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FINITE ELEMENT METHOD FOR EPITAXIAL GROWTH WITH
THERMODYNAMIC BOUNDARY CONDITIONS∗

EBERHARD BÄNSCH† , FRANK HAUSSER‡ , AND AXEL VOIGT‡

Abstract. We develop an adaptive finite element method for island dynamics in epitaxial
growth. We study a step-flow model, which consists of an adatom (adsorbed atom) diffusion equation
on terraces of different height; thermodynamic boundary conditions on terrace boundaries including
anisotropic line tension; and the normal velocity law for the motion of such boundaries determined
by a two-sided flux, together with the one-dimensional anisotropic “surface” diffusion (edge diffu-
sion) of edge adatoms along the step edges. The problem is solved using independent meshes: a
two-dimensional mesh for the adatom diffusion and one-dimensional meshes for the boundary evolu-
tion. A penalty method is used to incorporate the boundary conditions. The evolution of the terrace
boundaries includes both the weighted/anisotropic mean curvature flow and the weighted/anisotropic
edge diffusion. Its governing equation is solved by a semi-implicit front-tracking method using para-
metric finite elements.
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1. Introduction. Epitaxial growth is a modern technology of growing single
crystal films that inherit atomic structures from substrates. There are various kinds
of models for epitaxial growth, among them the step-flow models of Burton–Cabrera–
Frank (BCF) type; cf. [3, 4, 6, 11, 15, 20]. Here the description of the growth is
continuous in the lateral directions but discrete in the growth direction. The model
is essentially a free boundary problem that consists of a diffusion equation for the
adatom density on islands, boundary conditions for the moving island boundaries,
and an evolution equation for the island boundaries. If the attachment/detachment
processes at the island boundaries are fast compared to the adatom diffusion on the
islands (diffusion limited growth), the island boundaries act as perfect sinks for the
adatoms. This is modeled by thermodynamic boundary conditions at the step edges.
The evolution equation for the island boundaries considers not only mass balance but
also edge diffusion, i.e., diffusion of edge adatoms along terrace boundaries.

Recently, level–set-based finite difference methods have been developed to solve
the BCF equations in the diffusion limited regime [12, 5, 7, 19, 21]. In particular,
in a layer-by-layer growth mode quantitative agreement with kinetic Monte Carlo
simulations could be demonstrated. An alternative method based on a phase-field
approach has been introduced in [18, 14, 22]. With both the level-set and the phase-
field method, topological changes such as coalescence of islands can be handled very
efficiently. But, until now, the (anisotropic) step energies and (anisotropic) edge
diffusion have not been built in accurately. In particular it is not straightforward how

∗Received by the editors September 29, 2003; accepted for publication (in revised form) Novem-
ber 8, 2004; published electronically July 13, 2005.

http://www.siam.org/journals/sisc/26-6/60102.html
†Numerical Mathematics and Scientific Computing, WIAS, Mohrenstraße 39, 10117 Berlin, Ger-

many (baensch@wias-berlin.de).
‡Crystal Growth Group, Research Center caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany

(hausser@caesar.de, voigt@caesar.de).

2029

D
ow

nl
oa

de
d 

12
/1

6/
13

 to
 1

41
.3

0.
70

.3
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



2030 EBERHARD BÄNSCH, FRANK HAUSSER, AND AXEL VOIGT

to discretize the fourth-order derivative occurring in the edge-diffusion term. Very
recently, level-set approaches based on semi-implicit methods to describe such fourth-
order evolution laws have been developed in [26, 9] but have not yet been applied to
solve the BCF equations. A phase-field model which includes isotropic edge diffusion
has been introduced only recently in [23].

Therefore, we see a need to introduce a method which is capable of treating
anisotropic edge energies (i.e., weighted curvature in the boundary conditions) and
anisotropic edge diffusion accurately. A framework for front-tracking finite element
simulations of epitaxial growth with kinetic boundary conditions has been developed
by the authors in [1]. Here we will extend the methods to also treat thermodynamic
boundary conditions. Furthermore, the method is extended to include anisotropy.
Even if coalescence of islands during growth cannot be handled with this approach at
the moment, the method offers the possibility of studying the influence of step stiffness
and edge diffusion during growth and coarsening of isolated islands or “nanomounds.”
Here only trivial topological changes such as disappearance of islands occur, which
can easily be handled by our front-tracking method.

As in [1], in developing our finite element method, we naturally divide our under-
lying problem into two parts: the adatom diffusion and the boundary evolution:

1. We derive a weak formulation for the time-dependent diffusion equation.
To avoid the complexity of evaluating the adatom fluxes at the boundaries,
boundary conditions are incorporated via a penalty method. The resulting
equation is discretized using the linear finite element method. The arising lin-
ear system is symmetric positive definite, and thus is solved by the conjugate
gradient method.

2. The geometric motion of the island boundaries includes both the mean cur-
vature flow and the one-dimensional (1d) surface diffusion. It is treated in
a variational formulation utilizing the curvature vector and discretized by a
semi-implicit front-tracking method using parametric finite elements. This
method is adapted with modification from [1, 2, 10] and extended to also
handle anisotropy for both the mean curvature flow and the surface diffusion.

To obtain satisfactory computational results, meshes with sufficiently fine resolu-
tions are needed for both the adatom diffusion equation and the boundary evolution
equation. Thus, it is indispensable to use adaptivity for the method to be efficient.
We use simple error indicators within an h-adaptive method to locally increase the
spatial resolution.

We apply our method to the following test problems: (a) a purely geometric
problem of the evolution of the boundaries that is governed by either the motion by
weighted/anisotropic mean curvature or the motion by weighted/anisotropic 1d sur-
face diffusion (edge diffusion). Our numerical results show the expected convergence
to the Wulff shape, which is analyzed in detail; (b) the stability of a growing circular
island. This problem has been analyzed rigorously in [16]. Our method yields nu-
merical results that are in agreement with the theory. Besides these test problems,
the method is used to study the influence of edge diffusion on anisotropic growth of
a single island and the growth of a “wedding cake.” Furthermore, we present simu-
lations concerning decay and coarsening. As a benchmark for long-time simulation,
the fully two-dimensional (2d) simulation of the (isotropic) layer-by-layer decay of a
(rotational symmetric) crystalline cone is compared with the numerical solution of the
corresponding system of ODEs for the radii of the islands. Then Ostwald ripening
of monolayer islands is investigated, and the theoretical scaling law for the average
radius of the islands is reproduced by large-scale simulations. In the last two examples
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FEM FOR EPITAXIAL GROWTH 2031

simple topological changes occur due to the disappearance of islands, which can be
handled easily by our numerical method.

In section 2, we describe the problem. In section 3, our methods of discretizing
both the adatom diffusion equation and the boundary evolution equation and some
implementational details are given. In section 4, we present our numerical results.

2. Problem description. Consider the dynamics of adatom islands in an epi-
taxially growing thin film. An island is a portion of crystal layer that is one atomic
layer higher than the adjacent neighboring part of the film surface. Mathematically,
we denote by Ω ⊂ R

2 the projected domain of the film surface in a 2d Cartesian
coordinate system and assume that Ω is independent of time t. We denote also by
Ω0 = Ω0(t) ⊂ R

2 the projected domain of the substrate or the exposed film surface
with the smallest layer thickness and denote by Ωi = Ωi(t) ⊂ R

2, i = 1, . . . , N , the
projected domain of the islands or terraces of relative height i at time t, respectively.
Thus, N + 1 is the total number of layers that are exposed on the film surface. Note
that, since the height of neighboring terraces differs only by one atomic layer, we
conclude that Ωi(t) ∩ Ωj(t) = ∅ if and only if |i − j| ≥ 2. We denote further the

corresponding island boundaries by Γi(t) = Ωi(t) ∩ Ωi−1(t), i = 1, . . . , N .
Denote by ρ = ρ(x, t) the adatom density on Ω. The adatom diffusion on the

terraces is described by the diffusion equation for the adatom density

∂tρ−DΔρ = F − τ−1ρ in Ω

∖
N⋃
i=1

Γi(t),(2.1)

where D > 0 is the diffusion constant, F > 0 is the constant deposition flux rate, and
τ−1 > 0 is the constant desorption rate. Throughout this paper the unit of length
will be the substrate lattice spacing. Thus the deposition rate F denotes the number
of atoms deposited per unit time and adsorption site, and D is the “hopping rate.”

We assume that the adatom density satisfies the following Gibbs–Thomson law
on the island boundaries Γi(t) for i = 1, . . . , N ; see [15]:

ρ = ρ∗
(

1 +
γ̃κi

kBT

)
,(2.2)

where κi is the curvature of the boundary Γi(t), ρ
∗ is a positive constant denoting the

thermodynamic equilibrium density at straight steps, kB is the Boltzmann constant,
T is the temperature, and γ̃ = γ + γθθ is the step stiffness of the boundary Γi(t)
related to the orientation-dependent step-free energy γ(θ) with θ, 0 ≤ θ ≤ 2π, the
angle between the outer normal and the x1-axis.

For the motion of the steps, we assume the following law for the normal velocity vi
of the island boundary Γi(t) for i = 1, . . . , N (with the convention that vi > 0 if the
movement of Γi is in the direction of the unit normal 	ni pointing from upper to lower
terrace):

vi = −D[∇ρ · 	ni]i + ∂s(ν∂s(γ̃κi)),(2.3)

where ν is a positive function denoting the (orientation-dependent) mobility for migra-
tion along edges [15, 6] and ∂s denotes the tangential derivative along the boundary.
For any function u : Ω → R, [u]i = u+ − u− denotes the jump of u along Γi(t) from
the upper (+) to the lower (−) terrace. The term ∂sν(∂s(γ̃κi)) represents the 1d (in
general anisotropic/weighted) “surface” diffusion along the edges.
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2032 EBERHARD BÄNSCH, FRANK HAUSSER, AND AXEL VOIGT

We assume a flux-free boundary condition for the adatom density on the boundary
of the film domain:

∂ρ

∂n
= 0 at ∂Ω ∀t > 0,(2.4)

where the normal derivative corresponds to the unit exterior normal 	n to the bound-
ary ∂Ω. We also assume that the initial islands Ωi(0) (i = 0, . . . , N) along with their
corresponding boundaries Γi(0) (i = 1, . . . , N) are given. Moreover, we assume that
the initial adatom density is given by some function ρ̄ on Ω. We assume compatibility
of this initial value with the boundary condition (2.2), i.e.,

ρ̄|Γi(0) = ρ∗
(

1 +
γ̃κi

kBT

)
,(2.5)

for i = 1, . . . , N . Finally, we assume no topological changes in the dynamics; i.e.,
islands neither nucleate nor coalesce.

3. Variational formulation and finite element discretization. We derive
a weak formulation for the time-dependent diffusion equation and use a first-order
implicit scheme to discretize the time derivative. In each discrete time instant we
perform the following steps: (1) we update the discrete boundaries by solving a ge-
ometric PDE based on the adatom densities and the discrete boundaries from the
previous time step; (2) we solve the diffusion equation to update the adatom den-
sity using the adatom density from the previous time step and the computed discrete
boundaries. In section 3.1, we describe the weak formulation for the time-dependent
diffusion equation and the finite element discretization in each time step. In sec-
tion 3.2, we present our algorithm for the geometric PDE of the boundary evolution.

3.1. Adatom diffusion. Assuming the boundaries Γi(t) to be given, (2.1) may
be viewed as a standard parabolic PDE with Dirichlet boundary conditions given on
the “inner” boundaries Γi(t) by (2.2). Nevertheless, there are two difficulties that
have to be solved:

(i) Since in the discretization the boundaries Γi(t) are not part of the 2d mesh, it
is not straightforward how to enforce the Dirichlet boundary conditions (2.2)
directly.

(ii) Solving the geometric PDE (2.3) involves the jump of the normal derivative
of ρ at the boundaries Γi(t).

To circumvent both difficulties, a penalty method is used. To this end assume that ρ
is smooth inside each Ωi. Multiplying both sides of the diffusion equation in (2.1) by
a smooth, time-independent test function φ and integrating by parts, we get

∫
Ω

∂tρφ +

∫
Ω

D∇ρ · ∇φ +

N∑
i=1

∫
Γi(t)

D[∇ρ · 	ni]iφ =

∫
Ω

Fφ−
∫

Ω

τ−1ρφ.(3.1)

We now relax boundary condition (2.2) by a penalty method. More precisely, let
0 < ε = ε(x, t) 
 1 be given and replace (3.1) by

∫
Ω

∂tρφ +

∫
Ω

D∇ρ · ∇φ +

N∑
i=1

∫
Γi(t)

1

ε

(
ρ− ρ∗

(
1 +

γ̃κi

kBT

))
φ =

∫
Ω

Fφ−
∫

Ω

τ−1ρφ.

(3.2)
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FEM FOR EPITAXIAL GROWTH 2033

Comparing (3.1) and (3.2), one concludes that a solution of (3.2) fulfills the following
relaxed boundary condition on Γi(t):

D[∇ρ · 	ni]i =
1

ε

(
ρ− ρ∗

(
1 +

γ̃κi

kBT

))
.(3.3)

We will use this identity, when solving the geometric PDE (2.3) in section 3.2, to
avoid the evaluation of ∇ρ · 	ni at the boundaries Γi(t).

We would like to mention that in the case of ν = 0, i.e., without surface diffusion,
the weak form (3.2) alternatively may be derived by adding a small velocity term in
(2.2), giving

ρ = ρ∗
(

1 +
γ̃κi

kBT
+ ε̃vi

)
.(3.4)

Indeed, plugging (2.3) with ν = 0 into (3.4) yields (3.3) with ε = ε̃ρ∗; cf. [24].
Now, split the time interval by discrete time instants 0 = t0 < t1 < · · · and

define the time steps Δtm := tm+1 − tm (m = 0, 1, . . .). Using the approximations
Γm
i ≈ Γi(tm), we have the following formulation of the time discrete problem.

Problem 3.1. Set ρ0 = ρ̄. For m = 0, 1, . . . , find adatom density ρm+1 ∈ H1(Ω)
such that∫

Ω

ρm+1 − ρm

Δtm
φ +

∫
Ω

D∇ρm+1 · ∇φ +

N∑
i=1

∫
Γm+1
i

1

ε

(
ρm+1 − ρ∗

(
1 +

γ̃κm+1
i

kBT

))
φ

=

∫
Ω

Fφ−
∫

Ω

τ−1ρm+1φ ∀φh ∈ H1.

To discretize in space, let T m
h be a conforming triangulation of Ω at time in-

stant tm. Define the finite element space of globally continuous, piecewise linear
elements

V
m
h =

{
vh ∈ C0(Ω) : vh|T ∈ P

1 ∀T ∈ T m
h

}
.

Denote by Pm : C0(Ω) → V
m
h the usual Lagrange interpolation operator. With this

setting, the space discretization of Problem 3.1 can be summarized as follows.
Problem 3.2. Let ρ0

h = P0ρ̄. For m = 0, 1, . . . , determine the discrete adatom
density ρm+1

h ∈ V
m+1
h by

∫
Ω

ρm+1
h − ρmh

Δtm
φh +

∫
Ω

D∇ρm+1
h · ∇φh +

1

ε(h)

N∑
i=1

∫
Γm+1
i,h

(
ρm+1
h − ρ∗

(
1 +

γ̃κm+1
i

kBT

))
φh

=

∫
Ω

Fφh −
∫

Ω

τ−1ρm+1
h φ ∀φh ∈ V

m+1
h .

Here κm+1
i are the discrete curvatures of Γm+1

i,h , and ε(h) with limh→0 ε(h) = 0 is
chosen to be constant on each element and to fulfill ε(h) = h/D, which is an optimal
choice for linear elements in elliptic problems [8, Ch. 3, sect. 3.2].

In the rest of this subsection, we fix a time step m and drop the subscript and
superscript m+ 1 when no confusion arises. Let (φk)

L
k=1 be the standard nodal basis

of the finite element space Vh, where L is the dimension of Vh. Expand ρh as

ρm+1
h =

L∑
k=1

rkφk
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2034 EBERHARD BÄNSCH, FRANK HAUSSER, AND AXEL VOIGT

for some Ri = (r1, . . . , rL)t ∈ R
L. Define the following stiffness and mass matrices

and load vectors:

M = (Mkl), Mkl = (φk, φl); MΓi = (MΓi

kl ), MΓi

kl = 〈φk, φl〉Γi
;

A = (Akl), Akl = (D∇φk,∇φl); F = (Fl), Fl = (F, φl);

F Γi = (FΓi

l ), FΓi

l = 〈ρ∗(1 + γ̃κi

kBT ), φl〉Γi ;

where the index ranges are 1 ≤ k, l ≤ L and 〈·, ·〉Γ stands for the L2 inner product over
the current interface Γ, whereas (·, ·) denotes the L2 inner product over the domain Ω.
The following algorithm is the matrix form of Problem 3.2.

Algorithm 3.1. For m = 0, 1, . . . , find Rm+1 ∈ R
L such that

1

Δtm
MRm+1 + ARm+1 +

1

ε(h)

N∑
i=1

MΓiRm+1 + τ−1MRm+1

= F +
1

ε(h)

N∑
i=1

F Γi +
1

Δtm
MRm.

We introduce the following quantities defined on the nodes on the boundaries
Γm+1
i,h :

γi :=
1

ε(h)
(ρ− ρ∗) =

1

ε(h)
(ρm+1

h |Γm+1
i,h

− ρ∗).(3.5)

These quantities will enter in the subproblem of the moving boundaries.
As already mentioned in section 2, the initial adatom density ρ̄ (and therefore

also the discrete initial adatom density ρ0
h in Problem 3.2) has to be compatible with

the boundary conditions on the free boundaries Γi; see (2.5). Moreover, the accuracy
of the values of the adatom density is very important for the evolution of the free
boundaries; see (3.5). Therefore we solve a separate problem to calculate suitable
initial values ρ0

h. As in [24] we substitute the discrete time derivative in Problem 3.2
by ρ0

t,h = 0. We eventually arrive at the following problem to determine ρ0
h.

Problem 3.3. For given initial polygonal curves Γ0
i,h, i = 1, . . . , N , determine

the initial discrete adatom density ρ0
h ∈ V

0
h as the solution of

∫
Ω

D∇ρ0
h · ∇φh +

1

ε(h)

N∑
i=1

∫
Γ0
i

(
ρ0
h − ρ∗

(
1 +

γ̃κ0
i

kBT

))
φh =

∫
Ω

Fφh −
∫

Ω

τ−1ρ0
hφ

for all φh ∈ V
0
h, with notation as in Problem 3.2.

Using the nodal basis and the mass and stiffness matrices as above, Problem 3.3
yields the following algorithm for the initial value.

Algorithm 3.2. Find R0 ∈ R
L such that

AR0 +
1

ε(h)

N∑
i=1

MΓiR0 + τ−1MR0 = F +
1

ε(h)

N∑
i=1

F Γi .

3.2. Boundary evolution. Now assuming the adatom density ρ to be given,
we use the identity (3.3) to avoid the direct evaluation of ∇ρ · 	ni at the boundaries
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FEM FOR EPITAXIAL GROWTH 2035

Γi(t) in the velocity law in (2.3). Thus we get the following geometric PDE for the
boundary evolution of the moving boundaries Γi, i = 1, . . . , N :

vi =
1

ε
(ρ− ρ∗) − 1

ε
ρ∗

γ̃κi

kBT
+ ∂s(ν∂s(γ̃κi)).(3.6)

This equation can be interpreted as an equation for (weighted/anisotropic) surface
diffusion with lower-order terms if ν > 0 or for the (weighted/anisotropic) mean cur-
vature flow with a forcing term if ν = 0. A variational formulation and discretization
by parametric finite elements for such a highly nonlinear fourth-order (ν > 0) or
second-order (ν = 0) equation was given in [1] (for the isotropic case, i.e., ν = const
and γ = const). We will now recall this formulation and modify it to also handle
anisotropy.

By introducing the position vector 	xi, the curvature vector 	κi, and the velocity
vector 	vi, a system of equations for 	κi, κi, vi, and 	vi can be derived. By the geometric
identity 	κi = −∂ss	xi, the velocity law (3.6), and the relations between the vector
valued and scalar quantities κi = 	κi · 	ni and 	vi = vi	ni, we obtain

	κi = −∂ss	xi,(3.7)

κi = 	κi · 	ni,(3.8)

vi = fi,(3.9)

	vi = vi	ni,(3.10)

where

fi :=
1

ε
(ρ− ρ∗) − 1

ε
ρ∗

γ̃κi

kBT
+ ∂s(ν∂s(γ̃κi)).

Consider the discrete time instant tm and time step Δtm := tm+1−tm as in section 3.1.
We represent the next free boundary Γm+1

i in terms of the current boundary Γm
i by

updating the position vectors

	xi ← 	xi + Δtm	vi.(3.11)

The time discretization assumes that all geometric quantities such as 	ni, ∂s are eval-
uated on the current free boundaries Γm

i . In contrast to the geometric quantities, the
unknowns 	κi, κi, vi, and 	vi are treated implicitly. In particular, in view of (3.11), we
define

	κm+1
i := −∂ss(	x

m
i + Δtm	vm+1

i ).(3.12)

To derive a weak formulation, we first write the above equations in terms of the
weighted curvature

κ̃i := γ̃κi(3.13)

and then proceed similarly as in [10]: multiply (3.8), (3.9), (3.10), and (3.12) by

test functions 	ψ ∈ 	H1(Γi) and ψ ∈ H1(Γi) and use integration by parts for the
operator ∂s. For simplicity we have hereafter dropped the superscript m + 1 for the
unknowns. Furthermore, using the notation 〈·, ·〉 for the L2 inner product over the
current interfaces Γm

i , we arrive at the following semi-implicit, time discrete set of
equations.
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2036 EBERHARD BÄNSCH, FRANK HAUSSER, AND AXEL VOIGT

Problem 3.4. For m = 1, 2, . . . , find 	κi ∈ 	H1(Γm
i ), κ̃i ∈ H1(Γm

i ), vi ∈ H1(Γm
i ),

and 	vi ∈ 	H1(Γm
i ) such that

〈	κi, 	ψ〉 − Δtm〈∂s	vi, ∂s 	ψ〉 = 〈∂s	xm
i , ∂s 	ψ〉 ∀	ψ ∈ 	H1(Γm

i ),

〈κ̃i, ψ〉 − 〈γ̃	κi · 	ni, ψ〉 = 0 ∀ψ ∈ H1(Γm
i ),

〈vi, ψ〉 + 〈α∂sκ̃i, ∂sψ〉 + β〈κ̃i, ψ〉 = 〈γi, ψ〉 ∀ψ ∈ H1(Γm
i ),

〈	vi, 	ψ〉 − 〈vi	ni, 	ψ〉 = 0 ∀	ψ ∈ 	H1(Γm
i ),

where we have used the following abbreviations:

α = ν; β =
1

ε

ρ∗

kBT
; γi =

1

ε
(ρ− ρ∗).

Note that in the above formulation the adatom density ρ is needed only for
computing γi. The discrete scheme can be written as a matrix-vector system by
using a nodal basis as usual and is solved by a Schur complement approach; see [1]
for details. Note that in contrast to [1] in the case of anisotropy, i.e., γ̃ and/or ν not
being constant, we solve for the unknowns κ̃i, 	κi, vi, and 	vi rather than for κi, 	κi, vi,
and 	vi.

The subproblem of boundary evolution consists of solving N decoupled problems
for each interface Γi,h, i = 1, . . . , N . For the adatom diffusion problem the new
interfaces Γm+1

i,h and their weighted curvatures κ̃i,h will enter.

3.3. Implementation. The numerical method is implemented using ALBERT,
an adaptive finite element software for scientific computation [25]. The program
for the 2d adatom diffusion and that for the 1d boundary evolution are coupled
via TCP/IP. The matrices are assembled using the standard assembling tools of
ALBERT, except for the matrices involving line integrals. For the latter see [1].

Adaptivity for adatom diffusion. To obtain satisfactory computational re-
sults, a mesh with a sufficiently fine resolution near the moving island boundaries is
needed. Thus it is indispensable to use some adaptive strategy for local mesh refine-
ment and coarsening. As described in [1] we use an L2-like error indicator for local
mesh coarsening and a purely geometric criterion for refinement, ensuring that the
mesh size of the 2d grid at the moving boundaries is at least as fine as the 1d mesh
size.

Adaptivity for boundary evolution. The 1d finite element meshes for the
boundaries are also adapted. Nodes are inserted or removed from the current mesh
in each time step according to the criterion that the distance between neighboring
nodes is almost a constant.

Time adaptivity. In addition to adaptivity in space, adaptivity in time is also
applied. The criteria for choosing the next time step results from the solution of the
1d problem. The boundaries are not allowed to sweep over a whole 2d element within
one time step.

Algorithm. Combining the methods described so far we arrive at the following
algorithm.

Algorithm 3.3. Let the initial boundaries Γ0
i,h be given. Set m = 0.

1. compute curvature κ0
i,h of the initial boundaries
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2. compute initial adatom density ρ0
h

(a) compute ρ0
h

(b) compute γi = γi(ρ
0
h)

3. compute free boundaries Γm+1
i,h and curvatures κm+1

i,h

(a) compute vm+1
i,h , 	vm+1

i,h , and Γm+1
i,h

(b) refine and coarsen Γm+1
i,h

(c) compute κm+1
i,h on Γm+1

i,h

4. compute adatom density ρm+1
h

(a) refine and coarsen T m
h

(b) compute ρm+1
h

(c) compute γi = γi(ρ
m+1
h )

5. set m := m + 1, go to step 3.

4. Numerical results. We first present numerical results for the purely geo-
metric motion of curves in section 4.1. In section 4.2 we then investigate numerically
the isotropic growth of a single circular island and compare the numerical results
with the known analytical solutions. The influence of anisotropic edge diffusion on
the growth of a single island is shown in section 4.3. An example for several islands
is shown in section 4.4. Further examples are concerned with decay and coarsening.
Here the deposition flux F is turned off. In section 4.5 the decay of a crystalline cone
is simulated and compared with the corresponding numerical solution of a system
of ODEs for the radii of the islands, and in section 4.6 a large-scale simulation of
Ostwald ripening of monolayer islands is presented.

Anisotropies will be described in terms of a function f(θ), 0 ≤ θ ≤ 2π, such that

γ̃(θ) = γ0(f(θ) + f ′′(θ)),(4.1)

where we consider anisotropies of the type

f(θ) = 1.0 + A cos(kθ),

with A being the strength of the anisotropy and k the periodicity. Thus, for γ̃ to be
positive, it is necessary that (k2 − 1)A < 1.

Unless otherwise stated, we use the following data in all numerical simulations:
• parameters: D = 105, F = 1, ρ∗ = 10−4, τ−1 = 0, γ̃ = γ0 = 0.3, ν = 10,

kBT = 1;
• domain: Ω is a circular domain with radius 10;
• mesh size of the initial 1d finite element mesh: h ≈ 0.05;
• time step: Δt = 10−4.

4.1. Geometric motion of curves. Our first test example is the purely geo-
metric motion of curves governed by Problem 3.4 in section 3.2, decoupled from the
adatom diffusion. Considering a single curve Γ, we may write (3.6) as

v = γi − β
γ̃κi

kBT
+ ∂s(ν∂s(γ̃κi)),(4.2)

where γi is a function on the curve Γ, β ≥ 0 is a constant, and γ̃, ν are positive
functions of a single variable 0 ≤ θ ≤ 2π denoting the angle of the outer normal of Γ
with the x1-axis.

Choosing γ̃, ν, β, and γi in a suitable way, (4.2) and therefore the algorithm
described in section 3.2 can be used to describe several geometric evolution equations.
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Fig. 1. Anisotropic mean curvature flow: starting with a circle and anisotropy f(θ) = 1.0 +
0.1 cos(3θ); snapshots at t = 0.0, t = 0.1, t = 0.2, t = 0.3, and t = 0.4 and corresponding Wulff
shape (left); starting with a square and anisotropy f(θ) = 1.0 + 0.025 cos(6θ); snapshots at t = 0.0,
t = 0.1, t = 0.2, t = 0.3, t = 0.4, and t = 0.5 and corresponding Wulff shape (right).
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Fig. 2. Anisotropic (1d) surface diffusion: starting with a circle and anisotropy f(θ) = 1.0 +
0.1 cos(3θ) (first row); starting with a square and anisotropy f(θ) = 1.0+0.025 cos(6θ) (second row);
snapshots at t = 0.0, t = 0.01, t = 0.02, and t = 0.1.

We will consider the following two examples:
• weighted mean curvature flow: ν = 0, β �= 0, γ̃ �= 0, and γi = 0;
• weighted edge diffusion: ν = 1, β = 0, γ̃ �= 0, and γi = 0.

The smoothing properties of the mean curvature flow and of the surface diffusion
have already been presented in [1] for the isotropic case. Here we will give some
examples of anisotropic flows.

For the anisotropic surface free energy Aγ(Γ) =
∫
Γ
γ the corresponding Wulff

shape Wγ is defined by

Wγ = {	x ∈ R
2 | 	x · 	n ≤ γ(	n(θ)) ∀	n ∈ R

2, |	n| = 1}.

The weighted curvature κ̃ = γ̃κ is constant on Wγ and the Wulff shape mini-
mizes the 1d surface free energy under the constraint of fixed area. Therefore, Wγ

describes the equilibrium shape in the case of anisotropy. For this reason one ex-
pects the edge-diffusion flow to tend to the Wulff shape as a stationary solution and
the mean curvature flow to shrink a given curve towards the (rescaled) Wulff shape.
Our numerical experiments agree perfectly with this consideration, as can be seen in
Figure 1 and Figure 2. We have chosen two different anisotropies f with periodicity
3 and 6, respectively. The corresponding Wulff shapes are depicted in Figure 1. The
convergence towards the Wulff shape is investigated quantitatively by calculating an
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Table 1

Approximate Hausdorff distance between the numerical solution and the Wulff shape for various
anisotropies. Initial curve is a square of area 4. The remaining error for time > 0.1 results from
the constant mesh size of h = 0.125 and the natural approximation error of a continuous curve by
linear segments.

Time k = 3, k = 3, k = 4, k = 4, k = 5, k = 5,
A = 1/16 A = 1/8 A = 1/30 A = 1/15 A = 1/48 A = 1/24

0.0 0.2420 0.2880 0.2290 0.2520 0.2150 0.2300
0.01 0.1110 0.1610 0.0749 0.1100 0.0599 0.0930
0.02 0.0450 0.0990 0.0223 0.0382 0.0179 0.0267
0.1 0.0121 0.0438 0.0077 0.0222 0.0074 0.0175
0.5 0.0121 0.0434 0.0077 0.0222 0.0074 0.0177

approximate Hausdorff distance between the numerical curve and the Wulff shape.
The Hausdorff distance is approximated by first measuring the distance of a grid
point on the curve to the intersection point of the straight line connecting the grid
point and the origin with the Wulff shape and then taking the maximum over all grid
points on the curve. The results for anisotropic surface diffusion for the evolution of
a square to a three-, four-, and five-fold symmetry (k = 3, 4, 5) with a strength of the
anisotropy A chosen to satisfy (k2−1)A ≤ 1 are given in Table 1. If (k2−1)A = 1, the
equation becomes singular, and corners occur in the Wulff shape. Also this situation
can be handled within the described algorithm. The convergence of the curve towards
its stationary Wulff shape is clearly shown.

4.2. Growth of a single circular island. We consider a single circular island
Ω1(t) of radius R(t) at time t that is growing on a terrace, which is a concentric
circular region with radius RΩ. In the quasi-stationary approximation for the adatom
diffusion, the time dependence in the diffusion equation (2.1) is dropped. This ap-
proximation is valid if F/D 
 1. Since F/D = 10−5 
 1, we expect our simulation
of the time-dependent diffusion equation to be in good agreement with the analytic
solution of the quasi-stationary diffusion equation.

Using polar coordinates (r, θ) with the origin at the center of the circular island,
the radially symmetric solution of the quasi-stationary diffusion equation is given
by [16]

ρ1(r, t) =
F

4D

(
R(t)2 − r2

)
+ ρ∗

(
1 +

γ̃

kBTR(t)

)
,

ρ0(r, t) =
F

4D

(
R(t)2 − r2

)
+

FR2
Ω

2D
ln

(
r

R(t)

)
+ ρ∗

(
1 +

γ̃

kBTR(t)

)
.

Since the curvature κ1 = 1/R(t) of the circular boundary Γ1(t) is spatially constant,
we have ∂ssκ1 = 0. Furthermore, since the velocity of the circular boundary Γ1(t)
is given by v1 = R′(t), by a simple calculation we get R′(t) = FR2

Ω/(2R(t)), i.e.,
(R(t)2)′ = FR2

Ω. Thus, we obtain the dynamic law

R(t)2 = FR2
Ωt + R(0)2(4.3)

for the evolution of the circular boundary Γ1(t).
For the simulation we have chosen an island with initial radius R(0) = 3.0 growing

on a terrace of radius RΩ = 10.0. From Figure 3, showing the adaptively refined 2d
mesh, the computed 1d boundary Γ1,h, and the computed adatom density ρh at
various times, it can be seen that the evolution of the growing island is very stable.
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Fig. 3. 2d mesh, 1d boundary, and adatom density at time instants t = 0.0, 0.1, 0.3, and 0.6.
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Fig. 4. Adatom density profile of the numerical solution (left) and area growth rate (right).
The function f is a least square fit of the data to an affine linear function.

As a test of mass balance, the growth rate of the island area is depicted in Figure 4
(right). Evaluating (4.3), one expects a growth rate of F |Ω| ≈ 314.15. The simulations
are in good agreement with this value, as shown by a least square fit of the numerical
data; see Figure 4 (right). Figure 4 (left) shows the profile of the adatom density at
the same time instants as in Figure 3.

Finally, in Figure 5, the numerical and analytical solutions are compared by
depicting the relative error of the adatom density along the x1-axis for the same time
instants as in Figure 4. The maximum relative pointwise error is less than 2% over
the whole time period. We conclude that the numerical algorithm is fairly accurate
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Fig. 5. Relative pointwise error of the numerical solution at time instants t = 0.0, 0.1, 0.3,
and 0.6.

for describing both the free boundary evolution and the adatom diffusion equation.

4.3. Anisotropic growth of a single island. In this example we investigate
the influence of the edge diffusion on anisotropic growth. We simulate the anisotropic
growth of a single island with anisotropy given by

f(θ) = 1.0 + 0.1 cos 3θ,

both without edge diffusion (i.e., ν = 0) and with edge diffusion (ν = 10.0) and
compare the respective results. Starting with a circle, we expect the island to at least
resemble the corresponding Wulff shape (see Figure 1) in both cases. The simulated
evolutions of the moving boundaries are shown in Figure 6. Comparing the two
figures, it is seen that edge diffusion drives the evolution of the boundary towards the
Wulff shape.

4.4. Evolution of a wedding cake. The next example is a growing “wedding
cake.” We consider three circular islands with radii R(1) = 7.0, R(2) = 5.0, and
R(3) = 3.0 sitting on top of each other and growing on a circular substrate of radius
RΩ = 10.0.

As in the case of one circular island (see Figure 4 (right)), we have calculated the
area growth rate using a least square fit yielding a growth rate of 316.8, which again
is in good agreement with the expected value F |Ω| ≈ 314.4. In Figure 7 we show the
discrete height function at various times. The discrete height function was obtained
by marking the elements of the 2d mesh by the height, i.e., the index i (number of
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Fig. 6. Anisotropic growth of a single island with anisotropy f(θ) = 1.0 + 0.1 cos 3θ. Moving

boundary at time instants t = 0.0, 0.02, 0.05, 0.1, and 0.2 (from inner to outer curve). Left: without
(1d) surface diffusion; right: with (1d) surface diffusion.

Fig. 7. Discrete height function of the wedding cake at time instants t = 0.0, 0.1, 0.3, and 0.5.

atomic layers) of the corresponding terrace. If the boundary Γi intersects the element,
it is marked by i + 1

2 .
The adatom density profile is represented in Figure 8.

4.5. Decay of a crystalline cone. As a numerical benchmark, which also
includes the simple-to-handle topological changes of disappearances of terraces, we
consider the decay of a crystalline cone in a rotational symmetric and in a particular
isotropic setting, which allows us to compare the simulations with an ODE calcula-
tion. As in section 4.4 the initial configuration is a wedding cake, now consisting of
10 concentric circular islands sitting on top of each other; see Figure 9 (left). Denoting
the radius of the ith layer by Ri(t), the initial configuration is given by Ri(0) = 11− i.
To study the decay of this cone, the deposition flux F in (2.1) is set to zero. We note
that the decay of the whole wedding cake takes a very long time. Also the velocities
of the island boundaries vary over some orders of magnitude, since the velocity of the
boundary of a very small island (just before it disappears) becomes very large. Thus,
it is indispensable to use adaptivity in time.

Since the diffusion coefficient D is very large, we may benchmark our numerical
results by comparing the simulations with an ODE simulation of the corresponding
quasi-stationary approximation. In polar coordinates, the diffusion equation becomes

ρ′′(r) +
1

r
ρ′(r) = 0, r �= Ri,(4.4)

ρ(Ri) = ρ∗
(

1 +
μ

Ri

)
, μ =

γ

kBT
.(4.5)
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Fig. 8. Adatom density profile of the wedding cake on a cut along the x1-axis at times t = 0.0,
0.1, 0.3, and 0.5.
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Fig. 9. Discrete height function of initial configuration of a circular crystalline cone (left).
Time evolution of step radii (right): finite element simulation (solid), rotational symmetric solution
(dotted), and fitted facet edge radius (r = (16.46t + 1.0)1/4) (dashed).

This system can be solved explicitly (given the radii Ri(t)) and that one obtains a
coupled system of ODEs for the velocities vi = Ṙi(t) from (2.3) (see [13]). This
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Fig. 10. Anisotropic ripening with anisotropy γ(θ) = 1.0 + 0.1 cos(3θ) and coverage φ = 0.085.
Initial configuration: 400 islands on a substrate of size 1000 × 1000. Island boundaries at times
t = 600s, 3000s, and 15000s.

coupled system of ODEs is numerically integrated and compared with the full finite
element solution. The time evolutions of the step radii both for the full finite element
solution and the rotational symmetric solution are shown in Figure 9 (right).

As expected, the uppermost island shrinks while the outer steps expand and
absorb the adatoms emitted by the shrinking island. When the uppermost island
disappears, the next island starts shrinking, and so on. This process results in a
propagating effective front, given by the radius of the uppermost island at the moment,
when the previously uppermost island disappears; see Figure 9. The position of the
front behaves like Rfront ∼ t1/4, as shown by the dashed line in Figure 9, which is
in agreement with the analytical results for the decay of an infinite crystalline cone
obtained in [13].

4.6. Ostwald ripening of monolayer islands. As a final example, we present
a large-scale simulation of Ostwald ripening of monolayer islands on a substrate.
Considering an ensemble of monolayer islands of different sizes on a substrate, the
drift of the system to minimize the curvature-dependent step-free energy associated
with the island boundaries provides a thermodynamic driving force for large islands to
grow at the expense of small ones, which finally disappear. Thus the number of islands
is decreasing, while the average island size increases. Such a coarsening behavior is
called Ostwald ripening. We consider 400 islands on a substrate of size 1000×1000 in
the low coverage regime (i.e., the total area of the islands is small compared to that of
the substrate) and study the ripening process. As in the last example, the deposition
flux F is zero. Periodic boundary conditions are used. Some snapshots of ripening
with anisotropic edge energy are depicted in Figure 10, showing the island edges at
various times. To investigate the scaling law for the average island size, a log-log plot
of the average island radius (isotropic edge energy) versus time is shown in Figure 11.
To get a statistically meaningful result, we averaged over 5 runs with different initial
distributions of 400 islands with coverage 0.085. An affine linear fit in the asymptotic
regime (ln(t) > 6.0) yields a slope of 0.33, which is in excellent agreement with the
asymptotic scaling law r ∼ t1/3 derived by LSW theory [17, 27].

5. Conclusions. In this work, we have developed an adaptive finite element
method for the simulation of island dynamics in epitaxial growth of thin films in the
diffusion limited regime. Our model is a free (or moving) boundary-type problem that
consists of the diffusion equation for the adatom density and the boundary evolution
equation that determines the normal velocity of the steps. Special emphasis was placed
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Fig. 11. Scaling of average island radius r: Log-log plot of the average island radius over time
and affine linear fit in the asymptotic regime ( ln(t) > 6.0).

on the treatment of anisotropic edge diffusion. While our method cannot handle non-
trivial topological changes at the present stage, it has the advantage of exploiting the
variational structure of the model and resolving the fourth-order geometric evolution
law for the moving boundaries in an efficient manner. The method is tested by com-
paring with analytical and ODE solutions. Moreover, further more realistic examples
of long-time and large-scale simulations confirm the efficiency of the method.
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