
ARTICLE IN PRESS
Journal of Crystal Growth 266 (2004) 278–282
*Corresp

228-965618

E-mail

voigt@cae

0022-0248/

doi:10.101
Various phase-field approximations for Epitaxial Growth

Andreas R.atz, Axel Voigt*

Crystal Growth Group, Research Center Caesar, Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
Abstract

We present diffuse interface approximations for a step flow model in epitaxial growth. In this model, the motion of

step edges of discrete atomic layers is determined by the time evolution of an introduced phase-field variable. In order to

incorporate the attachment–detachment kinetics at step edges into the phase-field model a degenerate mobility-function

is established. The model is used to simulate the evolution of a step train.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Thin film epitaxy is a modern technology of
growing single crystals that inherit atomic struc-
tures from substrates. It produces almost defect-
free, high-quality materials that have a wide range
of device applications. One of the most typical and
important examples of thin film epitaxy is mole-
cular beam epitaxy(MBE). The deposition materi-
al is thermally evaporated from a source and forms
a directed beam of neutral atoms inside the
chamber. Due to chemical bonding, such atoms
in the vapor arrive at a given substrate or crystal
surface. The adsorbed atoms—adatoms—can des-
orb with a limited probability into the vapor
phase, but most likely they remain on the surface
in diffusive motion, probing for the energetically
most favorable position. Adatoms can interact
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with each other and form adatom clusters and
islands that grow due to further sticking of
diffusing adatoms to their boundaries. The mor-
phology of the vapor–solid interface, i.e., the thin
film surface, consists therefore of terraces, step
edges, and kinks, and is determined by the
interplay between the microscopic processes such
as adsorption, desorption, island nucleation, diffu-
sion, attachment and detachment to and from
island boundaries, and island coalescence [1–3].

Burton, Cabrera and Frank [4] first developed a
systematic and detailed model—BCF model—to
describe the adatom density and the motion of step
edges or island boundaries in epitaxial growth of
thin films. In this model, the adatom density solves a
diffusion equation with an equilibrium boundary
condition, and step edges or island boundaries move
at a velocity determined by a two-sided diffusive flux
of adatoms to the edges or boundaries. Modifica-
tions of the BCF model have been made in
Refs. [2,5,6] to incorporate into the boundary
conditions additional effects such as the line tension
and in particular the Ehrlich–Schwoebel barrier–a
d.
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higher energy barrier that must be overcome by an
adatom in order for it to stick to the boundary
from upper terrace [7–9].

Recently, level-set based finite difference meth-
ods have been developed for the simulation of
island dynamics in epitaxial growth [10–14]. Such
a method is particularly efficient in handling
topological changes. Phase-field models for island
dynamics proposed in Refs. [15–18,21] are also
able to handle topological changes, but besides
[18,21] were until now not able to handle the
attachment–detachment kinetics in epitaxial
growth. Front-tracking finite element methods such
as in Refs. [19,20] on the other side are unable to
treat topological changes but can incorporate
surface effects, such as edge diffusion of edge-
adatoms along the steps much more naturally.

Here we will concentrate on phase-field models.
Phase-field models for diffusion limited situations
of epitaxial growth without the Ehrlich–Schwoebel
barrier where already used in Refs. [15,16], without
showing the formal justification of the model. In
Ref. [15] the motion of a 1d step train is analyzed,
whereas in Ref. [16] the growth of a spiral is
simulated. In Ref. [17] formal matched asymptotic
expansion is used to determine the asymptotic limit
of vanishing interfacial thickness and show the
reduction to the Burton–Cabrera–Frank model in
this situation. In order to incorporate the attach-
ment–detachment kinetics into the phase-field
model a degenerate mobility-function has to be
introduced. In this case the formal justification by
reducing to the Burton–Cabrera–Frank model was
given in Ref. [18] and for a quasi-stationary
approximation of the Burton–Cabrera–Frank
equation without desorption in Ref. [21].

After introducing the models, a numerical
approach by adaptive finite elements is described
and finally the algorithm is applied to study the
evolution of a two-dimensional step train.
2. Problem description and diffuse interface

approximation

We denote by OCR2 the projected domain of
the film surface in a two-dimensional Cartesian
coordinate system, and assume that O is indepen-
dent of time t: We denote also by O0 ¼ O0ðtÞCR2

the projected domain of the substrate, and by Oi ¼
OiðtÞCR2; i ¼ 1; y; N; that of the terraces of
height i at time t; respectively. Thus, N þ 1 is the
total number of layers that are exposed on the film
surface. The corresponding steps are denoted by
GiðtÞ ¼ OiðtÞ-Oi�1ðtÞ; i ¼ 1;y;N: Denote by ri ¼
riðx; tÞ the adatom density on terrace OiðtÞ ði ¼
0;y;NÞ at time t:

In the framework of a BCF type or island
dynamics model, the dynamics of the steps can be
described by the diffusion equation for the adatom
density ri ¼ riðx; tÞ; with x ¼ ðx1;x2Þ; on the
surface except the step edges GiðtÞ; the boundary
condition for ri on the step edges GiðtÞ and the
normal velocity vi of the step edges GiðtÞ: The
diffusion equation is

qtri � DDri ¼ F � t�1ri in OiðtÞ; ð1Þ

where D is the diffusion constant, F the deposition
flux rate, and t�1 the desorption rate. There are
mainly two classes of boundary conditions.
Thermodynamic boundary conditions:

r ¼ ri�1 ¼ ri ¼ r�ð1þ mkiÞ on GiðtÞ; ð2Þ

where r� is a thermodynamic equilibrium value of
the adatom density at straight steps, m represents
the step stiffness, and ki is the curvature of the step
edge GiðtÞ: We adopt the convention that ki > 0 for
a convex curve such as a circle.
Kinetic boundary conditions:

�Drri �~nni ¼ kþðri � r�ð1þ mkiÞÞ

on GiðtÞ;

Drri�1 �~nni ¼ k�ðri�1 � r�ð1þ mkiÞÞ

ð3Þ

where ~nni is the unit normal of the boundary GiðtÞ
pointing from the upper into lower terrace, kþ and
k� are the attachment rates of adatoms to the
boundary GiðtÞ from upper and lower terraces,
respectively. In general, we have kþpk� with our
notation. The strict inequality models the Ehrlich–
Schwoebel effect. Setting k� ¼ kþ ¼ N in
Eqs. (3), we obtain Eq. (2).

We assume the following laws for the normal
velocity vi of the island boundary GiðtÞ determined
by the two-sided flux

vi ¼ �Drri �~nni þ Drri�1 �~nni; ð4Þ
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Fig. 1. Potential GðfÞ; mobility function M1ðfÞ and function

M2ðfÞ:
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where we neglect the diffusion of edge-adatoms
along step edges.

We now introduce phase-field models as a
diffuse interface approach for this set of equations.
By a diffuse-interface approximation we under-
stand an approximation, where the discrete height
function which counts the atomic monolayers, is
smeared out on a length scale e{1:

M2ðf
e; eÞqtre �r � ðM1ðf

e; eÞrreÞ

¼ F � t�1re � qtf
e;

ae2qtDf
e ¼ e2Dfe �

qGðfeÞ
qfe þ

e
r�m

ðre � r�Þ ð5Þ

with the approximated adatom density re ¼
reðx; y; t; eÞ and the phase-field variable fe ¼
feðx; y; t; eÞ: a is a constant and GðfeÞ is a multiwell
potential. Each minimum of the potential corre-
sponds to a phase (terrace height) of the system.
The potential can be chosen as GðfeÞ ¼ cðfe �
iÞ2ði þ 1� feÞ2; feA½i; i þ 1	; i ¼ 0;y;N � 1: The
mobility function M1ðf

e; eÞ is chosen in a way to
account for the asymmetry in the attachment–
detachment kinetics at the steps: the Ehrlich–
Schwoebel barrier is thereby modeled by reducing
the mobility of adatoms approaching the step from
the upper terrace. For that purpose M1ðf

e; eÞ is
defined as M1ðf

e; eÞ ¼ De=ðeþ f ðfeÞGðfeÞÞ with
some bounded asymmetric function f ðfeÞ: The
function M2ðf

e; eÞ drives the adatom density to-
wards the equilibrium value close to the step edge
and is defined as M2ðf

e; eÞ ¼ e=ðeþ GðfeÞÞ; cf. Fig.
1. In these approximations, the phase-field variable
fe can be seen as a continuous height function. As
shown by matched asymptotic expansions in Ref.
[18] for e-0 and an appropriate choice of a Eq. (5)
reduce to the classical Burton–Cabrera–Frank model
with kinetic boundary conditions. For M1 ¼
1;M2 ¼ D and e; a-0; Eq. (5) reduce to the
classical Burton–Cabrera–Frank model with ther-
modynamic boundary conditions, as shown in Ref.
[17]. The diffuse interface approximation introduced
in Ref. [21] is a viscous Cahn-Hilliard equation with
a degenerate mobility function

�r � ðM1ðf
e; eÞrreÞ ¼ F � qtf

e;

e2z1ðf
eÞqtf

e ¼ e2Dfe �
qGðfeÞ
qfe þ

e
r�m

ðre � r�Þ:
ð6Þ
It was shown to reduce to the quasi-stationary
Burton–Cabrera–Frank model without deso-
rption. Here z1 is chosen as a periodic function
in f: Also in this model by an appropriate choice
of M1 and z1 arbitrary combinations of kþ and k�

can be obtained. In the following, we concentrate
on Eq. (5) and will drop the dependence on e in the
nomenclature and use r and f also for the phase-
field model.
3. Numerical scheme and results

A numerical scheme for the phase-field approx-
imations is obtained by multiplying Eq. (5) with
test functions c; integrating by parts and using a
semi-implicit time-discretization scheme which can
be iteratively solved starting with Eq. (8)Z

O
M2ðf

mþ1Þ
rmþ1 � rm

Dtm

cþ
Z
O

M1ðf
mþ1Þrrmþ1 � rc

¼
Z
O

Fc�
Z
O
t�1rmþ1c�

Z
O

fmþ1 � fm

Dtm

c; ð7Þ

Z
O
ae2

fmþ1 � fm

Dtm

cþ
Z
O
e2rfmþ1 � rc

¼ �
Z
O

qGðfmÞ
qf

cþ
Z
O

e
r�m

ðrm � r�Þc: ð8Þ

This system can now be discretized by finite
elements. We use an adaptive strategy for mesh
refinement and coarsening in order to account for
the high spacial resolution needed at the step
edges. The algorithm is applied to study the
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Fig. 2. Phase-field variable (right) and adatom density (left) at

various times, t1 ¼ 1:0
 10�3; t2 ¼ 2:0
 10�3; t3 ¼ 3:0
 10�3;
t4 ¼ 4:0
 10�3; t5 ¼ 5:0
 10�3:

Fig. 3. Phase-field variable at various times, t1 ¼ 0:5
 10�3;
t2 ¼ 1:0
 10�3; t3 ¼ 1:5
 10�3; t4 ¼ 2:0
 10�3:
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evolution of a step train. The parameter used are
chosen to model a strong Ehrlich–Schwoebel
barrier: GðfÞ ¼ 18f2ð1� fÞ2; D ¼ 1000; f ðfÞ ¼
200f20; r� ¼ 0:1; m ¼ 1:0 and a ¼ 1:0: In the first
example, a one-dimensional step train consisting
of 4 steps with different terrace width is consid-
ered. No-flux boundary conditions are applied.
Fig. 2 shows the phase-field variable, indicating
the height of film, and the adatom density.

The jump in the adatom density is clearly
observed. The height and the direction of the
jump depend on the size of the terraces. Due to the
no-flux boundary conditions the highest and
lowest terrace have a strong influence on the
adatom density profile. The initial condition is set
to be a superposition of tanh-functions for f and
the equilibrium value for r:

The second example shows a two-dimensional step
train consisting of 4 slightly perturbed steps in a
domain of length 4: The perturbation is a sin-
qfunction with amplitude 0:2 and wavenumber 1:
Again no-flux boundary conditions are applied at left
and right. Up and down periodic boundary condi-
tions are set. Fig. 3 shows the phase-field variable.

The small perturbation is smoothed out due to
the strong curvature effects resulting from the
parameter m ¼ 1:0: Only at the first time instant
the perturbation can be observed. For tX1:0

10�3 the steps are straight lines.
4. Conclusions

Phase-field models for epitaxial growth were
described. These models can be seen as a diffuse
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interface approximation for step-flow models of
Burton–Cabrera–Frank type. Approximations for
both thermodynamic (diffusion limited) and ki-
netic (attachment limited) boundary conditions are
shown. Due to the use of asymmetric degenerate
mobility function the Ehrlich–Schwoebel barrier
can be modeled.
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