
Kinetic model for step flow growth of [100] steps

Lev Balykov* and Axel Voigt†

Crystal Growth Group, Research Center caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
�Received 20 December 2004; revised manuscript received 2 May 2005; published 9 August 2005�

A kinetic model for the step flow growth of �100� steps is derived. This model extends the implicit close-
to-equilibrium assumption in the classical Burton-Cabrera-Frank theory to out-of-equilibrium growth regimes
common in molecular beam epitaxy. In equilibrium, the kink density coincides with Burton, Cabrera, and
Frank �Philos. Trans. R. Soc. London, Ser. A 243, 299 �1951�� but in a planar steady state solution for a
periodic sequence of steps the kink density derivates and we analyze its scaling behavior with the step Peclet
number. Furthermore, we observe a discontinuity of adatoms on the steps that might give a new explaination
for step bunching.

DOI: 10.1103/PhysRevE.72.022601 PACS number�s�: 81.15.Aa, 81.10.Aj, 81.15.Hi

Many modern technologies depend on the ability to grow
thin crystalline films in a nearly perfect manner. Precise con-
trol of the growth and thus of the properties of the crystalline
films therefore requires the detailed knowledge of atomic
processes at the surface. The understanding of the elemen-
tary physical phenomena and their incorporation into a con-
tinuum model, which is able to reach time and length scales
of interest for device applications, is therefore of utmost im-
portance.

Due to the discrete translational symmetry imposed by the
crystal lattice, atomic steps exist at the surface of a crystal,
which separate terraces that differ in height by a single lattice
spacing. At sufficiently low temperatures, these steps are
suitable for a mesocopic description of the surface morphol-
ogy. The concept to describe the growth of a crystal by the
movements of existing steps, their nucleation, or annihilation
was presented by Burton, Cabrera, and Frank �BCF� �1� and
serves today as a standard model for a discrete-continuum
description of out-of-equilibrium growth. With the advent of
powerful numerical tools for the solution of these problems
�2–4�, step dynamics have become an attractive alternative to
atomistic modeling approaches to describe out-of-
equilibrium growth. However, in the classical BCF theory,
the formulation of the mass currents that leave the terraces
via the steps, contains the implicit assumption that the steps
are close to equilibrium. There have been recent attempts to
formulate kinetic models that due not require this assumption
�5�. In this Brief Report we derive a terrace-edge-kink model
from kinetics, which generalizes this model by allowing for
the kink Ehrlich-Schwoebel barrier �6,7�, nucleation on the
level of edge adatoms �8,9�, the direct incorporation of ada-
toms into kinks and lattice sites �10�, and which is not re-
stricted to very small kink densities. The theory is formulated
in terms of adatom densities on terraces, edge-adatom densi-
ties on steps, which are not considered as part of the crystal,
and a density of kinks along the steps. In deriving the model

we neglect the influence of second-nearest neighbors on the
step structure as well as overhangs and kinks of multiple
height. The model is related to the mean-field theory of habit
change phenomena during growth of two-dimensional is-
lands �11� and is valid for steps close to the �100� direction.

The adatom diffusion equation on a terrace is

�t� − DT�2� = − �−1� + F − M , �1�

in which � is the adatom density, DT is the adatom diffusion
coefficient on a terrace, F is the deposition flux rate, M is the
loss due to nucleation of adatom islands, and �−1 is the de-
sorption rate. The boundary conditions for � at the steps are
given by the flux to the steps

v�+ + DTn · � �+ = − f+, �2�

v�− + DTn · � �− = f−, �3�

where v is the velocity of the step in the direction of the
normal n, and �+ and �− are the values of � at the step from
the upper and the lower terrace, respectively. The terms v�±
describe the convection of adatoms due to the motion of the
step and are needed for mass conservation. The fluxes f± are
defined per unit area along the step. We will now relate them
to kinetic fluxes due to exchange processes between ada-
toms, step adatoms, kinks, and the crystal itself in an atom-
istic picture. Here the fluxes are defined per unit area in �100�
direction. In order to transform them to the continuum de-
scription we relate them to the macroscopic fluxes by f±
= f± cos��� �see Fig. 1�. In our notation, lower indices denote
the macroscopic flux rate whereas the upper indices denote
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FIG. 1. Relation between the macroscopic �left� and micro-

scopic �right� descriptions of a moving step.
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their microscopic origin. The fluxes are decomposed into
four parts f±= �f1

±+ f2
±+ f3

±+ f4
±�, see Fig. 2, in which

f1
+ = �1 − ak��DTE

+ a�+ − DET
+ ��a−2,

f2
+ = 2�1 − ak�2k�DTK

+ �+ − DKT
+ a−2� ,

f3
+ = 2�1 − ak��DTK

+ a�1 − ak�2�+� − DKT
+ klkr�a−1,

f4
+ = 3�DTB

+ a�+klkr − DBT
+ �1 − ak�2a−3� ,

and

f1
− = �1 − a2k2��DTE

− a�− − DET
− ��a−2,

f2
− = �1 − ak�2k�DTK

− �− − DKT
− a−2� ,

f3
− = 2�1 − ak��DTK

− a�1 − ak�2�−� − DKT
− klkr�a−1,

f4
− = DTB

− a�−klkr − DBT
− �1 − ak�2a−3,

where a is the lattice constant, � is the step adatom density,
k=kl+kr is the density of kinks consisting of left- and right-
facing kinks, kl and kr, respectively, with kr−kl=a−1 tan���.
DTX

± is the diffusion coefficient for the transition from the
upper ��� or lower ��� terrace �T� to the step �E�, a kink
�K�, or to a crystal site �B�, and DXT

± the corresponding in-
verse transition. The differences in DTE

+ and DTE
− , DTK

+ and
DTK

− , DTB
+ and DTB

− , as well as in their inverse counterparts,
model the Ehrlich-Schwoebel effect. The step adatoms dif-
fuse along the step according to

�t� − DE�s
2� = f+

1 + f−
1 − f0 − m , �4�

in which DE is the step adatom diffusion coefficient on a
step, s is the arc length along the step, f±

1 = f1
± cos��� is the

flux from the incoming adatoms, f0= �f+
0 + f−

0 + f0
0�cos��� is the

loss of step adatoms due to their incorporation into kinks or
a crystal site, and m= �m0+ f3

++ f3
−�cos��� is the loss due to

nucleation of kink pairs from edge adatoms �see Fig. 2�. The
quantities are

f+
0 = �1 − ak�2k�DEK

+ a� − DKE
+ �a−2,

f−
0 = �1 − ak�3k�DEK

− a� − DKE
− �a−2,

f0
0 = 2�1 − ak��DEBklkr� − DBE�1 − ak�2a−3� ,

m0 = 4�1 − ak�2�DEK
− �1 − ak�2�2 − DKE

− klkr�a−1,

where DEX
± is the diffusion coefficient for the transition from

the upper ��� or lower ��� step �E� to a kink �K�, or to a
crystal site �B�, and DXE

± the corresponding inverse transition.
The differences in DEK

+ and DEK
− , as well as DKE

+ and DKE
− ,

model the kink Ehrlich-Schwoebel effect. We assume only
small differences in these coefficients, which satisfies the
mean-field approach in the treatment of nucleation �12�. For
simplicity we assume the same diffusion coefficients for left-
and right-facing kinks. Due to the attachment of adatoms and
step adatoms into kinks, the kinks move along the step. The
velocities for left- and right-facing kinks are −w and w, re-
spectively. The resulting convective flux of kinks with re-
spect to s is w�kr−kl�. By taking account of nucleation and
breakup the kink density evolves according to �5�

�tk + �s�w�kr − kl�� = 2�g − h� , �5�

where w= �a /k��f+
0 + f−

0 + f2
++ f2

−� is the kink velocity, g= 1
2m0

+ f3
++ f3

− the gain due to nucleation of kink pairs, and h= f4
+

+ f4
−+ f0

0 the loss due to annihilation of kinks.
By neglecting deposition flux, desorption and nucleation

in �1� we can derive an equation for the normal velocity v of
the step from conservation of mass

v = awk cos���
1 + �2g + h�a/wk

1 + ��a2 . �6�

This expression allows for a simple physical interpretation.
The main term awk cos��� corresponds to the growth of crys-
tal by incorporation of atoms into kinks. The �2g+h�a /wk
term in the numerator accounts for the additional contribu-
tion of one-dimensional nucleation of step edge dimers and
the filling of step vacancies to the growth, and the ��a2 term
in the denominator comes from the change of the arc length
of a moving curved step, with � being the curvature. If we
employ the assumption that densities of kinks are small, i.e.,
ak�1, the following simplifications of the model are pos-
sible: �a� The factor 1−ak can be approximated by unity. �b�
The components f2

±, f3
±, and f4

± of the adatom fluxes can be
neglected if compared with f1

±. �c� The step adatom flux f0
0

can be neglected if compared with f±
0. The same holds for the

nucleation term m0. �d� If further nucleation events are ne-
glected in the definition of the normal velocity and the step is
assumed to be approximately straight, the growth is approxi-
mated by incorporation of adatoms into kinks and the step
velocity becomes

v = awk cos��� , �7�

which corresponds to the velocity law derived in �13�. The
resulting approximations give equations very similar to those
obtained in �5�. There is, however, one minor discrepancy in
the equation for edge adatom diffusion. In �5� the step veloc-
ity is adopted in the form of Eq. �7� and used to define the
flux f0 of atoms to kinks from macroscopic mass conserva-
tion arguments. In our model, we define the flux f0 micro-
scopically and use macroscopic arguments to derive the ex-

FIG. 2. Microscopic fluxes f± between the upper and lower ter-
races and a step, and f0 and m0 between steps and kink sites that
explicitly change the densities of adatoms, step adatoms, and kinks.
Adatoms, step adatoms, and atoms in kinks are shown in gray, light
gray, and white, respectively. The dotted contours depict atoms in-
side the bulk. Mirrored configurations are not shown.
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pression for the step velocity v. While both approaches seem
equally justifiable, we choose the latter one, because by do-
ing so, we maintain the same consistency principle through-
out derivation of governing equations in our model, where
all fluxes come from discrete microscopic considerations.

At equilibrium, �±=�. The principle of detailed balance
requires that all fluxes f i

±, i=1,2 ,3 ,4 as well as f±
0, f0

0, and
m0 must vanish. From these assumptions equilibrium values
for � and � can be derived. Assuming that the step edge is
parallel to the lowest index crystallographic direction, i.e.,
�100�, implies kl=kr=k /2, resulting in an expression for the
equilibrium density of kinks

k = a−1�1 + �DEK
± /DKE

± /2�−1, �8�

which coincides with BCF’s expression for the case when
only kinks of height ±1 are considered.

Assuming the crystal surface consists of a periodic se-
quence of steps, separated by distance L and moving at ve-
locity v along �010� direction, we can construct a planar
steady state solution. Under a quasisteady state assumption,
by neglecting nucleation of two-dimensional islands on ter-
races as well as desorption, and applying the requirements
for detailed balance, the solution of the diffusion equation for
adatoms on the terrace

− DT�2� = F �9�

is sought in the form

��x,t� = −
F

2DT
��x − vt�2 − L2� + C1�x − vt� + C2

with unknown coefficients C1= ��+−�−� /2L and C2= ��+

+�−� /2, where �±=��vt±L�. Boundary conditions become

DTC1 − FL = − f+, DTC1 + FL = f−. �10�

The diffusion equation for edge adatoms reduces to

f1
+ + f1

− − f0 − m = 0, �11�

and the equation for kinks becomes

g − h = 0. �12�

Solution of the system gives the planar steady state values of
k, �, �+, and �−. The system is solved numerically for an
atomistic solid-on-solid model, with different values of F
between 0 and 1, L between 10 and 10 000, DE between 104

and 107, and DT taken to be 1012. We define the step Peclet
number as Pstep=2FL /DE and plot the kink denity as a func-
tion of Pstep and analyse the scaling behaviour k� Pstep

	 in
Fig. 3. Out of equilibrium, the kink density deviates from the
value in �8� and is lower than predicted in �5�, resulting from
the �1−ak� correction, which accounts for the effect, that if
the kink density increases, less and less area remains to cre-
ate edge adatoms. The bold lines show the full system. A
scaling exponent asymptotically approaching 1/3 from be-
low with decreasing Pstep is observed. The value 1/3 reflects
the two-dimensional nature of the system. Terrace-kink,
terrace-edge, and edge-kink interactions are never decoupled
and the system does not break up into 1+1 dimensionality.
Under the assumption that densities of kinks are small, i.e.,

ak�1 and by neglecting processes related to the detachment
from kinks and bulk �14� also predict a scaling exponent of
1 /3 for the model in �5�. The lower lines in Fig. 3 are the
solution of a restricted system: processes of attachment to
and detachment from kinks and edge vacancies are ne-
glected; the only way to create kinks is one-dimensional
nucleation by edge diffusion of edge adatoms, the only way
of kink annihilation is attachment of edge adatoms into edge
vacancies. In this case direct terrace-kink interaction is ne-
glected, which allows decoupling of terrace-edge and edge-
kink interactions. The scaling exponent in this case is 1 /4,
which is consistent with the one-dimensional nucleation
theory �15,16� and is also observed in �17� in the limit of rare
detachment events. This case corresponds to diffusion mass
transport mechanism. The upper line in Fig. 3 corresponds to
neglected one-dimensional nucleation by edge diffusion of
edge adatoms. In this case, the only way to create kinks is
one-dimensional nucleation by attachment of an adatom next
to an edge adatom. This case corresponds to the evaporation-
condensation mass transport mechanism and gives an
asymptotic scaling exponent of 1 /2. For both special cases
the solution of the exact system does not converge to either
one within a wide range of Pstep.

Besides the kink density, we analyze the boundary value
of the adatom density on a step. In Fig. 4 we plot the differ-
ence in the adatom densities on the lower and the upper
terrace. The adatoms density on the lower terrace is always
higher than that on the upper terrace. This comes from the
fact that once we classify steps into kinks and kink-free
straight segments, we see that the number of ways for attach-

FIG. 3. Kink density k and scaling behavior k� Pstep
	 as a func-

tion of the step Peclet number. From top to down without edge
diffusion approching 1/2, full model approaching 1/3, and without
adatom-kink interaction approching 1/4.

FIG. 4. Discontinuity in adatom density at steps as a function of
deposition flux. �left� DE=104, �right� DE=107.
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ment of an adatom onto a straight segment, into a kink site
and into a step vacancy is different for upper and lower ter-
race. This asymmetry is intensified by the differences in de-
tachment rates from kink sites and edge adatoms to adatoms.
The larger the kink density gets, the more pronounced this
effect will be. The observed difference in the adatom densi-
ties is inverse to the Ehrlich-Schwoebel effect and might be a
natural way to explain step bunching. The effective inverse
Ehrlich-Schwoebel barrier also has stabilizing effect against
step meandering �18�. If we, in addition, allow for differ-
ences in the diffusion coefficients DTX

+ 
DTX
− and their in-

verse counterparts DXT
+ 
DXT

− , with X=E ,K ,B we also have
the opposite effect of a meandering instability �19� but a
stabilizing effect against step bunching. Therefore the coex-
istence of a bunching and meandering instability, as experi-
mentally observed in �20� might be possible. To further ana-
lyze the interplay of the different instabilities as well as the
influence of the kink Ehrlich-Schwoebel effect we need to
solve the full time-dependent model.

We derived a continuum model for epitaxial growth from

kinetics, allowing for the kink Ehrlich-Schwoebel barrier,
nucleation on the level of edge adatoms, and the direct in-
corporation of adatoms into kinks and lattice sites. This
model enables numerical studies of different mass transport
mechanisms on a continuum scale. The model is valid for
equilibrium as well as out-of-equilibrium growth regimes.
The obtained steady state solution demonstrates scaling be-
havior and an asymmetry in the adatom density. We believe
the model to be an important tool to bridge atomistic and
continuum scales in epitaxial growth. All quantities entering
the model are related to atomistic processes, and are acces-
sible via ab initio calculations. The derived model can there-
fore be seen as an alternative to material specific kinetic
Monte Carlo simulations with the potential to reach larger
length and time scales.
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