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Abstract

Molecular beam epitaxy (MBE) serves as a prototype example for growth far from equilibrium. A variety of

approaches to the modeling and simulation of epitaxial growth have been applied. They range from detailed treatments

of microscopic processes in ab initio molecular dynamics to coarse-grained descriptions in terms of partial differential

equations. A connection between these models is mainly missing. We will formally derive from solid-on-solid models via

a diffuse interface approximation the well known Burton–Cabrera–Frank equations for step flow.

r 2004 Elsevier B.V. All rights reserved.

Keywords: A1. Computer simulation; A1. Crystal morphology
1. Introduction

Various mathematical models and numerical
algorithms are proposed for describing epitaxial
growth processes. For a review on theoretical
approaches see Refs. [1–3]. Due to the underlying
multiscale phenomena, which range from the
interaction of single atoms up to an engineer-
ing scale, on which the transport of material to
the surface in the growth chamber needs to
be described, the models can be distinguished
e front matter r 2004 Elsevier B.V. All rights reserve
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by the relevant length and time scales they are
living on:
(a)
d.
molecular dynamics: Real-space trajectories of
atoms are determined by numerical integration
of Newton’s equation of motion. All of the
physics is contained in the interatomic poten-
tials for the atoms in the system;
(b)
 kinetic Monte Carlo (KMC): Individual atoms
are the basic degrees of freedom and single
hoppings to neighboring lattice sites are
performed according to a specified probability
for these hops to occur;
(c)
 step-flow models: The atomic distance in the
growth direction is discrete, but the atomic
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distance in the lateral direction is coarse-
grained. The steps are assumed to be smooth
curves and serve as free boundaries for an
adatom diffusion equation on terraces;
(d)
 continuous models: The atomistic processes at
steps are neglected, the overall surface is
assumed to be smooth and is described by
evolution laws for the height of the growing
film.
Fig. 1. Simplified model sketch of atomic processes: (a)

deposition, (b) desorption, (c) adatom diffusion, (d) attachment

of adatom to step edge from upper terrace, (e) attachment of

adatom to step edge from lower terrace, (f) diffusion of edge

adatom along step edge, (g) diffusion of step adatom into a kink

position.
The first approach, considered ab initio or
classical, is today not feasible to perform realistic
growth simulations. Due to the limitations in the
time scales of these methods macroscopic growth
cannot be reached even on high-performance
computers. First-principle calculations can pro-
vide detailed information on the energies of
specific atomic configurations and thereby are well
suited to determine pathways and diffusion
barriers [4] and molecular dynamics are suitable
to provide energy barriers for particular kinetic
processes. But in principle these methods suffer
from the fact, that the system spends most of its
time vibrating around local equilibrium states,
with occasional sudden hops to neighboring sites.
By regarding these vibration cycles as an attempt
to perform a hop to a neighboring lattice site the
pathway to KMC simulations is drawn, for a
review see Ref. [5]. In these simulations the
number of attempts necessary to perform the
hop is represented by a probability. These methods
are successfully applied to growth phenomena in
epitaxy but still suffer from the discrete description
of single atoms if length scales of several micro-
meters need to be reached. Attempts to combine
KMC methods with step-flow methods to over-
come this limitation have recently been described
in Refs. [6,7]. Step-flow models can describe
growth processes on larger scales by incorporating
kinetic effects at step edges [8]. But a rigorous
derivation of these models from atomistic models
is still missing. Furthermore efficient numerical
approaches for these models are only recently
developed [9–11] and have until now not been
shown to be applicable to realistic growth pro-
cesses. In Ref. [12] a first step in this direction is
performed by linking a one-dimensional step-flow
model to macroscopic heat and mass transfer to
model liquid-phase epitaxy. Combining step-flow
models with continuum models for the height of
the growing film is considered in Ref. [13]. This
approach allows to reach macroscopic growth but
also is until now only applied in one-dimensional
settings. All available continuum models are
phenomenological models in which kinetic effects
are introduced in a heuristic way, for an overview
see Ref. [14].
The main challenge in modeling epitaxial

growth is to bridge the gap between these different
models and to describe a growth process on a
continuous scale by incorporating atomic effects.
Even if there are many open questions regarding
the coupling of each of these models, the main cut
occurs between atomistic models and discrete–
continuum models. In this article, we will con-
centrate on step-flow models and describe an idea
how they can be derived from discrete atomistic
models.
2. Discrete atomistic models

Descriptions of atomic mechanisms of epitaxial
growth are based on surface models, which include
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terraces, step edges and kinks, as well as several
elemental entities such as adatoms and edge
adatoms. See Fig. 1 for some basic events which
can occur on such surfaces. The level of under-
standing of this phenomena has been driven by the
information that can be obtained from available
experimental techniques. Scanning tunneling mi-
croscopy (STM) today allows a direct visualization
of the atomic structures and can be used to
determine quantitatively kinetic and thermody-
namic properties of the surface.
In addition to the experimental observations

first-principle methods and molecular dynamics
can be used to identify further kinetic processes.
For each identified event transition state theory
can be applied to calculate activation energies. As
illustrated in Fig. 2 the total activation barrier Ea

of a process is the sum of the energy difference Eif

between the initial state i and the final state f and
the kinetic barrier Ekb:
Together with the Arrhenius law, from this

energy barriers rates for KMC simulations can
be calculated for each single hop: KðTÞ ¼

K0 expð�Ea=kBTÞ; where K0 is a probability per
attempt to perform the hop, kB is the Boltzmann
constant and T is the temperature. These processes
are treated as probabilistic and random numbers
are used within the KMC approach to decide
which event occurs. Even if today length scales up
to 1mm and time scales of several seconds can be
Fig. 2. Potential energy diagram for a diffusion process

between neighboring sites.
reached with KMC methods, technologically
important phenomena on length scale of electronic
devices can still not be simulated with such an
approach.
3. Toward a continuum description

We introduce a continuous diffuse interface
approximation for the shape of the stepped surface
and the adatoms on it. Thereby, we treat the
microscopically sharp step edges as a diffuse
region were two terraces of different height
coexist, see Fig. 3.
The phase-field variable f smoothly varies from

one discrete monolayer height to the other and can
be seen as a continuous height function. All
relevant atomic effects at the steps will thereby
be incorporated into the continuous model
through the diffuse interface region. Phase-field
models for epitaxial growth which account for
kinetic effects at the steps have recently been
introduced [15–17]. The asymmetry in the attach-
ment of adatoms to the steps from the upper and
lower terrace (Ehrlich–Schwoebel effect) is thereby
Fig. 3. Diffuse interface approximation of rough step edges.

Smeared out interface region and phase-field variable.
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introduced through a degenerate mobility function
within the adatom diffusion equation inside the
diffuse interface region. The diffusion of edge-
adatoms along the steps (edge-diffusion) is mod-
eled through an enhanced mobility [18] in that
region. Even if these mobilities are mathematically
introduced in order to recover the underlying
phenomena in the discrete–continuum step-flow
model, an analogy to the atomistic potential
energy diagram can be drawn. If we translate this
diagram into a mobility function an energy barrier
corresponds to a low mobility whereas a energy
sink results in an enhanced mobility, see Fig. 4.
The phase-field model reads

qtr ¼ r � ðMðfÞrrÞ þ F � t�1r� qtf;

a�2qtf ¼ �2Df�
qGðfÞ
qf

þ
�

mr�
ðr� r�Þ ð1Þ

with �51 corresponding to the interfacial thick-
ness, r ¼ rðx; y; t; �Þ denotes the adatom density,
f ¼ fðx; y; t; �Þ the phase-field variable, F the
deposition flux, t�1 the desorption rate, m the step
stiffness and r� an equilibrium adatom density for
straight steps. a is a constant parameter and GðfÞ
a multiwell potential, where each minimum
corresponds to a phase (terrace height) of the
system. The potential can be chosen as GðfÞ ¼
cðf� iÞ2ði þ 1� fÞ2; f 2 ½i; i þ 1�; i ¼ 0; . . . ;N �

1 counting the atomic monolayers. The mobility
Fig. 4. Potential energy diagram for attachment of adatoms to

a step edge ðf Þ from upper terrace ðiþÞ and lower terrace ði�Þ

and corresponding mobility function.
function MðfÞ is chosen in a way as described in
Fig. 4. The parameter a and the mobility function
M contain all the kinetic information from the
underlying discrete model.
4. Sharp interface limit

Matched asymptotic analysis has been per-
formed in order to derive a sharp interface limit
for vanishing interfacial thickness � ! 0; see
Fig. 5.
In Ref. [16] the Burton–Cabrera–Frank model

in the attachment limited case is recovered:

qtri � DDri ¼ F � t�1ri in OiðtÞ;

� Drri �~ni ¼ kþðri � r�ð1þ mkiÞÞ on GiðtÞ;

Drri�1 �~ni ¼ k�ðri�1 � r�ð1þ mkiÞÞ on GiðtÞ;

vi ¼ �Drri �~ni þ Drri�1 �~ni on GiðtÞ

with ri ¼ riðx; yÞ the adatom density on terrace
OiðtÞ; GiðtÞ the smooth step of zero thickness
between OiðtÞ and Oi�1ðtÞ; attachment coefficients
kþ and k� which depend on the used mobility
function in the phase-field model and ki the
curvature of the step. In Ref. [17] the Burton–
Cabrera–Frank model in the diffusion limited case
Fig. 5. Sharp interface limit with smooth step-edges of zero

thickness, adatom diffusion on terraces, attachment of adatoms

to step-edges from upper and lower terraces, step-edge

diffusion.
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with edge-diffusion is obtained:

qtri � DDri ¼ F � t�1ri in OiðtÞ;

ri ¼ ri�1 ¼ r�ð1þ mkiÞ on GiðtÞ;

vi ¼ � Drri �~ni þ Drri�1 �~ni

þ nqsski on GiðtÞ

with n a mobility function for step-edge diffusion
again depending on the used mobility function in
the phase-field model and qs denotes derivative
with respect to the arc length. Combining both
phase-field models in an appropriate way and
extending it to the anisotropic situation yields an
approximation of the Burton–Cabrera–Frank
model in the attachment limited case with edge-
diffusion:

qtri � DDri ¼ F � t�1ri in OiðtÞ;

� Drri �~ni ¼ kþðri � r�ð1þ mkiÞÞ on GiðtÞ;

Drri�1 �~ni ¼ k�ðri�1 � r�ð1þ mkiÞÞ on GiðtÞ;

vi ¼ � Drri �~ni þ Drri�1 �~ni

þ qsðnqsðmkiÞÞ on GiðtÞ

In this model the kinetic coefficients kþ and k� as
well as the edge adatom mobility n are derived via
the mobility function M and the parameter a;
which can be related to the underlying microscopic
potential energy surface.
5. Conclusions

The diffuse interface model serves in the
described context as a connection between ato-
mistic and discrete continuum step-flow models.
The introduced mobility function in the phase-field
model, thereby, translates in the limit of vanishing
interfacial thickness the microscopic potential
energy surface into the kinetic coefficient in the
step-flow model.
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