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Abstract

The combination of Krylov techniques to Rosenbrock methods (Krylov-ROW methods) leads to an efficient
class of methods for stiff problems. Here the extension to semi-explicit DAEs of index 1 is discussed. Several
paths are possible to apply the direct and the indirect approach. The equivalence of different approaches is proved.
Conclusions on the dimension of the Krylov spaces are drawn. The methods are applied to typical high-dimensional
DAEs arising from viscoelastic materials. Numerical experiments confirm the theoretical predictions.
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1. Introduction

The solutions of stiff initial value problems

Y =f(y®), y@®)eR™, 1¢€l,t],

y(to) = yo, (1)
are characterised by the fact that both smooth components as well as strongly varying components occur
Explicit methods are not suitable for such systems. In a search for methods with as little implicitness
as necessary one certainly reaches the point of linearly implicit methods where only a fixed number of

linear systems has to be solved at each step. Even there we can improve efficiency by applying iterative
solution techniques like Krylov methods to the linear systems—uwhich results in Krylov-ROW methods.
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An s-stage Rosenbrock method [13,21,6] for (1) is given by
i-1

Ymizym+hzaijkj’ i=1,...,S, (Za)
j=1

(I —hy)(ki+k)=f(Ywi) +k;, i=1....5s, (2b)

Y+l = Ym + h Zbikia (ZC)

i=1
wherea;;, v, vij, b; are the coefficients of the method akhd= Zj<i(y,~j/y)kj. Rosenbrock methods
are suitable for the solution of differential-algebraic equations, too. They have been successfully applied
to systems of index 1 by several authors, we mention [12,11,1]. They can further be utilised for higher
index systems like multibody systems in descriptor form, see [23].

We mention that a more general ansatz is offered by the adaptive Runge—Kutta methods developed by
Strehmel and Weiner [17,18].

This paper is organised as follows: In Section 2 we give a brief overview of Krylov-ROW methods.
The adaptation of Rosenbrock methods to DAEs is discussed in Section 3. Both approaches are combine
in Section 4, where the application of Krylov-ROW methods to DAESs is investigated. Sections 5 and 6
deal with an application from viscoelasticity. We conclude with a summary.

2. Krylov-ROW methods

Many application problems consist of stiff and non-stiff components. For stability reasons the stiff
components have to be treated implicitly, but the non-stiff components can be solved by explicit proce-
dures. Krylov methods [20,14,19] constitute a way to accomplish this. The stiff components correspond
to large eigenvalues of the Jacobian of the right-hand side. When the linear equation (2b) is solved by
a Krylov method then the Krylov space will be dominated by the eigenmodes that correspond to large
eigenvalues of the Jacobian. The application of a Krylov method constitutes automatic partitioning into
stiff and non-stiff components—the more stiff a component the more it will be integrated implicitly.

We start with a Rosenbrock method. In thike stage we have to solve a linear systdm- hy J)x; =
w; . When the system is solved by FOM (fully orthogonal method), the solution is given as the exact solu-
tion in a (lower-dimensional) Krylov spad€,, (J, w;) > w; via (I —hy Q. QI,- J)x; = w;, where the ma-
trix Q,, is typically generated by an Arnoldi process [19]. A Krylov-ROW method is therefore given by

i—-1

Ymi:ym+hzaijkj’ (3a)
j=1

(I =y 0 Q4 J) (ki + k) = f (Vi) + ki, (3b)

Ym+1= Ym + h Zbikh (SC)

i=1
where the coefficients are taken from the underlying Rosenbrock method.
Schmitt and Weiner [16] showed that under fairly mild assumptions on the number of Krylov iterations
the Krylov-ROW method will have the same non-stiff order as the underlying Rosenbrock method. The
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basic idea in the proof is to estimate the difference between the Rosenbrock- and the Krylov-ROW
solution by an expansion &f — hy J) respectively! — hy Q. Q,Ii J) in Neumann series.

It seems natural to reuse the Krylov spaces from preceding stages. This leads to the so-called multiple
Arnoldi process. For a detailed description see [22]. The multiple Arnoldi process for Krylov-ROW
methods is implemented in the code ROWMAP by Weiner, Schmitt and Podhaisky.

Further applications of Krylov subspace techniques can be found in [9]. The usage of Krylov tech-
niques for BDF methods is described in [3], the techniques are implemented in the code VODPK.

3. Rosenbrock methods for DAEs of index 1

We consider a semi-explicit DAE of index 1:

Y'=f0.2, yeR", zeR™, (4a)
0=2g(y.2), o

whenever the Jacobian is regular the system is of index 1. In that case the constraint (4b) can be solved
uniquely for the algebraic variable= G (y) in a neighbourhood of the solution via the implicit relation
0=g(y,G(y)). By insertingz = G(y) in Eq. (4a) we obtain an ODE. We suppose that the resulting
ODE y’' = f(y, G(y)) is stiff. Such systems occur when parabolic differential equations are solved by
semi-discretisation where the boundary conditions lead to constraints (4b). Typically, in that case the
number of constraints will be fairly low compared with the number of differential equations. We are also
interested in the opposite case where a large number of constraints occurs.

ODE methods have to be adapted to be applicable to DAEs. There are two principal ways to make an
ODE method suitable for differential-algebraic systems of index 1. These two approaches are called the
direct and the indirect approach, respectively.

3.1. The indirect approach
The indirect approach exploits the fact that the system can be transformed in an ODE by solving the

constraint forz and replacing by G(y). The resulting ODE is then solved by the basic method. For an
s-stage Rosenbrock method (2) the new Jacobian becomes

d _
J=5f(y,G(y))=fy—fng 1gy- (5)
We obtain
Ymi1=Ym +h Y biki,  0=g(Vmi1, Zns1)s (6a)
with
i-1
Ymi=)’m+h20lijkj’ O0=gWnmi, Zmi), i=1....s, (6b)
j=1
(I —hy(fy— f:8.78) ki + k) = [ Ymis Zi) + ;o i=1,...,5. (6¢)

The computation of the function= G (y) is realized by the implicit relation in Egs. (6b), (6a).
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3.2. The direct approach

The direct approach is also applicable to higher index systems. Note that it is only a recipe. The
resulting method has to be analysed for each individual case with care.
The system is formally regularised by arembedding

Y=f2, e=g0y2). 7
On the ODE system (7) the basic method is formally applied, afterwards we-teD. The resulting
method is our DAE method. Methods based on that approach have been investigated by several authors
we mention [11,12,1].
The direct approach results in:

Ym+1= Ym + h Z biki, Im+1 = Zm + h Z bili’ (8a)
i=1 i=1
i—-1 i—1
Yo =)’m+h20lijkj, Zimi = Zm +h20‘ijlj’ (8b)
j=1 j=1

I 0 _ fy fz ki+ki _ f(YmiaZmi)—i_ki
(o 0= (2 D)) - (") e

wherek; = Zj.;ll(yij/y)kj andl, are given analogously. An advantage of the direct approach is that the
z-component needs not to be determined by the solution of the constraint. The price to be paid for that
is that the constraint is satisfied only up to the accuracy order of the solution. To have stability for the
z-component typicallyR(c0)| < 1 is necessary [6].

4. Krylov-ROW methods for DAEs

We can simply apply the direct and indirect approach to Krylov-ROW methods, or, go a step back,
and apply the direct and indirect approach to Rosenbrock methods and solve the resulting equations
by Krylov techniques. These 4 approaches are discussed in the following. A brief overview on these
alternatives is also given in [24].

4.1. The indirect approach

We have to solve the ODF = f(y, G(y)), whereG (y) is defined byg(y, G(y)) = 0. Obviously the
application of Krylov techniques and the application of the indirect approach are independent of each
other, i.e., the diagram

ROW(ODE)—ndrect . ROW(DAE)
Krylov Krylov (9)
Krylov(ODE)—drect, K rylov(DAE)

commutes. The complete method is obtained from (6), where in (6c) the Jacbbigh — f,g; 'g, has
to be replaced by, Q] J.
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4.2. The direct approach for Rosenbrock methods

Here we have to take care what we do first—direct approach or Krylov space approximation. The
diagram

ROW(s-ODE)-9"t. ROW/(DAE)
Krylov Krylov (10)
Krylov(e-ODE)-4reL Krylov(DAE)

illustrates the possible paths. First the DAE is transformed into an OD&dmbedding. On the path
including the upper-right corner firstis set to zero which gives a DAE method. Afterwards we apply
Krylov iterations to the linear equations.

On the path including the lower-left corner we apply Krylov techniques on the singularly perturbed
problem (containing the formal parametgr Then we set to zero. We will compare both strategies in
the following.

4.2.1. The Krylov solution of ROW(DAE)

We set firste = 0 and apply the Krylov method afterwards. The first step leads to system (8).

In the Krylov procedure the Jacobidnis replaced by a low rank approximation. In the ODE case we
can prove consistency easily because the coefficient matrix of the linear system is in tHeHfd?gh)—
and we only approximate in th@(h)-part. But here, in the DAE case, the situation is more difficult. For
the algebraic variables the iteration matrixis—in principle. Without further information on the matrix
g, a general iterative procedure cannot be advised.

We have several ways to deal with the situation:

KODE The algebraic equations are solved exactly at each Krylov step. We have already discussed that
approach in the context of the indirect approach.

KDAE We apply Krylov techniques to the system (8c).

PREC We use a suitable preconditioner, especially with respect to the constraints.

The last proposal seems to be a natural choice, but preconditioning is beyond the scope of this paper.
For systems with a large number of constraints one has to solve the—possibly nonlinear—constraint
equations exactly at each step when using approach KODE. Therefore we concentrate on studying the
approach KDAE. We have by an elimination of the algebraic variables from the upper equation in (8c)
with fi = f (Ypi, Zii) andg; = §(Yi, Zi) @s in (3b)

I_hVQiQ;r(fy_fzgz_lgy) 0 ki+l£i — ﬁ_fzg;18i+ki
_hgy —hg, l; +£i 8i ’

The upper block of the system is iteratively solved by an Krylov method.
We will later reconsider the approach KDAE in a numerical experiment.

4.2.2. e-embedding of the Krylov method
The Krylov method is originally formulated for an explicit differential equation. Using the direct
approach, the DAE transforms into an explicit ODE



532 J. Wensch / Applied Numerical Mathematics 53 (2005) 527-541

Y=f2, Z=1/eg(y,2). (11)
The stages of the Krylov method are given by

I O fy fz kl’ +k1 _ f(Yminmi) ki
<<O I)_hy(%gy %gz>)<li+£i)_<%g(Ymi’Zmi)>+<£i). (12)

The linear system (12) denoted Bye)x = b(¢) is solved iteratively whereby Krylov spac&q A(e),
b(e)) are generated. We are interested in the limit of the Krylov spaces in case-df.

Theorem 4.1. Suppose the Krylov spaég, (g, g) is of full dimensiom:, (the dimension of the algebraic
variableg. Then Krylov iterations fo(12) give in the limit case — 0 a series of spaces

li_)rr}JICn(A(s),b(e)) =spafuy,...,u,}, forn=1,..., (13)
that is spanned by a series of vectagswith

U, = (g;’?lg) , forn < n,, (14)

u,,:(f—i_k_()fzg;lg), forn=n,+1, (15)

U, = (I - h)/(fyo— fzgz’lgy) 8) u,_1, forn>n,+1 (16)

Proof. For notational convenience we scale the (complete!) linear equatienTyis operation leaves
the Krylov spaces unchanged. We consider the Krylov sgact, b) with A = Ag + ¢A; andb =
bg + ¢b1, where

Aoz—hy(goy gg), A1:I—hy(j£)y JS) (17)

b0:<2), b1=<fzrk>. (18)

A straightforward calculation gives that the generating vectgrs: A"~ b, n = 1, ... of the Krylov
space possess far> 2 the asymptotie-expansion

8(—hy)”‘1fzgf‘2g) (0(82>)
n = net GF ) 19
! < (—=hy)"tgr1g T o (19)
To include the case = 1, too, we write
_ (e(=hy)""f.g" % f+k—f.g7 O(g?)
“ ‘( Y o ) low ) (20)
Considering the matrix/, consisting of columns,, ..., u,, we have
_(&V, O(&?)
o= () + (56)): @

where it follows from (20) that
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o1 2
Vo= [T W+ (f the e ) I+ (%&Z;) - (22)

When the Krylov space is built by the Arnoldi process then in each step the vectors are normalised and

orthogonalised. Because we are interested in the spaces that are spanned by the,vieatarst in the

vectorsu, itself, we neglect the orthonormalisation for the vecigréor k < n, completely and put them

together as columns of the matili%,_. Because of our assumption gn the matrixU,, has full rank. In

the limit cases — 0 the columns ot/,,, span the space of algebraic variables, which establishes Eq. (14).
To prove Eq. (15), we have to compute the result of an orthogonalisation.afagainst the preceding

ur when we orthogonalise and normalisefore ¢ — 0. Note, that in the limit case— 0 the vectou,, 1

depends linearly on the preceding vectogsk =1, ..., n.. In the following we compute how a vector is

orthogonalised against the columnslgf . This formula is then used to establish relations (15) and (16).
We ignoreO(e) terms in the orthogonalisation of vectars for n > n, against the columns df,_,

i.e., we have

upur = O(elunllllurll), k<n.. (23)

Afterwards we normalise to havg, || = O(1), which results inuu, = O(e) for k < n, respectively

u'u;, — 0 whene — 0.

n

Let an arbitrary vector be given in the form of Eqg. (20)

u=(fj)+(%(g))). (24)

The partial orthogonalisation af is realized in two steps. First eliminate tli&g1)-terms in the second
component and then replagg by (22):

2
o= (L G0 ) it @9
_ -1 2
_ <8(v Vnz%z(gl)v) + O(e )) (26)
_ (e(v — f8Ttw A (f + k= figTtg)e] W, tw) + 0(82)) 27)
o O(e) ’
In a second step we eliminate tfi¥e)-terms in the second component:
2
> u— (8‘/“//" :gi;) Wn:l(’)(e) (28)
e(v— fg-w+ (f +k— f.87 @)el W, tw) + O(?)
= O(?) z . (29)

By that we have established condition (23). Scaling to a norr@) results finally in the partially
orthogonalised vectar

£v O(e?) _(v—fgTtwH (f+k— f87 el Wi tw
B s s

Consider now the partial orthogonalisation by (30xef,.1 given by (20). The terna — fzg;lw vanishes
so that afterwards we have
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]
Un, 41> Gno+1 = (f Tk szgz g) + O(e). (31)

A necessary assumption for thakisW, w,_,1 # 0. This is indeed the case because of the regularity of
g. we have the constant term in the characteristic polynomig} ebn-vanishing.

By induction we see that by partial orthogonalisation (30) and normalisation subsequent vectors in the
Krylov sequence can be brought to the form

U= (g) +O(e). (32)
In a Krylov stepu given by (32) is multiplied byd and via (30) projected:
(e = fiv O(e?)
A”_( g0 )*(O@))ﬁq’ (33)
—(f — f o1 _f -l
q= ((1 (fy szgz gy))v> +6’-1I—Wn;lgyv ((f +k szgz g)) +O(8). (34)

The second term in the sum vanishes after an orthogonalisationuyith, which completes our
proof. O

This approach takes us to version KODE of the preceding section where the iterative solution of Eq. (8c)
is discussed. When we execute+ « iterations then the equations for the constraints are solved exactly
whereas for the differential componenrtserations are executed.

The two ways in diagram (10) are closely connected. We conclude that by an application of Krylov
techniques to Eqg. (8c), as in version KDAE, a limitation of the number of Krylov iterations to approx-
imately 10 to 30—as it is successfully practised in the case of ODEs—cannot be recommended. When
the number of algebraic conditions is relatively small then the conclusions from Theorem 4.1 are not too
restrictive. But in cases where there are many algebraic components, a larger number of Krylov iterations
might be necessary.

We will check the relevance of Theorem 4.1 in the last sections. An application that leads to a system
with a large number of algebraic equations is solved numerically by Krylov techniques.

5. An application from viscoelasticity
5.1. The linear elastic case
The deformation of elastic bodies under the actions of volume and surface forces is described by a

displacement function defined on the domais? € R? that is occupied by the undeformed bodly.
The strong formulation [2] describing the strain tensos and the stress tenser

0=V.0o + f, (35a)

o =2ue+ Atre)l =: Ce, (35b)
1

&= —(Vu + VuT) =: Du, (35¢)

2
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consists of the balance law (35a), the material law or stress—strain relation (35b) and the definition of
the linear strain tensor. It is completed by Dirichlet (fixed boundaries) and Neumann conditions (surface
forces or free boundaries).

If a solutionu of the strong formulation (strong solution) exists, it is also a solution of the weak for-
mulation. It has the advantage that the existence of a solution can be proved under very weak smoothnes:
assumptions on the boundary and the boundary values (Korns inequality, see [2]). The weak formulation
for u is given by the equation

/(Du :CDv — fv)dx — / gvdA=0, VYve H}D 0), (36)
2 YN

wheree : ¢ := Zi’j g;;0;;. Note, that the Neumann boundary conditions are included in Eq. (36). The
Dirichlet boundary conditions are built into the solution space

Hf (up):={ue H (2): u(x) =up(x)forx e I'p}. (37)
5.2. Viscoelasticity

In pure elasticity there is a pointwise relation between stress and strain. In viscoelastic processes the
rate of change and the deformation history are also included in this relation. For very slow deformations
viscoelastic materials exhibit a nearly elastic behaviour. The case where even this condition is violated is
denoted by plasticity.

5.2.1. Atoms of viscoelasticity in 1D

There exists a variety of models to describe viscoelastic materials, see, for example, [8]. Whereas
linear elasticity uses springs as a one-dimensional model, in viscoelasticity we use springs and dampers
(Newtonian viscosity). From the various ways to connect these atoms serially or in parallel, different
models result. The Maxwell model is a series connection of a spring and a damper, whereas the Kelvin—
Voigt model is a parallel connection of a spring and a damper. The latter one is also known as Kelvin body.
Properties of both models are united in 3-element models that can principally exhibit creep and relaxation
behaviour (see Fig. 1). The constitutive equations are derived as follows: For a series connection the
strains add, but the stresses are equal. For a parallel connection the stresses add, but strains are equ
The stress—strain relation for the spring is given by the classical law (Hookes law in 3D)

Maxwell Kelvin—Voigt Three—Element—Models
vy 1 | ' | 1 |
) } A }

A B

Fig. 1. Classical models of viscoelasticity.
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o =Ee, E...modulus of elasticity, (38)
whereas the dampers react like a Newtonian fluid with viscagity
o =ne, n...viscosity. (39)

We concentrate in the following on the left 3-element model (A: parallel connection of a spring and a
Maxwell element).

We have a single spring (parametefs:og, Eg), a spring in the Maxwell element §, oy, Ej,) and a
Damper €p, op, n). We substitute total stress= o + o), and total strairz = ¢q to obtain the constitu-
tive equations consisting of an algebraic equatiorefer and an evolution equation fel,:

oc=Eoc+Ey(c—¢cp)=Ees— Eyep, (40)
E
g = TM(s —&p). (41)

Note thatEy is the elasticity modulus for the limit case of very slow deformatiajs=£ 0), whereas

in the case of very fast deformations we have elastic behaviour with a elasticity modulus giges by
Eo+ Ey (ep =0). In the 1D-case results from the outer forces. In that case we have a DAE of index
1 whereep are the differential variables andare the algebraic variables.

5.2.2. The extension of the model to three dimensions

We use the material law with compression modutlisind shear modulu§. By that we respect the
fact that viscoelastic behaviour is restricted to the deviatoric part (no volume change) of the deformation.
The deviatoric pari? of a tensorA is given by

1
AD = A — é(trA)I, (42)

where the pure compression is given%;(‘yrA)l. Obviously we have tA? = 0. For the 3D-tensors?,
P we assume linear-elastic behaviour for the pure compression (given by the trace of the tensors), but
that Eqg. (40) holds for the deviatoric part. We end up with

0 =2GeP —2G &b + K(tre)l, (43)
ne’) =2Gy(e” —€3). (44)

Whenep is given, we can determine, e from Egs. (35a), (35c) and (43). Note, that by Eq. (44)
evolves like a deviator whenever the prescribed initial values are a deviator.

5.2.3. 2D-formulation as plane strain

Under the assumption of symmetries in thdirection we obtain the thin plate model. In case of linear
elasticity there is no strain inrdirection assumed. In case of viscoelasticity we have several strains in our
model. We assume that thecomponent of the displacementvanishes. Further, the-, y-components
shall be independent of thevalue.

The strain tensor therefore has the faf=e3 =0fori = 1,2, 3 ande;;(x, y, z) = &;;(x, y). From
the material equations we see that there is caused stregtirection. This is a typical phenomenon for
the plane strain model. Physically the model corresponds to material that is fix@tiraction—and this
fixing causes stress.
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In the elastic case we use the Lamé form of the materiablaw2Ge + (K — 2/3G)trel, which is
simply restricted to the upper:2 2 block. The tr-expression causes stressdrection @33 # 0) that is
of no interest for us. From now on we considelr andep as the upper % 2 blocks of the originak,

o andep.

In the viscoelastic case we have the equations in the formulation with shear and compression modulus.
Further, the deviator (which is the 3D-deviator applied to 2D-matrices!) and the trace do not split the
tensor in two independent parts. Far I € R?*? it follows from A? = A — 1/3(tr A)I that trA? =
trA —2/3trA = 1/3trA and thereforeA = AP + (tr AP)I. Because the 3D-deviator is an invertible
map onR?*? the internal variables are given hy= &, where only the symmetry restriction applies;to

We further eliminate the deviator in the material law (43) and obtain withK — 2/3G again a Lamé
formulation

0 =2Ge —2Gyq + r(tre)l, (45)
ng' =2Gy(e” —q). (46)

5.2.4. Weak formulation

We keep the evolution equations for the internal varialglebut the balance law is replaced by a
variational principle. We use the so-called pure displacement ansatz [2] where the strebthe strain
€ are expressed by the displacement

2G
¢'===((0w”=q). (47)

0=/(2GDv:Du—i—)»(V-u)(V-v))dx—/(ZGMDv:q—i-v-f)dx —/g-vds. (48)
2 2 I'n
The variational equation (48) and its discretisation have (for suitable solution spaces) a uniquely de-
termined solution. Therefore we have a differential-algebraic system of index 1 in a function space—
a so-called partial differential algebraic equation (PDAE). Such PDAEs arising from models for vis-

coelastic/viscoplastic behaviour have been investigated by several authors, see [5,7,8]. We mention tha
plasticity may lead to DAEs (PDAES) of index 2, see [15,4].

6. Numerical testson a shear experiment
6.1. Configuration and material parameters
We consider a thin rectangular plate under plane strain. The dimensions are givea-ldyand
I, =0.1. On the left side the plate is fixed, whereas on the right side there is a vertical shear force. We
have chosen values typical for steel lige= 200 000 and = 0.3. For the Maxwell element we prescribe
Gy = G/2 andn = 1000. We solve the problem for a constant shear force in the time in{€\i00].

6.2. Spatial discretisation

The weak formulation (48) makes finite elements the method of choice. For the computation of the
stiffness matrix and the right-hand side often Gaussian quadrature of sufficiently high order is used
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although the integrals can be evaluated analytically. This allows for an easy implementation. Therefore
a natural choice is to consider the internal variabjeis the Gaussian points, only. We will use the
midpoint of the elements as Gaussian point for the internal variables. The integrals in (48) are computed
analytically, wherey is assumed as a piecewise (on each grid square) constant function for that purpose.
The discussion of suitable pairs of function spaces for the variablgs beyond the scope of this paper.

For sufficiently smooth outer forces the spalié(£2)? is a suitable solution space for the pure
displacement method. We choose 4-node bilinear rectangular elements [10]. We have chgsén 10
elements for the spatial discretisation.

6.3. Time integration

When Rosenbrock methods are applied to index 1 DAEs additional order conditions have to be ful-
filled. We have chosen the method RODAS from Hairer and Wanner [6]. It fulfils the additional order
conditions for index 1 systems. With= 6 stages we have a solution of order 4 and an embedded solution
of order 3.

We compare the method RODAS with direct solution of the linear systems with the Krylov method
(based on RODAS) after version KDAE (4.2.1). For the iterative solution of the linear equations we have
chosen GMRES. The tolerance for the solution of the linear system is coupled to the tolerance for the
step size control of the time integrator. We have considered 3 variants:

TOL=0.1«RTOL TOL=hxRTOL TOL=0.01x RTOL/ A. (49)

The iterative solver has no influence on the accuracy in the solution. The errors, average number of
Krylov steps and the number of steps are given in Tables 1-3.

Table 1
Maximum global error in the integration interval
RTOL TOLKGMRES

0 0.1+« RTOL hx RTOL 0.01x RTOL/ h
3.59E-03 1613E-02 1613E-02 1613E-02 1620E-02
4.64E-04 1458E-03 1458E-03 1458E-03 1475E-03
5.99E-05 1178E-04 1178E-04 1178E-04 1178E-04
7.74E-06 7.169E-06 7.171E-06 7.170E-06 6.537E-06
1.00E-06 9677E-07 9679E-07 9677E-07 9.400E-07
Table 2
Average number of Krylov iterations
RTOL TOLKGMRES

0 0.1x RTOL h % RTOL 0.01xRTOL/ A

3.59E-03 000 10600 10571 10686
4.64E-04 000 10662 10625 10731
5.99E-05 000 10711 10700 10750
7.74E-06 000 10744 10752 11631

1.00E-06 000 10746 10781 11869




J. Wensch / Applied Numerical Mathematics 53 (2005) 527-541 539

Table 3
Number of steps for different Krylov implementations and RODAS itself
RTOL TOKGMRES
0 0.1« RTOL h x RTOL 0.01«RTOL/ &
3.59E-03 11 11 11 11
4.64E-04 14 14 14 14
5.99E-05 18 18 18 18
7.74E-06 26 26 26 27
1.00E-06 38 38 38 40
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Fig. 2. Typical residual for a GMRES iteration.

Tables 1 and 3illustrate that the stopping criterion in the iterative solver does not influence the accuracy
in the solution significantly. The number of steps and global errors are almost identical for RODAS and
the different Krylov implementations.

There has a price to be paid—the average number of Krylov iterations is approximately 100. This
is in accordance with the analysis of Section 4. There is a close relation between the various ways to
apply Krylov techniques to a DAE. Therefore it is not astonishing that we have to make almost as much
iterations as the number of algebraic variables (110 in our case).

The typical residual for a Krylov iteration is shown in Fig. 2. After approximately 100 iterations the
residual decreases remarkably.

Fig. 2 explains, too, why the attempt to restrict the number of iterations fails. We have set the maximum
number of iterations at 30 and got completely useless results. One way to overcome this is to develop
a suitable preconditioner for such systems. For medium-sized applications (up to several ten thousand
equations) even the direct solution of the algebraic part or of the complete system (Rosenbrock method)
can be a suitable choice if the sparse structure of the linear system is exploited.
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7. Summary and conclusions

Krylov methods are suitable for the solution of stiff systems while offering the lowest possible degree
of implicitness in a method. We have considered several ways to apply them to DAEs of index 1. In detall
we have dealt with the direct approach. We have established an “almost” equivalence between the direct
approach for the Krylov method and the Krylov solution of the direct approach. The most important
conclusion is that the usual limitation of the dimension of the Krylov space as for ODEs, is not suitable
in the DAE case.

In case of stiff systems where the number of algebraic constraints is low compared with the number of
differential equations Krylov methods remain an attractive choice. To this class belong semi-discretised
parabolic problems where the boundary conditions are added in the form of algebraic constraints.

We have illustrated the conclusion using an application with a large number of constraints—a shear
experiment on a thin plate with viscoelastic behaviour. The theoretical results from Theorem 4.1 are
confirmed by the numerical experiment. For systems with a relatively large number of constraints the
Krylov dimensions become rather high. In this case either preconditioners have to be developed or an
efficient direct solver exploiting the sparse structure of the system (Rosenbrock method) has to be used.
The extension of these ideas to higher-dimensional applications and the comparison with established
solution techniques is the subject of current research.
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