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Dynamics of evolving surfaces with small corner
energy regularization
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Abstract

To overcome the backward parabolic behavior of geometric evolution laws based on non-convex
interfacial energies a corner energy regularization is used. Anisotropic mean curvature flow and
surface diffusion are addressed with such a regularization term in one space dimension. The resulting
problems are fourth, respectively sixth order. A long-wave approximation is performed for both
equations resulting in the Cahn–Hilliard equation for the fourth-order problem and a higher order
Cahn–Hilliard equation for the sixth-order problem.
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1. Introduction

The equilibrium shape of a particle in two dimensions is defined as the shape of minimum
surface free energy F =E

∫
� � ds under the constraint of fixed particle number and volume

[7]. In this equation � = �(�) is the surface free energy density parametrized by the angle
� and E a constant which sets the scale of energy per unit length. The equilibrium shape
can then be constructed via the geometric interpretation of the Wulff theorem [12]: At each
point of the polar plot of the free energy density �(�), a straight line perpendicular to the
normal direction at that point is drawn; the inner envelope of the resulting family of lines
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Fig. 1. Wulff shape for �(�) = 1 + � cos(k�+�) with k = 4, �= 0.5 and �= 0. The unphysical “ears” correspond
to a negative stiffness and have to be truncated to determine the equilibrium shape.

is then geometrically similar to the equilibrium shape. Depending on the details of � the
equilibrium shape can have corners, facets and wrinklings.

While the equilibrium problem is today well understood, the dynamics creates several
difficulties.We concentrate here on the ill posedness for a negative surface stiffness �̃=�+�′′.
Such a negative surface stiffness excludes high-energy orientations and leads to corners in
the corresponding Wulff shape. Fig. 1 shows a corresponding equilibrium shape.

One way to overcome the resulting inherently unstable behavior of the dynamics problem
is to regularize the equation by adding a curvature-dependent term to the interface energy
density. This was already proposed on physical grounds in [6], and later mathematically
introduced in [2,3]. Such a curvature-dependent term introduces a new length scale in which
sharp corners are rounded. In two-dimensions the penalized interfacial energy density reads

�� = � + 1
2�2�2,

with � > 0 setting the length scale of the rounded corner, and � denoting the curvature.
Minimizing the surface energy F� = E

∫
� �� ds is therefore a compromise between a large

curvature at the corner, which decreases orientations with large surface energy but increases
the regularization term, and small curvature at the corner which decreases the regularization
term but increases orientations with large surface energy. The amount of corner rounding
is therefore determined by these two competing energy terms. The plausibility of such a
regularization is clear, but its effect on the equilibrium shape was only recently analyzed.
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In [10] asymptotic analysis is performed which shows the convergence to the sharp-corner
results as the regularization parameter � → 0, and therefore validates the use of such a
regularization in numerical simulations and provides a mathematical basis for its use.

2. Dynamic problem

The surface chemical potential �� is defined by the variational derivative of F�, namely

�� = �F�

��
= E

(
−�̃� + �2

(
�ss� + 1

2
�3
))

.

In the following we assume the evolution essentially interface-controlled and neglect any
effect due to the bulk phases. The dynamics equations result from relating the normal
velocity v to the chemical potential ��. For attachment kinetics as the dominant mass
transport mechanism we get

�v = E(�̃� − �2(�ss� + 1
2�3)),

with � = �(�) > 0 a kinetic coefficient and �s denoting differentiation with respect to the
arc length s. The resulting equation is a fourth-order parabolic geometric evolution law. For
surface diffusion as the dominant mass transport mechanism we get

�v = E�s(	�s(−�̃� + �2(�ss� + 1
2�3))),

with 	=	(�) the mobility of atoms diffusing along the surface. This is a sixth-order parabolic
geometric evolution law.

3. Long-wave approximation

In order to derive a dimensionless form, we rescale ŝ = s/� and t̂ = Et/�� which leads
to

v̂ = �̃�̂ − (�ŝ ŝ �̂ + 1
2 �̂3

) (1)

and

v̂ = �ŝ (	�ŝ (−�̃�̂ + (�ŝ ŝ �̂ + 1

2
�̂3

))), (2)

respectively. In the following we will drop the ˆ in the notation. Choosing � such that the
planar front � = 0 is thermodynamically unstable and a stable pair of facets with slope
� ∼ ±
 exists (0 < 
>1), we can consider the evolution of a surface in the vicinity of the
unstable planar front � = 0 and describe it by the graph y = h(x, t). In the following we
closely follow [11], who derived a long wave approximation for the driven system of (1),
i.e.

v̂ = �̃�̂ − (�ŝ ŝ �̂ + 1
2 �̂3

) + c (3)
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with c the driving force. We expand h=
h1+
2h2+· · · and assume only O(1) variations in
x. These lead to the small slope condition �xh=
�xh1+O(
2) and the following expansion:

v = 
�t h1 + O(
2),

�s = �x + O(
2),

� = 
�xh1 + O(
2),

� = 
�xxh1 + O(
2),

�ss� = 
�xxxxh1 + O(
2),

where � = �s� was used. If we assume �̃(�) = �̂(�/
) we further get

�̃(�) = �̂(�xh1) + O(
).

Expanding (1) and (2) in powers of 
 yields for O(
)

�t h1 = �̂(�xh1)�xxh1 − �xxxxh1

and

�t h1 = �x(	�x(−�̂(�xh1)�xxh1 + �xxxxh1)),

respectively. Differentiating both equations with respect to x and setting q = �xh1 we get
equations for the local slope

�t q = �xx(W
′(q) − �xxq) (4)

and

�t q = �xx(	�xx(−W ′(q) + �xxq)), (5)

respectively, withW ′′(q)=�̂(q).The fourth-order equation (4) is known as the Cahn–Hilliard
equation and serves as a prototype equation for phase ordering systems. It was introduced
as a model to describe spinodal decomposition of binary alloys under isothermal conditions
[1]. In this context q is the phase fraction and W(q) a symmetric double well with min-
ima at q = ±1. In our context the Cahn–Hilliard equation describes a thermally annealed
faceted surface with a hill/valley structure with a selected slope q =±1. In thin film growth
this equation can be derived from a different point of view. We represent the height of the
film surface at time t in a co-moving frame by a height function h. Conservation of mass
leads to

�t h = −�xj ,

with j the surface current, depending on �xh. If we assume isotropic surface diffusion and
the current induced by the Ehrlich–Schwoebel effect as the main mechanisms of transport
(see [8] for a detailed description of the physical phenomena), we have

j = jSD + jES,
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where jSD is the equilibrium surface current due to the adatom surface diffusion and jES is
the kinetic surface current due to the Ehrlich–Schwoebel effect. jES is only present if the
deposition flux, which is transformed into the moving frame, is nonzero. The equilibrium
surface current in the linearized version read after appropriate rescaling jSD = �xxxh. For
the derivation of jES we refer to [9]. After appropriate rescaling the kinetic surface current
can be described by jES =�xh/(1+ (�xh)2). Both together result in the nonlinear diffusion
equation

�t h = −�x

(
�xh

(1 + (�xh)2)
+ �xxxh

)
.

If �xh is small, which is assumed in the linearization of the equilibrium surface current
anyway, 1/(1 + (�xh)2) ≈ 1 − (�xh)2 and we obtain

�t h = −�x((1 − (�xh)2)�xh + �xxxh).

Differentiating this equation with respect to x and setting q = �xh we again arrive at

�t q = �xx(W
′(q) − �xxq) (6)

with W ′(q) = q3 − q. But even if the long-wave approximation (4) and the model for
thin film growth (6) turns out to be the same, the physics behind them is different. The
perspective in (4) is thermodynamic and in (6) kinetic. The first term in (4) results from
the anisotropic free energy density �, whereas the second term, indicating the stabilizing
Mullins term, results from the regularization. In (6) the first term is purely kinetic resulting
from the Ehrlich–Schwoebel current, whereas the second term describes isotropic surface
diffusion. The sixth-order equation (5) serves as a long-wave approximation for regularized
anisotropic surface diffusion. The first term in (5) results again from the anisotropic free
energy density �, whereas the second term is due to the corner regularization.

4. Numerical approaches

The geometric evolution laws (1) and (2) are treated numerically by parametric finite
elements in [4,5], respectively. In both cases the equation is reformulated into a system of
second-order equations and a variational formulation is derived which allows the use of
linear finite elements within a semi-implicit scheme. The convergence to the Wulff shape
is shown for both algorithms.

Acknowledgements

I would like to thank Stephen J. Watson for helpful discussions.



e1184 A. Voigt / Nonlinear Analysis 63 (2005) e1179–e1184

References

[1] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system I, Interfacial free energy, J. Chem. Phys. 28
(1958) 258–267.

[2] A. Di Carlo, M.E. Gurtin, P. Podio-Guidugli, A regularized equation for anisotropic motion-by-curvature,
SIAM J. Appl. Math. 52 (1992) 1111–1119.

[3] M.E. Gurtin, M.E. Jabbbour, Interface evolution in three dimensions with curvature-dependent energy and
surface diffusion: interface-controlled evolution, phase transition, epitaxial growth of elastic films, Arch.
Ration. Mech. Anal. 163 (2002) 171–208.

[4] F. Haußer, A. Voigt, A numerical scheme for regularized anisotropic curve shortening flow, Appl. Math. Lett.
(2004), accepted for publication.

[5] F. Haußer, A. Voigt, A discrete scheme for regularized anisotropic surface diffusion, a 6th order geometric
evolution equation. 39 (2004), caesar preprint.

[6] C. Herring, Phys. Rev. 82 (1951) 87.
[7] C. Herring, in: R. Gromer, C.S. Smith (Eds.), Structure and Properties of Solid Surfaces, University of

Chicago Press, Chicago, 1953.
[8] P. Politi, G. Grenet, A. Marty, A. Ponchet, J. Villain, Instabilities in crystal growth by atomic or molecular

beams, Phys. Rep. 324 (2000) 271–404.
[9] M. Siegert, M. Plischke, Slope selection and coarsening in molecular beam epitaxy, Phys. Rev. Lett. 73 (1994)

1517–1520.
[10] B.J. Spencer, Asymptotic solutions for the equilibrium crystal shape with small corner energy regularization,

Phys. Rev. E 69 (2004) 011603.
[11] S.J. Watson, Crystal growth, coarsening and the convective Cahn–Hilliard equation, in: P. Colli, C. Verdi, A.

Visintin (Eds.), Free Boundary Problems, Birkhäuser, Basel, 2004.
[12] G. Wulff, Z. Kristallogr. 34 (1901) 449.


	Dynamics of evolving surfaces with small corner energy regularization
	Introduction
	Dynamic problem
	Long-wave approximation
	Numerical approaches
	Acknowledgements
	References


