface diffusion is included.

(2) For both the thermodynamic and kinetic boundary conditions, a small island is stable for all wavenumbers, if
the line tension or surface diffusion is included.

(3) For the thermodynamic boundary condition, a circular island is always stable, if its normalizéd-aléa.

(4) For the kinetic boundary condition, a circular island is always stable, if its normalizedar&a/(k_ + k).

(5) For the thermodynamic boundary condition, if the line tension and surface diffusion are absent, and if the
normalized ared < 1/2, then there exists a unique critical wavenunierk:(A) such that the circular island
is stable for any wavenumbg&k k. and unstable for anly> k.

(6) For the kinetic boundary condition, if the line tension and surface diffusion are absent, and if the normalized
areaA < k_/(k_ +k,) then there exists a unique critical wavenumker k.(A) such that the circular island is
stable for any wavenumbé&k k; and unstable for ank> k.

(7) The Bales—Zangwill instability for straight atomic steps due to the Ehrlich—Schwoebel effect disappears for
small circular islands, if either the line tension or surface diffusion is included.
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Appendix A

We derive the boundary conditig®.22) and (3.23)and the velocity3.21)for the linearized syste3.17)—(3.23)
First, consider a curv&g:r=r o() in the polar coordinate system. It can be expressed as

x = ro(6) coss, y = ro(0) siné

in the Cartesian coordinate system. Here we us@ {nstead of X1, x2) to denote a generic point. The unit exterior
normalny and the curvatureg of this curve are defined by

(9, —x9) _ 7o(0)(SiNG, — C0SA) + ro(6)(cosp, sing)

no (A1)
2+ 0@ + ((0))°
o = XoYoo — XoYo (ro(9))? + 2(”6(9)) - ro(9)r6(9) (A2)

C@EDT o)+ 2056)° — ro@)ry(6)

where a subscript denotes a derivative. The tangential derivative of a smooth funetif#) defined onl"g is
dn(®)  H'(O) K (6)

2 o) + (0)

Since the curve (r) is given byr = R(t) + ¢Ry (6, t), we obtain by(A.1), (A.2), and the Taylor expansion that

€dgR1(0, 1)(sin6, — cost) + (R(r) + eR1(0, 1))(cosp, sind)

(A.3)

i = =n+ eng + O(E?), (A.4)
V(ed6R1(6, 1)) + (R(:) + eRa(6, 1))
v (R(t) + eR1(8, t))2 + 2(edg R1(0, t))z — (R(?) + EngQ/,Zt)(SaggRl(O, 1)) ey 0(82), (A.5)
{(R(1) + R1(0, 0)* + (ed9 R1(6. 1))
wheren andx are given in(3.1), and
_ 0pR1(0,1) , .
= W(sme, — cosh), (A.6)
K1 = —ﬁ(aeelel(@v 1) + R1(6, 1)). (A7)

Now, we have by3.12)that
p(r, 0, )| py = p£(R() + R1(6, 1)) + p1£(R(2) + eR1(6, 1), 6. 1)
= p£(R(1), 1) + eR1(6, )3, p+(R(), 1) + p1+(R(2), 6, 1) + O(E?). (A.8)
Similarly, we have by(3.12) and (A.4}that
Vo (r,6,1) - ity = (Vp(R(t) + R1(6, 1), 1) + eV p1 (R(1) + eR1(6, 1), 6, 1)} - (n + en1 + O(%))
= (Vp=(R(), 1 + R1(6, )V, p — (R(1)), 1 + £V p1(R(2), 6, 1)} - (n + en1+)O(c?)
= Vo+(R(1), 1) - n + eV p+(R(1), 1) - n1 + eR1(6, 1)V, p+(R(1), 1) - n
+ eV p1+(R(2), 6, 1) - n + O(£?).
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Note for any radially symmetric functiog=g(r) that vg(r)=g’(r)(cosp, sind). Thus, by(3.1) and (A.6)
vg(r)n=g'(r) andvg(r)ns = 0. Consequently,

Vo, 0,1) - il gy = Vo (R(), 1) - n + e(R1(0, )3, p(R(1), 1) + 9, 01(R(2), 6, 1) + O?). (A.9)

Inserting(A.8) and (A.9)into (3.14) and (3.15)using(2.2), (2.3), (A.5), and(A.7), and comparing terms of order
¢, we obtain the thermodynamic and kinetic boundary condit(8r2) and (3.23for p1.
By (3.13) the velocity of the boundar¥'(¢) : r = R(z) + eR1(0, 1) is

U= R(f) + £8; R1(6, 7). (A.10)

Moreover, by(A.3), (A.5), (A.7), and(3.1),
K55 = —@(399991?1(9, 1)+ de9R1(6. 1)) + O(?). (A.11)

Now, inserting(A.9)—(A.11) into (3.16) and using3.6) and the fact thakss= 0, we obtain the velocity formula
(3.21)from the O¢) terms.
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