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Abstract

The combination of Krylov techniques to Rosenbrock methods (Krylov-ROW methods) leads to an e
class of methods for stiff problems. Here the extension to semi-explicit DAEs of index 1 is discussed.
paths are possible to apply the direct and the indirect approach. The equivalence of different approaches
Conclusions on the dimension of the Krylov spaces are drawn. The methods are applied to typical high-dim
DAEs arising from viscoelastic materials. Numerical experiments confirm the theoretical predictions.
 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The solutions of stiff initial value problems

y ′(t) = f
(
y(t)

)
, y(t) ∈ R

ny , t ∈ [t0, te],
y(t0) = y0, (1)

are characterised by the fact that both smooth components as well as strongly varying componen
Explicit methods are not suitable for such systems. In a search for methods with as little impli
as necessary one certainly reaches the point of linearly implicit methods where only a fixed num
linear systems has to be solved at each step. Even there we can improve efficiency by applying
solution techniques like Krylov methods to the linear systems—which results in Krylov-ROW met
E-mail address:wensch@informatik.uni-halle.de (J. Wensch).
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An s-stage Rosenbrock method [13,21,6] for (1) is given by

Ymi = ym + h

i−1∑
j=1

αij kj , i = 1, . . . , s, (2a)

(I − hγ J )(ki + ki) = f (Ymi) + ki, i = 1, . . . , s, (2b)

ym+1 = ym + h

s∑
i=1

biki, (2c)

whereαij , γ , γij , bi are the coefficients of the method andki = ∑
j<i(γij /γ )kj . Rosenbrock method

are suitable for the solution of differential-algebraic equations, too. They have been successfully
to systems of index 1 by several authors, we mention [12,11,1]. They can further be utilised for
index systems like multibody systems in descriptor form, see [23].

We mention that a more general ansatz is offered by the adaptive Runge–Kutta methods deve
Strehmel and Weiner [17,18].

This paper is organised as follows: In Section 2 we give a brief overview of Krylov-ROW met
The adaptation of Rosenbrock methods to DAEs is discussed in Section 3. Both approaches are c
in Section 4, where the application of Krylov-ROW methods to DAEs is investigated. Sections 5
deal with an application from viscoelasticity. We conclude with a summary.

2. Krylov-ROW methods

Many application problems consist of stiff and non-stiff components. For stability reasons th
components have to be treated implicitly, but the non-stiff components can be solved by explicit
dures. Krylov methods [20,14,19] constitute a way to accomplish this. The stiff components corr
to large eigenvalues of the Jacobian of the right-hand side. When the linear equation (2b) is so
a Krylov method then the Krylov space will be dominated by the eigenmodes that correspond t
eigenvalues of the Jacobian. The application of a Krylov method constitutes automatic partitioni
stiff and non-stiff components—the more stiff a component the more it will be integrated implicitly

We start with a Rosenbrock method. In theith stage we have to solve a linear system(I − hγ J )xi =
wi . When the system is solved by FOM (fully orthogonal method), the solution is given as the exac
tion in a (lower-dimensional) Krylov spaceKκi

(J,wi) � wi via (I −hγQκi
QT

κi
J )xi = wi , where the ma

trix Qκi
is typically generated by an Arnoldi process [19]. A Krylov-ROW method is therefore given

Ymi = ym + h

i−1∑
j=1

αij kj , (3a)

(
I − hγQκi

QT
κi
J
)
(ki + ki) = f (Ymi) + ki, (3b)

ym+1 = ym + h

s∑
i=1

biki, (3c)

where the coefficients are taken from the underlying Rosenbrock method.
Schmitt and Weiner [16] showed that under fairly mild assumptions on the number of Krylov iter

the Krylov-ROW method will have the same non-stiff order as the underlying Rosenbrock metho
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basic idea in the proof is to estimate the difference between the Rosenbrock- and the Krylov
solution by an expansion of(I − hγ J ) respectively(I − hγQκi

QT
κi
J ) in Neumann series.

It seems natural to reuse the Krylov spaces from preceding stages. This leads to the so-called
Arnoldi process. For a detailed description see [22]. The multiple Arnoldi process for Krylov-
methods is implemented in the code ROWMAP by Weiner, Schmitt and Podhaisky.

Further applications of Krylov subspace techniques can be found in [9]. The usage of Krylov
niques for BDF methods is described in [3], the techniques are implemented in the code VODPK

3. Rosenbrock methods for DAEs of index 1

We consider a semi-explicit DAE of index 1:

y ′ = f (y, z), y ∈ R
ny , z ∈ R

nz , (4a)

0 = g(y, z), (4b)

whenever the Jacobiangz is regular the system is of index 1. In that case the constraint (4b) can be s
uniquely for the algebraic variablez = G(y) in a neighbourhood of the solution via the implicit relati
0 = g(y,G(y)). By insertingz = G(y) in Eq. (4a) we obtain an ODE. We suppose that the resu
ODE y ′ = f (y,G(y)) is stiff. Such systems occur when parabolic differential equations are solv
semi-discretisation where the boundary conditions lead to constraints (4b). Typically, in that ca
number of constraints will be fairly low compared with the number of differential equations. We ar
interested in the opposite case where a large number of constraints occurs.

ODE methods have to be adapted to be applicable to DAEs. There are two principal ways to m
ODE method suitable for differential-algebraic systems of index 1. These two approaches are ca
direct and the indirect approach, respectively.

3.1. The indirect approach

The indirect approach exploits the fact that the system can be transformed in an ODE by solv
constraint forz and replacingz by G(y). The resulting ODE is then solved by the basic method. Fo
s-stage Rosenbrock method (2) the new Jacobian becomes

J = ∂

∂y
f

(
y,G(y)

) = fy − fzg
−1
z gy. (5)

We obtain

ym+1 = ym + h
∑

i

biki, 0= g(ym+1, zm+1), (6a)

with

Ymi = ym + h

i−1∑
j=1

αij kj , 0= g(Ymi,Zmi), i = 1, . . . , s, (6b)

(
I − hγ

(
fy − fzg

−1
z gy

))
(ki + ki) = f (Ymi,Zmi) + ki, i = 1, . . . , s. (6c)

The computation of the functionz = G(y) is realized by the implicit relation in Eqs. (6b), (6a).
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3.2. The direct approach

The direct approach is also applicable to higher index systems. Note that it is only a recip
resulting method has to be analysed for each individual case with care.

The system is formally regularised by anε-embedding

y ′ = f (y, z), εz′ = g(y, z). (7)

On the ODE system (7) the basic method is formally applied, afterwards we letε → 0. The resulting
method is our DAE method. Methods based on that approach have been investigated by severa
we mention [11,12,1].

The direct approach results in:

ym+1 = ym + h

s∑
i=1

biki, zm+1 = zm + h

s∑
i=1

bili, (8a)

Ymi = ym + h

i−1∑
j=1

αij kj , Zmi = zm + h

i−1∑
j=1

αij lj , (8b)

[(
I 0
0 0

)
− hγ

(
fy fz

gy gz

)](
ki + ki

li + li

)
=

(
f (Ymi,Zmi) + ki

g(Ymi,Zmi)

)
, (8c)

whereki = ∑i−1
j=1(γij /γ )kj andli are given analogously. An advantage of the direct approach is th

z-component needs not to be determined by the solution of the constraint. The price to be paid
is that the constraint is satisfied only up to the accuracy order of the solution. To have stability
z-component typically|R(∞)| < 1 is necessary [6].

4. Krylov-ROW methods for DAEs

We can simply apply the direct and indirect approach to Krylov-ROW methods, or, go a step
and apply the direct and indirect approach to Rosenbrock methods and solve the resulting e
by Krylov techniques. These 4 approaches are discussed in the following. A brief overview on
alternatives is also given in [24].

4.1. The indirect approach

We have to solve the ODEy ′ = f (y,G(y)), whereG(y) is defined byg(y,G(y)) = 0. Obviously the
application of Krylov techniques and the application of the indirect approach are independent o
other, i.e., the diagram

ROW(ODE) indirect

Krylov

ROW(DAE)

Krylov

Krylov(ODE) indirect Krylov(DAE)

(9)

commutes. The complete method is obtained from (6), where in (6c) the JacobianJ = fy − fzg
−1
z gy has

to be replaced byQ QTJ .
i i
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4.2. The direct approach for Rosenbrock methods

Here we have to take care what we do first—direct approach or Krylov space approximatio
diagram

ROW(ε-ODE) direct

Krylov

ROW(DAE)

Krylov

Krylov(ε-ODE) direct Krylov(DAE)

(10)

illustrates the possible paths. First the DAE is transformed into an ODE byε-embedding. On the pat
including the upper-right corner firstε is set to zero which gives a DAE method. Afterwards we ap
Krylov iterations to the linear equations.

On the path including the lower-left corner we apply Krylov techniques on the singularly pert
problem (containing the formal parameterε). Then we setε to zero. We will compare both strategies
the following.

4.2.1. The Krylov solution of ROW(DAE)
We set firstε = 0 and apply the Krylov method afterwards. The first step leads to system (8).
In the Krylov procedure the JacobianJ is replaced by a low rank approximation. In the ODE case

can prove consistency easily because the coefficient matrix of the linear system is in the formI +O(h)—
and we only approximate in theO(h)-part. But here, in the DAE case, the situation is more difficult.
the algebraic variables the iteration matrix isgz—in principle. Without further information on the matr
gz a general iterative procedure cannot be advised.

We have several ways to deal with the situation:

KODE The algebraic equations are solved exactly at each Krylov step. We have already discus
approach in the context of the indirect approach.

KDAE We apply Krylov techniques to the system (8c).
PREC We use a suitable preconditioner, especially with respect to the constraints.

The last proposal seems to be a natural choice, but preconditioning is beyond the scope of th
For systems with a large number of constraints one has to solve the—possibly nonlinear—co
equations exactly at each step when using approach KODE. Therefore we concentrate on stud
approach KDAE. We have by an elimination of the algebraic variables from the upper equation
with fi = f (Ymi,Zmi) andgi = g(Ymi,Zmi) as in (3b)(

I − hγQiQ
T
i (fy − fzg

−1
z gy) 0

−hgy −hgz

)(
ki + ki

li + li

)
=

(
fi − fzg

−1
z gi + ki

gi

)
.

The upper block of the system is iteratively solved by an Krylov method.
We will later reconsider the approach KDAE in a numerical experiment.

4.2.2. ε-embedding of the Krylov method
The Krylov method is originally formulated for an explicit differential equation. Using the d

approach, the DAE transforms into an explicit ODE
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y ′ = f (y, z), z′ = 1/εg(y, z). (11)

The stages of the Krylov method are given by((
I 0
0 I

)
− hγ

(
fy fz
1
ε
gy

1
ε
gz

))(
ki + ki

li + li

)
=

(
f (Ymi,Zmi)
1
ε
g(Ymi,Zmi)

)
+

(
ki

li

)
. (12)

The linear system (12) denoted byA(ε)x = b(ε) is solved iteratively whereby Krylov spacesK(A(ε),

b(ε)) are generated. We are interested in the limit of the Krylov spaces in case ofε → 0.

Theorem 4.1. Suppose the Krylov spaceKnz
(gz, g) is of full dimensionnz (the dimension of the algebra

variables). Then Krylov iterations for(12)give in the limit caseε → 0 a series of spaces

lim
ε→0

Kn

(
A(ε), b(ε)

) = span{u1, . . . , un}, for n = 1, . . . , (13)

that is spanned by a series of vectorsun with

un =
(

0
gn−1

z g

)
, for n � nz, (14)

un =
(

f + k − fzg
−1
z g

0

)
, for n = nz + 1, (15)

un =
(

I − hγ (fy − fzg
−1
z gy) 0

0 0

)
un−1, for n > nz + 1. (16)

Proof. For notational convenience we scale the (complete!) linear equation byε. This operation leave
the Krylov spaces unchanged. We consider the Krylov spaceK(A,b) with A = A0 + εA1 and b =
b0 + εb1, where

A0 = −hγ

(
0 0
gy gz

)
, A1 = I − hγ

(
fy fz

0 0

)
, (17)

b0 =
(

0
g

)
, b1 =

(
f + k

l

)
. (18)

A straightforward calculation gives that the generating vectorsun = An−1b, n = 1, . . . of the Krylov
space possess forn � 2 the asymptoticε-expansion

un =
(

ε(−hγ )n−1fzg
n−2
z g

(−hγ )n−1gn−1
z g

)
+

(
O(ε2)

O(ε)

)
. (19)

To include the casen = 1, too, we write

un =
(

ε(−hγ )n−1fzg
n−2
z g

(−hγ )n−1gn−1
z g

)
+ δn1ε

(
f + k − fzg

−1
z g

0

)
+

(
O(ε2)

O(ε)

)
. (20)

Considering the matrixUn consisting of columnsu1, . . . , un, we have

Un =
(

εVn

Wn

)
+

(
O(ε2)

O(ε)

)
, (21)

where it follows from (20) that



J. Wensch / Applied Numerical Mathematics 53 (2005) 527–541 533

ed and

(14).
g

is
16).

d

Vn = fzg
−1
z Wn +

(
f + k − fzg

−1
z g

0

)
eT

1 +
(
O(ε2)

O(ε)

)
. (22)

When the Krylov space is built by the Arnoldi process then in each step the vectors are normalis
orthogonalised. Because we are interested in the spaces that are spanned by the vectorsun but not in the
vectorsun itself, we neglect the orthonormalisation for the vectorsuk for k � nz completely and put them
together as columns of the matrixUnz

. Because of our assumption ongz, the matrixUnz
has full rank. In

the limit caseε → 0 the columns ofUnz
span the space of algebraic variables, which establishes Eq.

To prove Eq. (15), we have to compute the result of an orthogonalisation ofunz+1 against the precedin
uk when we orthogonalise and normalisebeforeε → 0. Note, that in the limit caseε → 0 the vectorunz+1

depends linearly on the preceding vectorsuk, k = 1, . . . , nz. In the following we compute how a vector
orthogonalised against the columns ofUnz

. This formula is then used to establish relations (15) and (
We ignoreO(ε) terms in the orthogonalisation of vectorsun for n > nz against the columns ofUnz

,
i.e., we have

uT
nuk = O

(
ε‖un‖‖uk‖

)
, k � nz. (23)

Afterwards we normalise to have‖un‖ = O(1), which results inuT
nuk = O(ε) for k � nz respectively

uT
nuk → 0 whenε → 0.
Let an arbitrary vectoru be given in the form of Eq. (20)

u =
(

εv

w

)
+

(
O(ε2)

O(ε)

)
. (24)

The partial orthogonalisation ofu is realized in two steps. First eliminate theO(1)-terms in the secon
component and then replaceVnz

by (22):

u �→ u −
(

εVnz
+O(ε2)

Wnz
+O(ε)

)
W−1

nz
w (25)

=
(

ε(v − Vnz
W−1

nz
w) +O(ε2)

O(ε)

)
(26)

=
(

ε(v − fzg
−1
z w + (f + k − fzg

−1
z g)eT

1W−1
nz

w) +O(ε2)

O(ε)

)
. (27)

In a second step we eliminate theO(ε)-terms in the second component:

u �→ u −
(

εVnz
+O(ε2)

Wnz
+O(ε)

)
W−1

nz
O(ε) (28)

=
(

ε(v − fzg
−1
z w + (f + k − fzg

−1
z g)eT

1W−1
nz

w) +O(ε2)

O(ε2)

)
. (29)

By that we have established condition (23). Scaling to a norm ofO(1) results finally in the partially
orthogonalised vectorq(

εv

w

)
+

(
O(ε2)

O(ε)

)
�→ q =

(
v − fzg

−1
z w + (f + k − fzg

−1
z g)eT

1W−1
nz

w

0

)
+O(ε). (30)

Consider now the partial orthogonalisation by (30) ofunz+1 given by (20). The termv −fzg
−1
z w vanishes

so that afterwards we have
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unz+1 �→ qnz+1 =
(

f + k − fzg
−1
z g

0

)
+O(ε). (31)

A necessary assumption for that iseT
1W−1

nz
wnz+1 �= 0. This is indeed the case because of the regulari

gz we have the constant term in the characteristic polynomial ofgz non-vanishing.
By induction we see that by partial orthogonalisation (30) and normalisation subsequent vector

Krylov sequence can be brought to the form

u =
(

v

0

)
+O(ε). (32)

In a Krylov stepu given by (32) is multiplied byA and via (30) projected:

Au =
(

ε(I − fy)v

gyv

)
+

(
O(ε2)

O(ε)

)
→ q, (33)

q =
(

(I − (fy − fzg
−1
z gy))v

0

)
+ eT

1W−1
nz

gyv

(
(f + k − fzg

−1
z g)

0

)
+O(ε). (34)

The second term in the sum vanishes after an orthogonalisation withunz+1, which completes ou
proof. �
This approach takes us to version KODE of the preceding section where the iterative solution of E
is discussed. When we executenz + κ iterations then the equations for the constraints are solved ex
whereas for the differential componentsκ iterations are executed.

The two ways in diagram (10) are closely connected. We conclude that by an application of
techniques to Eq. (8c), as in version KDAE, a limitation of the number of Krylov iterations to ap
imately 10 to 30—as it is successfully practised in the case of ODEs—cannot be recommended
the number of algebraic conditions is relatively small then the conclusions from Theorem 4.1 are
restrictive. But in cases where there are many algebraic components, a larger number of Krylov it
might be necessary.

We will check the relevance of Theorem 4.1 in the last sections. An application that leads to a
with a large number of algebraic equations is solved numerically by Krylov techniques.

5. An application from viscoelasticity

5.1. The linear elastic case

The deformation of elastic bodies under the actions of volume and surface forces is describ
displacement functionu defined on the domainΩ ∈ R

d that is occupied by the undeformed body.
The strong formulation [2] describingu, the strain tensorε and the stress tensorσ

0 = ∇ · σ + f, (35a)

σ = 2µε + λ(trε)I =: Cε, (35b)

ε = 1(∇u + ∇uT
) =: Du, (35c)
2



J. Wensch / Applied Numerical Mathematics 53 (2005) 527–541 535

ition of
urface

for-
oothness
ulation

. The

sses the
ations
lated is

hereas
dampers
fferent
Kelvin–
n body.
laxation
tion the
are equal.
consists of the balance law (35a), the material law or stress–strain relation (35b) and the defin
the linear strain tensor. It is completed by Dirichlet (fixed boundaries) and Neumann conditions (s
forces or free boundaries).

If a solutionu of the strong formulation (strong solution) exists, it is also a solution of the weak
mulation. It has the advantage that the existence of a solution can be proved under very weak sm
assumptions on the boundary and the boundary values (Korns inequality, see [2]). The weak form
for u is given by the equation∫

Ω

(Du :CDv − f v)dx −
∫
γN

gv dA = 0, ∀v ∈ H 1
ΓD

(0), (36)

whereε : σ := ∑
i,j εijσij . Note, that the Neumann boundary conditions are included in Eq. (36)

Dirichlet boundary conditions are built into the solution space

H 1
ΓD

(uD) := {
u ∈ H 1(Ω): u(x) = uD(x) for x ∈ ΓD

}
. (37)

5.2. Viscoelasticity

In pure elasticity there is a pointwise relation between stress and strain. In viscoelastic proce
rate of change and the deformation history are also included in this relation. For very slow deform
viscoelastic materials exhibit a nearly elastic behaviour. The case where even this condition is vio
denoted by plasticity.

5.2.1. Atoms of viscoelasticity in 1D
There exists a variety of models to describe viscoelastic materials, see, for example, [8]. W

linear elasticity uses springs as a one-dimensional model, in viscoelasticity we use springs and
(Newtonian viscosity). From the various ways to connect these atoms serially or in parallel, di
models result. The Maxwell model is a series connection of a spring and a damper, whereas the
Voigt model is a parallel connection of a spring and a damper. The latter one is also known as Kelvi
Properties of both models are united in 3-element models that can principally exhibit creep and re
behaviour (see Fig. 1). The constitutive equations are derived as follows: For a series connec
strains add, but the stresses are equal. For a parallel connection the stresses add, but strains
The stress–strain relation for the spring is given by the classical law (Hookes law in 3D)

Fig. 1. Classical models of viscoelasticity.
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σ = Eε, E . . . modulus of elasticity, (38

whereas the dampers react like a Newtonian fluid with viscosityη

σ = ηε′, η . . . viscosity. (39)

We concentrate in the following on the left 3-element model (A: parallel connection of a spring
Maxwell element).

We have a single spring (parameters:ε0, σ0,E0), a spring in the Maxwell element (εM,σM,EM ) and a
Damper (εD,σD,η). We substitute total stressσ = σ0 + σM and total strainε = ε0 to obtain the constitu
tive equations consisting of an algebraic equation forε, σ and an evolution equation forεD:

σ = E0ε + EM(ε − εD) = Eε − EMεD, (40)

ε′
D = EM

η
(ε − εD). (41)

Note thatE0 is the elasticity modulus for the limit case of very slow deformations (ε′
D = 0), whereas

in the case of very fast deformations we have elastic behaviour with a elasticity modulus given bE =
E0 + EM (εD = 0). In the 1D-caseσ results from the outer forces. In that case we have a DAE of in
1 whereεD are the differential variables andε are the algebraic variables.

5.2.2. The extension of the model to three dimensions
We use the material law with compression modulusK and shear modulusG. By that we respect th

fact that viscoelastic behaviour is restricted to the deviatoric part (no volume change) of the defor
The deviatoric partAD of a tensorA is given by

AD := A − 1

3
(trA)I, (42)

where the pure compression is given by1
3(trA)I . Obviously we have trAD = 0. For the 3D-tensorsεD,

σD we assume linear-elastic behaviour for the pure compression (given by the trace of the tens
that Eq. (40) holds for the deviatoric part. We end up with

σ = 2GεD − 2GMεD
D + K(trε)I, (43)

ηε′D
D = 2GM

(
εD − εD

D

)
. (44)

WhenεD is given, we can determineσ , ε from Eqs. (35a), (35c) and (43). Note, that by Eq. (44)εD

evolves like a deviator whenever the prescribed initial values are a deviator.

5.2.3. 2D-formulation as plane strain
Under the assumption of symmetries in thez-direction we obtain the thin plate model. In case of lin

elasticity there is no strain inz-direction assumed. In case of viscoelasticity we have several strains
model. We assume that thez-component of the displacementu vanishes. Further, thex-, y-components
shall be independent of thez-value.

The strain tensor therefore has the formεi3 = ε3i = 0 for i = 1,2,3 andεij (x, y, z) = εij (x, y). From
the material equations we see that there is caused stress inz-direction. This is a typical phenomenon f
the plane strain model. Physically the model corresponds to material that is fixed inz-direction—and this
fixing causes stress.
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In the elastic case we use the Lamé form of the material lawσ = 2Gε + (K − 2/3G) trεI , which is
simply restricted to the upper 2× 2 block. The tr-expression causes stress isz-direction (σ 33 �= 0) that is
of no interest for us. From now on we considerε, σ andεD as the upper 2× 2 blocks of the originalε,
σ andεD.

In the viscoelastic case we have the equations in the formulation with shear and compression m
Further, the deviator (which is the 3D-deviator applied to 2D-matrices!) and the trace do not sp
tensor in two independent parts. ForA,I ∈ R

2×2 it follows from AD = A − 1/3(trA)I that trAD =
trA − 2/3 trA = 1/3 trA and thereforeA = AD + (trAD)I . Because the 3D-deviator is an invertib
map onR

2×2 the internal variables are given byq = εD where only the symmetry restriction applies toq.
We further eliminate the deviator in the material law (43) and obtain withλ = K −2/3G again a Lamé

formulation

σ = 2Gε − 2GMq + λ(trε)I, (45)

ηq ′ = 2GM

(
εD − q

)
. (46)

5.2.4. Weak formulation
We keep the evolution equations for the internal variablesq, but the balance law is replaced by

variational principle. We use the so-called pure displacement ansatz [2] where the stressσ and the strain
ε are expressed by the displacementu

q ′ = 2GM

η

(
(Du)D − q

)
, (47)

0 =
∫
Ω

(
2GDv :Du + λ(∇ · u)(∇ · v)

)
dx −

∫
Ω

(2GMDv :q + v · f )dx −
∫
ΓN

g · v ds. (48)

The variational equation (48) and its discretisation have (for suitable solution spaces) a uniqu
termined solution. Therefore we have a differential-algebraic system of index 1 in a function sp
a so-called partial differential algebraic equation (PDAE). Such PDAEs arising from models fo
coelastic/viscoplastic behaviour have been investigated by several authors, see [5,7,8]. We men
plasticity may lead to DAEs (PDAEs) of index 2, see [15,4].

6. Numerical tests on a shear experiment

6.1. Configuration and material parameters

We consider a thin rectangular plate under plane strain. The dimensions are given bylx = 1 and
ly = 0.1. On the left side the plate is fixed, whereas on the right side there is a vertical shear for
have chosen values typical for steel likeG = 200000 andν = 0.3. For the Maxwell element we prescrib
GM = G/2 andη = 1000. We solve the problem for a constant shear force in the time interval[0,100].

6.2. Spatial discretisation

The weak formulation (48) makes finite elements the method of choice. For the computation
stiffness matrix and the right-hand side often Gaussian quadrature of sufficiently high order
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although the integrals can be evaluated analytically. This allows for an easy implementation. Th
a natural choice is to consider the internal variablesq in the Gaussian points, only. We will use t
midpoint of the elements as Gaussian point for the internal variables. The integrals in (48) are co
analytically, whereq is assumed as a piecewise (on each grid square) constant function for that p
The discussion of suitable pairs of function spaces for the variablesu,q is beyond the scope of this pap

For sufficiently smooth outer forces the spaceH 1(Ω)2 is a suitable solution space for the pu
displacement method. We choose 4-node bilinear rectangular elements [10]. We have chosen× 4
elements for the spatial discretisation.

6.3. Time integration

When Rosenbrock methods are applied to index 1 DAEs additional order conditions have to
filled. We have chosen the method RODAS from Hairer and Wanner [6]. It fulfils the additional
conditions for index 1 systems. Withs = 6 stages we have a solution of order 4 and an embedded so
of order 3.

We compare the method RODAS with direct solution of the linear systems with the Krylov m
(based on RODAS) after version KDAE (4.2.1). For the iterative solution of the linear equations w
chosen GMRES. The tolerance for the solution of the linear system is coupled to the tolerance
step size control of the time integrator. We have considered 3 variants:

TOL= 0.1∗ RTOL, TOL= h ∗ RTOL, TOL= 0.01∗ RTOL/h. (49)

The iterative solver has no influence on the accuracy in the solution. The errors, average nu
Krylov steps and the number of steps are given in Tables 1–3.

Table 1
Maximum global error in the integration interval

RTOL TOL(GMRES)

0 0.1∗ RTOL h ∗ RTOL 0.01∗ RTOL/h

3.59E−03 1.613E−02 1.613E−02 1.613E−02 1.620E−02
4.64E−04 1.458E−03 1.458E−03 1.458E−03 1.475E−03
5.99E−05 1.178E−04 1.178E−04 1.178E−04 1.178E−04
7.74E−06 7.169E−06 7.171E−06 7.170E−06 6.537E−06
1.00E−06 9.677E−07 9.679E−07 9.677E−07 9.400E−07

Table 2
Average number of Krylov iterations

RTOL TOL(GMRES)

0 0.1∗ RTOL h ∗ RTOL 0.01∗ RTOL/h

3.59E−03 0.00 106.00 105.71 106.86
4.64E−04 0.00 106.62 106.25 107.31
5.99E−05 0.00 107.11 107.00 107.50
7.74E−06 0.00 107.44 107.52 116.31
1.00E−06 0.00 107.46 107.81 118.69
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Table 3
Number of steps for different Krylov implementations and RODAS itself

RTOL TOL(GMRES)

0 0.1∗ RTOL h ∗ RTOL 0.01∗ RTOL/h

3.59E−03 11 11 11 11
4.64E−04 14 14 14 14
5.99E−05 18 18 18 18
7.74E−06 26 26 26 27
1.00E−06 38 38 38 40

Fig. 2. Typical residual for a GMRES iteration.

Tables 1 and 3 illustrate that the stopping criterion in the iterative solver does not influence the a
in the solution significantly. The number of steps and global errors are almost identical for RODA
the different Krylov implementations.

There has a price to be paid—the average number of Krylov iterations is approximately 100
is in accordance with the analysis of Section 4. There is a close relation between the various
apply Krylov techniques to a DAE. Therefore it is not astonishing that we have to make almost a
iterations as the number of algebraic variables (110 in our case).

The typical residual for a Krylov iteration is shown in Fig. 2. After approximately 100 iteration
residual decreases remarkably.

Fig. 2 explains, too, why the attempt to restrict the number of iterations fails. We have set the ma
number of iterations at 30 and got completely useless results. One way to overcome this is to
a suitable preconditioner for such systems. For medium-sized applications (up to several ten th
equations) even the direct solution of the algebraic part or of the complete system (Rosenbrock
can be a suitable choice if the sparse structure of the linear system is exploited.
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7. Summary and conclusions

Krylov methods are suitable for the solution of stiff systems while offering the lowest possible d
of implicitness in a method. We have considered several ways to apply them to DAEs of index 1. In
we have dealt with the direct approach. We have established an “almost” equivalence between th
approach for the Krylov method and the Krylov solution of the direct approach. The most imp
conclusion is that the usual limitation of the dimension of the Krylov space as for ODEs, is not su
in the DAE case.

In case of stiff systems where the number of algebraic constraints is low compared with the num
differential equations Krylov methods remain an attractive choice. To this class belong semi-disc
parabolic problems where the boundary conditions are added in the form of algebraic constraints

We have illustrated the conclusion using an application with a large number of constraints—a
experiment on a thin plate with viscoelastic behaviour. The theoretical results from Theorem
confirmed by the numerical experiment. For systems with a relatively large number of constrai
Krylov dimensions become rather high. In this case either preconditioners have to be develope
efficient direct solver exploiting the sparse structure of the system (Rosenbrock method) has to b
The extension of these ideas to higher-dimensional applications and the comparison with est
solution techniques is the subject of current research.

Acknowledgement

The author thanks the referees for their helpful comments.

References

[1] M. Arnold, Numerical Treatment of Semi-Explicit Differential-Algebraic Equations of Index 1 with Linearly Imp
Methods, Dissertation, Uni Halle, 1990 (in German).

[2] D. Braess, Finite Elemente, Springer, Berlin, 1997.
[3] P.N. Brown, A.C. Hindmarsh, L.R. Petzold, Using Krylov methods in the solution of large-scale differential-alg

systems, SIAM J. Sci. Comput. 15 (6) (1994) 1467–1488.
[4] J. Büttner, B. Simeon, Runge–Kutta methods in elastoplasticity, Appl. Numer. Math. 41 (4) (2002) 443–458.
[5] P. Ellsiepen, S. Hartmann, Remarks on the interpretation of current nonlinear finite-element-analysis as diff

algebraic equations, Internat. J. Numer. Methods Engrg. 51 (2001) 679–707.
[6] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Spr

Berlin, 1996.
[7] S. Hartmann, Computation in finite strain viscoelasticity: Finite elements based on the interpretation as diffe

algebraic equations, Comput. Methods Appl. Mech. Engrg. 191 (13–14) (2002) 1439–1470.
[8] S. Hartmann, Finite-Elemente Berechnung inelastischer Kontinua, Habilitation Thesis, Universität Kassel, 2003.
[9] M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of differential equations, SIAM

Comput. 19 (5) (1998) 1552–1574.
[10] T.J.R. Hughes, The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1987.
[11] P. Rentrop, M. Roche, G. Steinebach, The application of Rosenbrock–Wanner type methods with stepsize c

differential-algebraic equations, Numer. Math. 55 (1989) 545–563.
[12] M. Roche, Rosenbrock methods for differential algebraic equations, Numer. Math. 52 (1988) 45–63.



J. Wensch / Applied Numerical Mathematics 53 (2005) 527–541 541

5 (1963)

Math.

07–

aptiven

or

terna-

ppl.

umer.

ubspace
[13] H.H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations, Comput. J.
329–331.

[14] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, MA, 1996.
[15] O. Scherf, B. Simeon, Viscoplastic deformation from the DAE perspective—A benchmark problem, Z. Angew.

Mech. 79 (Suppl. 1) (1999) S17–S20.
[16] B.A. Schmitt, R. Weiner, Matrix-freeW -methods using a multiple Arnoldi iteration, Appl. Numer. Math. 18 (1995) 3

320.
[17] K. Strehmel, R. Weiner, Behandlung steifer Anfangswertprobleme gewöhnlicher Differentialgleichungen mit ad

Runge–Kutta-Methoden, Computing 29 (2) (1982) 153–165.
[18] K. Strehmel, R. Weiner, Linear-implizite Runge–Kutta-Methoden und ihre Anwendung, Teubner, Stuttgart, 1992.
[19] L.N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[20] H.A. van der Vorst, An iterative solution method for solvingf (A)x = b, using Krylov subspace information obtained f

the symmetric positive definite matrixA, J. Comput. Appl. Math. 18 (1987) 249–263.
[21] G. Wanner, On the integration of stiff differential equations, in: J. Descloux, J. Marti (Eds.), Numerical Analysis, In

tional Series of Numerical Mathematics, vol. 37, Birkhäuser, Basel, 1977, pp. 209–226.
[22] R. Weiner, B.A. Schmitt, H. Podhaisky, ROWMAP—A ROW-code with Krylov techniques for large stiff ODEs, A

Numer. Math. 25 (2–3) (1997) 303–319.
[23] J. Wensch, K. Strehmel, R. Weiner, A class of linearly-implicit Runge–Kutta methods for multibody systems, Appl. N

Math. 22 (1–3) (1996) 381–398.
[24] J. Wensch, H. Podhaisky, S. Hartmann, Time integration of index 1 DAEs with Rosenbrock methods using Krylov s

techniques, Proc. Appl. Math. Mech. 3 (2003) 573–574.


