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Abstract

We develop a flexible framework for optimization of crystal growth processes. This framework is based on an
accurate and robust process model and combines two optimization loops. Adapting of model parameters and

optimizing of process parameters.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In numerical modeling of industrial crystal
growth the ultimate goal is to optimize running
processes [1]. This objective sets two strong
requirement on the numerical description of the
growth process. It must be accurate within a given
tolerance to describe the process appropriately and
it must be robust to variations in parameters to
allow for optimization. Such models can be set up
in commercial software packages, e.g. FIDAP or
CrysVUn, [2,3]. These packages usually fulfill the
requirement on robustness. But to achieve the
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needed accuracy adjustments in parameters have
to be made. Due to poor specifications of the
involved materials or aging of these materials the
uncertainties in the used material data have to be
considered. To overcome this problem the un-
certain material parameters have to be identified
from experimental data for each individual process
or furnace. This already sets the first stage of an
optimization loop: find appropriate model para-
meters in a process model which allow to
numerically describes the industrial process within
a given tolerance. After this loop and a validation
of the derived process model a second optimiza-
tion loop follows which optimizes the process
parameters to improve the industrial process. So
two steps are needed to quantitative optimize
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crystal growth processes: identify material para-
meters and optimize process parameter, see Fig. 1.

Using commercial codes to set up such an
optimization loop has a big drawback. The
included optimization possibilities are often to
restrictive, e.g. restricted to heater power only. In
order to overcome this restrictions we developed a
framework to interface a simulation model (Crys-
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Fig. 1. Optimization framework.

VUn) with more flexible optimization tools. The
optimization is done by Quasi-Newton methods,
which are adapted to the special needs and
restriction of our optimization problem.

The optimization framework is applied to an
industrial growth problem for fluoride crystals.

2. Method

The numerical algorithms behind the used
software package can formally be defined by a
process equation:

—

F(T,p) = (Fo(To, o), F\(T\, ), - .. FN(T'n, By))
=(0,0...0), (1)

where F ,-(T",-, 7;) = 0 symbolize the solution of the
global heat transfer problem at growth state i (time
instant) and fixed parameters p; (material para-
meter, geometry, heater power). In this setting the
process equation defines the temperature distribu-
tion 7T at different growth states to the specified
parameters p,. The optimization problem is
formulated as

—

rr}in S@.T(P)) 2
subject to F(T',p) =0, (3)
p[,min <pi <pi,max’ (4)

where f is the objective function which measures
the deviation of the simulated and wanted thermal
field T'. The parameter space for a single parameter
p; may be restricted by maximal and minimal
values, e.g., tolerance on the material parameters,
maximal heating power.

In the stated optimization situation we assume
to be near to an optimum or looking for
improvements near a working process. So local
optimization is used to get an improved set of
parameters. To get global optimization other
algorithms can be used, e.g. genetic algorithm [4].

Local optimization algorithms, based on the
ideas of the Newton method, minimize in every
iteration step an approximation to the objective
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function at current parameter set ﬁk
S =fG)+ G =5 V)

+ 55~ H -~ 5, (5)
where H is the Hessian, H;; = i A direction d

0
is than defined by minimizing qu.E(S).

d=p—p"=—-H" vi@). (6)

Along this direction a line search based on a
backtracking scheme is applied [5].

Since we use a closed software package for the
simulation, the partial derivatives has to be
calculated numerically by finite differences
o o -Erhe) -
op; h

If n is the number of parameters, then n+ 1
calculations of the process equation are needed to
calculate these derivatives. The Hessian takes
n(n+ 1)/2 calculations. The far most time con-
suming part in our process model is the evaluation
of the process equation. So especially in higher
dimensional parameter spaces, the calculation of
the Hessian by finite differences is not practical.
Quasi-Newton methods bypass the problem of
calculating the Hessian by evaluating the partial
derivatives. The Hessian is approximated by an
iterative procedure during the optimization loop.
The most popular method is the Broyden—Fletch-
er—Goldfarb—Shanno (BFGS) algorithm [5]. The
BFGS method additionally assures that d is
always a descent direction.

Constraints in the parameter space are easily
included by a logbarrier function Lb [5]

Lb(pz) = _M(IOg(pi _pi,min) + log(pi,max _pi)) (8)

and added to the objective function. The logbar-
rier functions introduce a penalty term in the
objective function when the parameter reaches
the bounds. The numerical parameter u adjusts the
steepness of the logbarrier function near the
bounds. The equality constraint due to the process
equation is implicitly taken to calculate the
objective function. So the process equation is
always exactly fulfilled in every optimization step.

2.1. Implementation

In order to use the optimization algorithm the
process equation and the objective function has to
be evaluated automatically. CrysVUn is able to
work in a batch version without graphical user
interface and may be interfaced by other pro-
grams. Parameter variations can be done by
modifying the material and geometry description
in the file describing the setup and calculation
results. Information needed to evaluate the objec-
tive function is extracted in the same way.
Modification of parameters, starting and evaluat-
ing of simulations with CrysVUn are managed by
an interface programmed in PERL. The interface
is quite flexible and allows easily for change in
material parameters, heater powers and numerical
parameters. Simple geometrical changes are also
possible.

Results may be temperature at points, position
of interfaces or temperatures along lines. This
values may be directly passed to the optimization
algorithm or used to calculate the objective
function externally.

A simple parallelization scheme is realized.
Independent calculations to a set of parameters
are calculated simultaneously on a network or
multiprocessor PC.

3. Calculations

We consider VGF growth of BaF,; (200 mm
diameter) with a moving crucible, Fig. 2. The
process is modeled in CrysVUn as a set of pseudo
stationary simulations at different growth stages
[6]. Four snapshopts which are evenly distributed
in time are used. The heating powers and growth
velocities are taken according to the experiment
and used as input parameters for CrysVUn which
takes global heat transfer by conduction and
radiation into account. The semitransparent prop-
erties of BaF, are modeled by a multiband model.
The goal in the optimization is to achieve a
constant growth velocity.

In Fig. 3 the position of the phase boundary at
the crystal axes experimentally obtained and
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Fig. 2. VGF (Bridgmann) process.
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Fig. 3. Position of phase boundary in experiment and simula-
tion. Circles indicate calculation with the inititial parameter set.
Triangles are phase boundary obtained after adaption. Big
symbols indicate the four snap shots used for adaption of the
model.

predicted by simulation are compared. Three
parameters are chosen to adapt the process model.

The thermal conductivity of the outer isolation,
a grafite felt, is modified by adding a parameter
(p1)- This is motivated by the quite poor specifica-
tion of grafite felts and aging properties. Addi-
tionally this parameter is meant to mask the
uncertainties changing the heat flow from the
heater to the autoclave. This parameter is often

used to get the right temperature level in the
furnace. This parameter is already adapted in
advance for initial simulation in order to get a
phase boundary near seeding position (p; = 0.09).

The position of the phase boundary is defined
by the interplay of the heat flow in the crucible and
the BaF,. This is taken into account by a factor for
the thermal conductivity of the crucible support
(p,), and the solid phase of BaF, (p3).

The variation of the conductivity of BaF,
crystal is also meant to adjust the simplified
approximation of the optical properties of BaF,
in the calculation. The conductivity of the isola-
tions may vary with different processes due to
aging and with different furnaces due to accuracy
of material specification. But the adapted con-
ductivity of the BaF, should be constant for all
treated processes.

The objective function is defined as the weighted
mean deviation of the calculated X;num and
measured X;¢p phase boundary.

fadapt = Z ai(xi,num - xi,CXP)z' (9)
1

In five BFGS iterations a improved set of
parameters are achieved. During this first optimi-
zation loop the process equation was solved
approximately 40 times to adapt the model
parameter. So 120 pseudostationary calculations
were done.! The improved parameter set is p =
(0.089,1.5,2.6). The quite big changes in the
thermal conductivities of BaF, and cone isolation
indicate that this masks some other effects that are
not taken into account in the simulation. Never
the less, pragmatically, this can be taken as a
model to predict the phase boundary for this
process.

The adapted model is now used to optimize the
process. The objective is to have a constant growth
velocity of the phase boundary. So the objective
function is just the mean deviation to a optimal
position of the phase boundary x;p:

S adapt — Z ai(Xipum — x,-,opl)z. (10)

1

IThis is fastest achieved convergence. During research similar
problems of this complexity were solved in typical 5-20 BFGS
iterations.
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Fig. 4. Position of phase boundary in adapted and optimized
model. Circles are phase boundary obtained after adaption,
Fig. 3. Triangles are obtained after optimization. The optimized
heating power are shown in Fig. 5.

The only available process parameter is the
heating power of the lower heater. In Figs. 4 and
5 the results of the optimizations are shown. An
optimized process leads to a smaller decrease of
the heating power at the beginning and a smaller
increase at the end. Surely, qualitatively this can be
easily concluded without any simulation. But the
simulation provides a quantitative prediction of
the optimized process.

4. Conclusion

In order to solve various optimization problems
in crystal growth an interface for CrysVUN was
developed. The interface allows to change para-
meters of the calculation and extract results after
the simulation in a highly automatic way. This is
used to feed a optimization tool based on the
BFGS method to do local optimization.> So
problems like model adaption and process opti-
mization may be done more effectively. Especially
complex objective functions and parameter sets
may be defined externally.

The framework was applied to the optimization
of a BaF, VGF growth. Two steps, model

This interface may be also used in connection with other
optimization tools.
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Fig. 5. Heating power in process and predicted after optimiza-
tion of the adapted model.

adaption and process optimization, leads to an
improved set of parameters. The adapted model
and the optimized process has to be validated by
further experiments.

Numerical parameters used in the optimization
have to be adjusted with care to get fast and stable
convergence, €.g., step width used to do numerical
derivation or maximal and minimal allowed step
width in the optimization.
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