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Ostwald ripening in homoepitaxy in the submonolayer regime is studied by means of numerical simulations
based on a step flow model, which accounts for attachment-detachment kinetics at the island boundaries.
Diffusion-limited ripening and the crossover to attachment-limited ripening is investigated. The simulations
indicate that the coarsening kinetics of the average island radius is described by a ta power law, where
1/3�a�1/2. Here a takes the value 1/3, if the ripening is purely diffusion-limited �infinite attachment rate
at the island boundaries�, and increases with decreasing attachment rate, approaching the value a=1/2 if the
ripening becomes attachment-limited. For the diffusion-limited regime, the numerical simulations are shown to
correspond with the predictions of the mean-field theory proposed by Yao et al., for both the scaling behavior
of the average island size as well as the island size distribution in the late stage. Approaching the attachment-
limited regime, the numerical results meet the predictions of the classical mean-field theory of Lifshitz,
Slyozov, and Wagner for attachment-limited ripening. We also analyze the influence of anisotropic edge
energies and edge diffusion.
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I. INTRODUCTION

In general, a two-phase mixture composed of a dispersed
second phase in a matrix is not in thermodynamic equilib-
rium. The total energy of the two-phase system can be de-
creased via an increase in the size scale of the second phase,
thus reducing the free energy associated with the interfaces
between the two phases. If the second phase is present in the
form of a distribution of clusters of different sizes, the large
clusters grow at the expense of the small ones. This type of
coarsening is known as Ostwald ripening.1 The kinetics of
Ostwald ripening is governed by two different processes:2–4

the mass transport between the clusters via a diffusion field
in the matrix and the attachment-detachment process at the
cluster boundaries. Thus, two limiting kinetic regimes may
be considered: in the diffusion-limited �DL� regime the at-
tachment and detachment of particles at the cluster bound-
aries is fast compared to the diffusion in the matrix, thus
diffusion is the limiting process; in the attachment-limited
�AL� regime, the attachment and detachment at the cluster
boundaries is slow compared to the diffusion in the matrix
and therefore, in this case, attachment and detachment are
the limiting processes.

In this paper we consider two-dimensional Ostwald ripen-
ing in homoepitaxy in the submonolayer regime �see Fig. 1�.
Here the minority phase �second phase� consists of atomic-
height islands sitting on an atomically flat crystalline surface.
Understanding the ripening of islands is clearly a necessary
first step in gaining more insight into the more complicated
processes in epitaxy, in particular the thermal decay of nano-
structures. Moreover, with the advent of powerful experi-
mental methods such as scanning tunneling microscopy
�STM� and low-energy electron microscopy, it has become
possible, to observe, in situ, the evolution of homoepitaxial
islands during ripening. Comparing experimental results of
the decay rates with theoretical model descriptions may even
allow one to determine material parameters, which are diffi-
cult to obtain otherwise. STM measurements of island coars-
ening on TiN�001�, TiN�111�,5 and on Cu�111� �Ref. 6� have

been used to obtain step edge energies and activation barriers
for attachment and detachment. In,7 Ostwald ripening on
Si�001� is demonstrated to be attachment-limited and also
used to obtain adatom diffusion constants. The ripening of
two-dimensional Ag islands on Ag�111� was investigated ex-
perimentally in Ref. 8, and also compared with numerical
simulations based on a nearest-neighbor model, revealing
that the ripening is clearly diffusion-limited. Because of the
large variety of process conditions and materials grown by
epitaxy, it may be assumed that also the intermediate regime,
where attachment-detachment and diffusion are rate limiting,
is of interest. However, as far as we know, there is no ex-
perimental investigation for this regime, presumably because

FIG. 1. Numerical simulation of two-dimensional Ostwald rip-
ening with isotropic �top� and anisotropic �bottom� edge energy.
Depicted are the island boundaries at times t=600 �left� and 15 000
s �right�; length is measured in units of lattice spacing. A more
detailed view of the shaded region is given in Fig. 8.
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matching of experimental data to theoretical model param-
eters is rather involved in this case.

A major advance in the theoretical description of Ostwald
ripening was made by Lifshitz, Slyozov, and Wagner
�LSW�.2,3 Here, the ripening process is described in terms of
a particle size distribution function of the second phase. The
LSW theory predicts that the particle size distribution func-
tion asymptotically evolves to a unique form, being self-
similar under scaling of the average particle size. Moreover,
the average particle size asymptotically obeys a temporal
power law. Both results are valid in the limit of vanishing
volume fraction of the second phase. Meanwhile quite a few
extensions of the LSW theory have been proposed, which
take into account finite volume fractions; see, e.g., Refs. 9
and 10. For a review on theoretical work on Ostwald ripen-
ing we refer to Refs. 4 and 11.

The main part of the analytical work on Ostwald ripening
is concerned with the three-dimensional diffusion-limited re-
gime, usually in the context of binary alloys. Only a few
investigations have been carried out on diffusion-limited rip-
ening in two dimensions. A mean-field theory for finite cov-
erage is derived, e.g., in Refs. 10, 12, and 13.

Most of the numerical simulations of Ostwald ripening
are based on some approximations to circumvent the explicit
solution of a moving-boundary problem for a large number
of islands. Assuming the islands to be circular with immobile
centers, the system is typically transformed into a dynamical
system for the evolution of the island radii Ri�t� �e.g., Ref.
10�. Without relying on these assumptions, phase field mod-
els and boundary integral methods have been used to per-
form large scale simulations of two-dimensional Ostwald
ripening for binary alloys �e.g., Refs. 14–17�. A numerical
simulation of Ostwald ripening in homoepitaxy has been pre-
sented in Ref. 18 using the level set method. In all cases, the
diffusion-limited regime has been considered.

The goal of this work is to perform numerical simulations
of the complete moving boundary problem related to ho-
moepitaxy, allowing anisotropic edge energies and the inves-
tigation of the crossover from diffusion-limited to
attachment-limited ripening. To our knowledge, neither the-
oretical nor numerical work exists on the crossover regime
so far.

In Sec. II we briefly review the Burton-Cabrera-Frank
�BCF� type model for step flow in epitaxy, which accounts
for adatom diffusion, attachment-detachment kinetics at the
island edges, and edge diffusion along the island edges. The
crystal anisotropy enters through an anisotropic edge energy.
The LSW analysis in the formulation of Wagner3 is reviewed
in Sec. III for the two limiting regimes �DL and AL�. In Sec.
IV, we present our numerical results. We start with investi-
gating a four-island system in some detail. It is demonstrated
how mean-field theories of the LSW type must fail due to
local interactions of the islands. As expected, the importance
of local interactions depends on the mass transport mecha-
nism: being rather small in the AL regime it increases while
approaching the DL regime. Next, results for large systems
consisting of 400 islands are presented. For the DL regime,
our simulation results confirm the predictions of the self-
consistent mean-field theory proposed by Yao et al.10 for
both the scaling behavior of the average island size as well as

the late-stage island size distribution. Our main results con-
cern the crossover regime. The simulations indicate that the
coarsening kinetics of the average island radius is described
by a ta power law, where 1/3�a�1/2. Here a takes the
value 1/3, if the ripening is purely diffusion-limited, and
increases with decreasing attachment rate—approaching the
value a=1/2 if the ripening is purely attachment-limited.
Moreover we find that the scaled island size distribution also
evolves to a rather time-independent shape in the mixed re-
gime.

II. STEP FLOW MODEL

We briefly review the BCF-type step flow model, as de-
scribed in more detail, e.g., in Refs. 19 and 20. Let ��R2

be the substrate with �i��, i=0, 1 denoting the region of
atomic height i �we only consider the submonolayer regime�
and �=�0

¯ ��1
¯ the island boundaries. Thus the minority

phase is represented by the monolayer islands �1. Denote by
�i=�i�x , t� the adatom density on terrace �i�t� �i=0, 1� at
time t. The adatom diffusion on a terrace is described by the
diffusion equation for the adatom density

�t�i − �� · �D�� �i� = 0 in �i�t� , �1�

where D�0 is the surface diffusivity. Note that we have
neglected desorption. Throughout the paper the unit of length
will be the substrate lattice spacing a. Thus the adatom den-
sity � denotes the number of adatoms per adsorption site.
Now let j+ , j− be the normal adatom flux at the boundary �
from the upper and lower terraces, respectively, which are
given by

j+
ª − D�� �1 · n� − v�1,

j−
ª D�� �0 · n� + v�0, �2�

where n� and v are the unit normal pointing from the upper to
the lower terrace and the normal velocity of the step ��t�,
respectively, with the convention that v�0, if the movement
of ��t� is in the direction of n� . Assuming first-order kinetics
for the attachment and detachment at the island boundaries
�“reaction kinetics”�, the adatom density satisfies the follow-
ing kinetic boundary conditions at the island boundaries ��t�:

j+ = k+��1 − �eq�, j− = k−��0 − �eq� , �3�

where �eq is the equilibrium density at ��t�. With this nota-
tion 0�k+�k− models the Ehrlich-Schwoebel effect.21

Moreover, if k+ ,k−→�, Eqs. �3� pass into the thermody-
namic boundary condition �1=�0=�eq at ��t�. Within this
limit, the island boundaries act as perfect sinks for the ada-
tom density and the growth and shrinking of islands is purely
diffusion-limited.

The equilibrium adatom density �eq is described by the
Gibbs-Thomson-type relation19,20

�eq = �*�1 + 	̃
�, 	̃��� = 	��� + 	����� , �4�

where 	 denotes the orientation-dependent step free energy
divided by kBT ,
 is the curvature of the boundary ��t�, and
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� is the angle between the outer normal and the x axis.
For the motion of the steps, we assume the following law

for the normal velocity v of the island boundaries ��t�:

v = j+ + j− + �s���s�	̃
�� , �5�

where � and �s denote the mobility of the edge diffusion and
the tangential derivative along the steps, respectively. The
last term in Eq. �5� represents step edge diffusion of edge
adatoms along the steps, whereas the first two terms ensure
the adatom mass conservation.

III. TWO-DIMENSIONAL LSW ANALYSIS

In this section we will review the LSW analysis in the
formulation of Wagner.3 The results for two-dimensional sys-
tems are somewhat spread, with regard to the literature. So it
seems to be worthwhile to give a common treatment of the
diffusion-limited and attachment-limited ripening adapted to
the step flow model as described in Sec. II. We will primarily
follow the exposition given in Ref. 4. Being aware of the
limitations of the Wagner analysis it still offers a very com-
pact formulation and is therefore chosen here to derive the
theoretical scaling laws and size distribution functions in the
limit of vanishing coverage �area fraction�. The two-
dimensional attachment-limited case has been treated in a
similar fashion in Ref. 22. The diffusion-limited case is
treated in Refs. 10 and 12, where a mean-field theory for
finite coverage is developed and the LSW distribution is ob-
tained in the limit of vanishing coverage. Both derivations
rely on a cutoff of the diffusion field at some ad hoc chosen
distance from the island to circumvent the difficulties arising
from the logarithmic singularities of the fundamental solu-
tion for a single island in two dimensions. Here, however, we
will use an argument given �and also derived rigorously� in
Ref. 23, which allows the direct use of the Wagner analysis
as in the three-dimensional case.

The first basic assumption of the LSW theory is that the
coverage 
 �area fraction� of the second phase is very small.
Hence, in the notation given in Sec. II, the region �1 consists
of many disconnected islands far away from each other.
Moreover, the islands are assumed to be radially symmetric
with immobile centers. Thus the morphology of the dis-
persed spherical second phase may be characterized in terms
of an island radius distribution function F�R , t�. The number
of islands per unit area is then given by n�t�=�0

�F�R , t�dR.
Assuming that no nucleation and coalescence of islands
takes place, F obeys the continuity equation

�tF + �R�ṘF� = 0. �6�

The flux of islands in size space is controlled by the function

Ṙ�R�. This function embodies much of the physics of the
ripening problem, and must therefore be carefully con-
structed.

Since in epitaxy the diffusion constant is very large, we
may pass to the quasistationary approximation, i.e., we ne-
glect the time derivative in Eq. �1� and the convective terms
in Eqs. �2�. Moreover, we assume isotropic edge energies.
The edge diffusion term in Eq. �5� vanishes since all islands

are assumed to be circular. We also assume for simplicity
that there is no Ehrlich-Schwoebel barrier, i.e., k : =k+=k−.
Passing to the excess density u : =�−�*, Eqs. �1�–�5� become

�ui = 0 in �i, i = 0,1, �7�

− D�� u1 · n� = k�u1 − �*	̃
� on � , �8�

D�� u0 · n� = k�u0 − �*	̃
� on � , �9�

v = D��� u1 − �� u0� · n� on � . �10�

To obtain an explicit solution for Ṙ�R� from the above
model, LSW make the following second assumption: Far
away from the islands, the excess density u may be approxi-
mated by a spatially constant mean field ū�t�. Under these
assumptions, the growth rate of an island is determined by
the growth rate of an isolated island obeying Eqs. �7�–�10�
supplemented by the boundary condition

u0��,t� = ū . �11�

However, in contrast to the three-dimensional case, Eq. �11�
does not lead to a solution of the system �7�–�10� due to the
logarithmic divergence of the fundamental solution of Eq.
�7�. Following Ref. 23, we introduce the typical island dis-
tance d, the typical island radius R, and assume R�d such
that 
 : =��R /d�2 is the coverage. Now consider an island of
radius R centered at the origin. Equation �11� is substituted
by

u0�d,t� = ū . �12�

Equations �7�–�10� may then be solved explicitly and the
growth rate of a single island is obtained as

Ṙ�t� =
�*	̃

R
� R

Rc
− 1� kD

D + kR ln�1/
1/2�
. �13�

Here the critical radius Rc of an island that neither grows nor
shrinks is given in terms of the mean field ū as

Rc = �*	̃/ū .

In view of Eq. �13�, the dimensionless parameter

�: =
D

R̄k ln�1/
1/2�
�14�

�where R̄ denotes the average island radius� describes to
what extent the mass transport is diffusion or attachment
dominated: ��1 and ��1 correspond to the DL and the AL
regime, respectively. For the two limiting cases, Eq. �13�
may be substituted by either

Ṙ�t� = KDL
1

R2� R

Rc
− 1�, KDL =

D�*	̃

ln�1/
1/2�
�15�

for DL ripening or
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Ṙ�t� = KAL
1

R
� R

Rc
− 1�, KAL = k�*	̃ �16�

for AL ripening. Proceeding in the spirit of Wagner3 as de-
scribed in Ref. 4, one introduces the new variables

z =
R

Rc
, � = ln� Rc�t�

Rc�0�� . �17�

Equations �15� and �16� become

dz

d�
= �

z − 1

z� − z , �18�

where �=2 �DL� or 1 �AL� and

� =
KDL/AL

Rc
2Ṙc�t�

. �19�

The continuity equation �6� for f�z ,�� : =F(Rcz , t���)Rc is
given in the new coordinates as

��f + �z� dz

d�
f� = 0. �20�

Moreover, following Wagner, we make the simplifying as-
sumption that the coverage 
 is a conserved quantity at late
times, which yields the following mass conservation con-
straint:


 = �Rc
2�

0

�

z2f�z,��dz for � large. �21�

To find a unique solution f�z ,�� of Eqs. �18�–�21�, the essen-
tial point of the LSW analysis is to argue that � becomes
constant and takes a unique value at late times �i.e., �→��,
which in turn implies a scaling law for the critical radius Rc
by solving the ordinary differential equations �ODEs� for
Rc�t� given in Eq. �19�. To argue that � is asymptotically
constant, Eq. �20� is solved by a separation ansatz

f�z,�� = g���h�z� . �22�

First, the continuity equation �20� implies that the temporal
decrease of the number of islands is given by the islands with
a �scaled� radius approaching z=0, i.e.,

d

d�
�

0

�

f�z,��dz = lim
z→0

� dz

d�
f� . �23�

Now note that, for z�1, Eq. �18� becomes

dz

d�
= −

�

z� . �24�

Plugging Eq. �24� into Eq. �23� and using the ansatz �22�, we
obtain

dg

d�
�

0

�

h�z�dz = − g���� lim
z→0

�z−�h�z�� . �25�

Thus, assuming the decrease of the number of islands per
unit area to be finite and positive, h�z� has to be of the form

h�z�=h0z�+O�z3�, for z�1, for some constant h0 and there-
fore Eq. �25� becomes

dg

d�

1

g���
= −

�h0

� h�z�dz

. �26�

To show that the left-hand side of Eq. �26� is a constant—
which in turn implies that � does not depend on � and is
therefore also constant—the separation ansatz �22� is
plugged into the mass conservation constraint �21� to obtain

g��� =



�Rc
2� z2h�z�dz

. �27�

Using dRc /d�=Rc, this implies

dg

d�

1

g���
= −

2

Rc

dRc

d�
= − 2, �28�

and therefore � is constant.
Now the continuity equation �20� may be integrated

straightforwardly using the separation ansatz �22�. One ob-
tains

g��� 	 exp�− 2�� 	 Rc
−2, �29�

h�z� = h0� dz

d�
�−1

exp
� � dz

d�
�−1� . �30�

To explicitly calculate the function h�z� from Eq. �30�, the
final step of the Wagner analysis consists in claiming that a
cutoff value z0 exists �i.e., h�z�=0 for z�z0� and uniquely
determining z0 and the value of � in the coarsening rate �18�.
Instead of repeating the partly heuristic arguments of Wag-
ner, we quote some arguments taken from Refs. 4 and 22 by
examining how the function dz /d� varies with z and �. As
depicted in Fig. 2, four qualitatively different cases may be
distinguished. For negative � values the relative growth rate
is positive for small relative island radii z and negative for
bigger ones, which is clearly opposite to the real physical
process. Now, if � is positive, dz /d� generally has a maxi-
mum and can have two zeros on the x axis. In the case of two
zeros, z1�z2, islands with a relative radius z such that z1
�z�z2 would grow until z=z2 and islands bigger than z2
would shrink until z=z2, i.e., we would end with an en-
semble of islands having the identical radius z=z2, which
would be stable against coarsening, in contradiction to ther-
modynamics. If dz /d� has no intercept with the x axis, all
islands would have a negative growth rate and thus all is-
lands would finally disappear. There is exactly one value of �
such that only the islands with a specific relative radius
z¬zmax have a zero growth rate, which occurs if the maxi-
mum of dz /d� touches the x axis. Choosing this value for �
and a cutoff value z0 of h�z� as z0=zmax yields a physical
reasonable process. These considerations uniquely fix the
values of both � and z0 to be

z0 = 3/2, � = 27/4 �DL� ,
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z0 = 2, � = 4 �AL� .

Having fixed the value of �, the spatial distribution function
h�z� may be calculated explicitly from Eqs. �18� and �30�.
Normalizing h�z�, one obtains the scaled normalized island
size distribution functions hDL�z� �DL�10,13 and hAL �AL�:22

hDL�z�

= �72e2/3z2�z + 3�−17/9�2z − 3�−28/9exp� − 2

3 − 2z
� , z �

3

2
,

0, z �
3

2
,


�31�

hAL�z� = �8e2z�2 − z�−4exp� − 4

2 − z
� , z � 2,

0, z � 2.

 �32�

To compare with numerical simulations, it is more conve-

nient to express h�z� in terms of the variable r=R / R̄, i.e. �see
Fig. 3�,

H�r� ª zavh�zavr� where zav = �
0

�

zh�z�dz . �33�

The temporal scaling law for the critical island radius Rc
is obtained by integrating Eq. �19� as

Rc�t� = ��Rc�0�3 +
4

9

D�*	̃

ln�1/
1/2�
t�1/3

�DL�

�Rc�0�2 +
1

2
k�*	̃t�1/2

�AL� .
 �34�

We finally note that R̄=Rc for AL, whereas R̄=1.0665Rc for
DL.

One should be aware that the above results are valid only
in the limit of vanishing coverage 
 and at late times. The
Wagner analysis has been criticized since it is not self-
consistent due to the assumption of a constant coverage �see
Eq. �21��. Indeed, in a self-consistent treatment the mean
field ū has to be determined by the mass conservation con-
straint

ū�t� + ��
0

�

R2f�R,t�dR = const.

Using a different approach, Marqusee and Ross9,24 showed,
that the assumption of a fixed coverage 
 is not necessary for
the derivation of a temporal scaling law and self-similar dis-
tribution function. Moreover they demonstrate that the effect
of changes of the coverage does not alter the zeroth-order
result but enters only in the first- and higher-order correc-
tions in 
. Note that the LSW analysis is a one-particle ap-
proximation since the growth rate of a particle does only
depend on its size, which is not true for finite coverage 
.
Quite a few mean-field theories have been proposed, which
account for finite coverage.9,10,12 Most of them are concerned
with three-dimensional ripening and all of them treat the
diffusion-limited case. These theories predict a temporal

scaling law of the form R̄�t�= �R̄�0�3+K�
�t�1/3, where the
coarsening rate K�
� increases with increasing coverage 
.
Moreover, all of them obtain a time-independent scaled is-
land size distribution, which in general broadens with in-
creasing coverage. However, the values of K�
� and the spe-
cific form of the distribution function differ considerably in
these theories.

FIG. 2. Dependence of dz /d� on �: DL �top�; AL �bottom�.

FIG. 3. LSW normalized scaled island size distribution function
H�r� as defined in Eq. �33�; diffusion-limited �DL, solid� and
attachment-limited �AL, dashed�.
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IV. NUMERICAL RESULTS

In this section, we present numerical results for systems
with finite coverage. Since we numerically solve the com-
plete two-dimensional free boundary problem given in Eqs.
�1�–�5�, we are not restricted to any of the idealizing assump-
tions of the previous section. Thus it will be possible to
investigate the influence of edge diffusion and anisotropic
edge energies, and the effect of finite coverage. Moreover,
we do not have to stick to either the diffusion-limited or the
attachment-limited regime, but may also explore the interme-
diate regime.

The numerical method is based on adaptive finite ele-
ments, and Eqs. �1�–�5� are discretized using an operator
splitting approach: We use two independent numerical grids:
a two-dimensional grid for the adatom diffusion on the ter-
races and a one-dimensional grid for the evolution of the
island boundaries. In each time step: �i� we update the dis-
crete step boundaries by solving a geometric partial differen-
tial equation based on the adatom densities and the discrete
island boundaries from the previous time step; �ii� we solve
the diffusion equation to update the adatom densities using
the adatom densities from the previous time step and the
computed discrete representation of the island boundaries.
Adaptivity in space and time is indispensable for this ap-
proach to be efficient, especially if long-time behavior, as in
Ostwald ripening, is considered. For a detailed description of
the algorithm see Refs. 25 and 26.

A. Four-island system

To investigate the influence of nearest-neighbor islands in
more detail, we simulated the ripening of four islands on a
periodic domain of size 100�100, varying the attachment
rate k while keeping all other parameters constant. The initial
configuration is depicted in Fig. 5 �top�. The two smallest
islands of type 1 are closer to island 2 than to island 3, where
island 2 is smaller than island 3. Note that the coverage is
very small �
�0.008�. Let us first analyze what the classical
LSW theory predicts: As has been noted above, the classical
LSW theory is a one-particle approximation, i.e., islands of
the same size are shrinking or growing with the same veloc-
ity depending only on the mean field or equivalently the
critical radius Rc�t� �see Eqs. �15� and �16��. Assuming con-
servation of the total island area as in Eq. �21�, i.e.,
�d /dt��iRi

2=0, yields

Rc = � 1

N
�

i

1

Ri
�−1

�DL�, Rc =
1

N
�

i

Ri �AL� , �35�

where the sum is taken over all islands with positive radius
Ri�0 and N is the number of islands with Ri�0. Also note
that in the DL regime, the mean field becomes singular,
whenever an island disappears. Figure 4 presents a numerical
simulation of the ripening of four islands until the first two
islands have disappeared, using the dynamical system given
by Eqs. �15�, �16�, and �35�.

There are two reasons why a mean-field picture may fail
for finite coverages: first neighboring islands may shadow
the diffusion field �“screening”� and second the diffusion is

not infinitely fast. In both cases, the ripening of an individual
island depends not only on the mean field generated by the
whole ensemble of islands but on the local gradient of the
adatom density, where the latter depends on the local envi-
ronment. In most experimental situations in epitaxy, the first
influence does not play an important role, since the “diffu-
sion length” l*=�Dt*, where t* is the distinction time of a
typical island in the experiment, is much larger than the
sample length.7 For all parameters used in the simulations in
this section l*�2.5�103, which is much larger than the
sample size. Figure 5 depicts the results of the numerical
simulation of the complete moving boundary problem Eqs.
�1�–�5� for different values of the attachment rate k �while
leaving all other parameters constant�. The qualitative behav-
ior dramatically depends on the extent to which the ripening
is diffusion-limited �left� or attachment-limited �right�. In the
DL case, one observes that despite island 2 being initially
smaller than island 3, it grows faster than island 3. This
becomes even more apparent in Fig. 6 �left�: the area lines
cross, which is in clear contradiction to the prediction of any
mean-field theory. In contrast, in the case of AL ripening �see
Fig. 5 �right��, the system behaves as predicted by the LSW
theory �compare Figs. 4 and 6 �left��. As already mentioned
above, the variation of the gradient of the diffusion field is
much larger in the DL regime, whereas the diffusion field
approaches a constant �apart from the discontinuity at the
island boundaries� in the attachment-limit. This is confirmed
in Fig. 5 �bottom�, where the diffusion field on half of the
domain is depicted for the DL �left� and AL �right� regimes
at time t=0.

To investigate the influence of an anisotropic edge energy
	, we perform the same simulations but chose an anisotropic
stiffness of the form

	̃��� = �a2sin2�
���� + b2cos2�
�����3/2,


��� = tan−1�tan�� + �/2�
b

a
� . �36�

This stiffness yields an ellipsoid with aspect ratio a /b as
equilibrium shape, where we have chosen a /b=2.5. This

FIG. 4. Ripening of four islands with radii r1=7, r2=8, r3=9 on
a periodic domain of size 100�100 as assumed by the classical
LSW theory: numerical solution of the dynamical system given in
Eqs. �15�, �16�, and �35�. Time is measured in units of the distinc-
tion time t1 of the two smallest islands with radius r1. The initial
configuration is as in Fig. 5.
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choice of anisotropy is motivated by Ref. 7, where Ostwald
ripening of ellipsoidal silicon islands on Si�001� has been
investigated. As depicted in Fig. 7, the qualitative behavior is
as in the isotropic case. This indicates that anisotropy of the
edge energy does not play an important role in Ostwald rip-
ening. This will also be confirmed in the large-scale simula-
tions below.

B. Island movement, anisotropic edge energy,
and edge diffusion

Now, the initial setup is as follows: 400 islands are placed
on a 1000�1000 periodic domain. To avoid overlapping, the
midpoints of the islands are placed on a regular grid and are
then shifted randomly. The radii of the islands are chosen
randomly according to the diffusion-limited LSW distribu-
tion as given in Eq. �33� �see also Fig. 3�. Finally, the islands
are projected onto the Wulff shape �with the same area� cor-
responding to the anisotropic edge energy. If not otherwise
stated, the following parameters are used:

D = 105, �* = 10−4, � = 0.0, 	��� = 1.0.

If anisotropy is taken into account, we use the anisotropic
edge energy

	��� = 1.0 + 0.1 cos�3�� . �37�

To investigate the influence of edge diffusion, we have
compared simulations with the same initial configuration but
choosing the edge diffusion mobility � to be either 0.0 or 1.0.
For isotropic as well as anisotropic edge energy of the form
given in Eq. �37�, there is no influence of edge diffusion seen
in the simulations. That is, the island shapes retain the Wulff
shape during coarsening, also without edge diffusion. This is
different in the growth regime, where at least some deviation
from the Wulff shape is observed and the island shape stays
closer to the Wulff shape, if edge diffusion is included �see
Ref. 26�. Consequently there is also no influence on the scal-
ing behavior and the island size distribution function. There-
fore in the following we will always neglect edge diffusion,
i.e., we chose �=0.0. Certainly, edge diffusion does play a
significant role in the high-coverage regime, where coales-
cence of islands takes place. We would like to note that for a
more realistic simulation of Ostwald ripening in the presence
of a crystal anisotropy, one would also have to consider an-
isotropic adatom diffusion and anisotropic edge diffusion,
which may be built into the numerical algorithm easily.

To demonstrate the influence of the local environment
once again, some stages of ripening with isotropic and with
anisotropic edge energy are depicted in Fig. 8, which is an
enlargement of Fig. 1. The assumption of mean-field theories
that the centers of the islands are fixed can clearly be seen to

FIG. 5. Ripening of four islands with radii r1=7, r2=8, r3=9 on a periodic domain of size 100�100. Time is measured in units of the
distinction time t1 of the two smallest islands of type 1. �Top left� For diffusion-limited ripening �D /k=0� one observes that despite island
2 being initially smaller than island 3, it grows faster than island 3. The reason for this is a strong screening effect: island 2 grows at the
expense of the two islands of type 1, while shadowing island 3. �Top right� In the attachment-limited regime �D /k=1.4�103r1�, the
screening effect vanishes. The bottom row depicts the adatom density � at t=0 for the diffusion-limited �left� and the attachment-limited
�right� regime. As can be seen, the adatom density varies strongly in the DL case, whereas it becomes nearly constant in the AL case �apart
from the discontinuity at the island boundaries�. Thus in the latter case the assumption of a constant mean-field �̄ at some distance of the
islands is much more appropriate.
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be not satisfied. Also, the ripening of an individual island
depends strongly on the surrounding islands.

C. Scaling of the average island size

To determine the scaling exponent for diffusion-limited
ripening in the late stage, a log-log plot of the average island
radius versus time is presented in Fig. 9. Here the number of
islands decreases from 400 to 50. For each value of the cov-
erage 
, the results of five simulations with different ran-
domly chosen initial configurations have been averaged. An
affine linear fit of the data yields the scaling exponents. The
values for the exponents are 0.332 and 0.325 for coverages

=0.085 and 0.01, respectively, and correspond well with
the theoretical value of 1 /3. We would like to remark that the
number of islands is reduced by one-eighth in the simula-
tions, which corresponds to a simulation time �=3 on the
self-similar time scale. Thus any comparison with the
asymptotic results of a mean-field theory has to be taken
with some care and is a bit speculative.

Assuming a temporal power law for the average island

radius R̄�t� of the form

R̄�t� = �R̄�0�3 + K�
�t�1/3,

the coarsening rate K�
� is determined as shown in Fig. 10
by an affine linear fit of the numerical data yielding
K�0.01�=2.6 and K�0.085�=4.4, which seem to be in reason-
able agreement with the predicted values given in Refs. 10
�Fig. 8�b�� and 12 �Fig. 2�. �For a comparison note that with
our parameters D�*	̃=10 in Eq. �34�.�

Numerical results of the evolution of the average island
size in the intermediate regime and the crossover to the
attachment-limited regime are depicted in Fig. 11. The log-
log plot of the average radius versus time indicates a tempo-

ral power law for the average island radius R̄ in the late
stage, i.e.,

R̄ 	 ta, �38�

where �for fixed coverage 
� a is a monotonically increasing
function of � interpolating the diffusion-limited regime ��
=0, a=1/3� and the attachment-limited regime ��=�, a
=1/2�. This is a quite remarkable result, which is clearly
valid only for finite systems and finite time, since for an
infinite system, the asymptotic regime should always become

FIG. 6. Ripening of four islands with initial configuration as in
Fig. 5: Area versus time until the two smallest islands have van-
ished. Time is measured in units of the distinction time t1 of the two
smallest islands of type 1 and length in units of the island radius r1.
In the upper figure the two limiting cases are considered. Note that
the AL case is well described by the LSW dynamics �compare Fig.
4�, while the DL case shows a crossing of the area decay lines,
which clearly manifests the influence of the local environment and
thus the breakdown of the mean-field picture. The lower figure
shows the crossover regime from AL to DL.

FIG. 7. Ripening of four islands with same areas as in Fig. 5,
but anisotropic stiffness 	̃ as given in Eq. �36� �i.e., the equilibrium
shape is an ellipsoid with aspect ratio 2.5�. Here t1 denotes the
distinction time of the two smallest islands of type 1. As in the
isotropic case, the DL regime �top� shows a strong screening effect
as opposed to the AL regime �bottom�, leading to a crossing of the
area decay lines as in Fig. 6.
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diffusion-limited due to the fact that R̄→� and therefore
�→0 for t→�. We also note that for the largest value
�=37 in the simulations, the coarsening exponent a=0.48 is
in good agreement with the predicted value a=0.5 of the
LSW theory for AL ripening.

D. Island size distribution function

We begin with investigating the diffusion-limited regime:
The initial setup is chosen as in Sec. IV B. In particular, the
initial random island size distribution is chosen according to

the DL LSW distribution as depicted in Fig. 3. Mean-field
theories for finite coverages in the DL regime �see, e.g., Refs.
10 and 12� predict that the scaled distribution function broad-
ens until it reaches an asymptotic time-independent shape,
where the asymptotic distribution becomes broader with in-
creasing coverage. In Fig. 12 the scaled normalized island
size distribution in the late stage of the numerical simulations
is depicted for two different coverages 
=0.01 and 0.05. As
demonstrated with level set simulations in Ref. 18, our nu-
merical results are in good agreement with the asymptotic
distribution predicted by the self-consistent mean-field
theory of Yao et al.10 Next, we turn to the crossover regime

FIG. 8. Movement of islands during ripening: Island boundaries
at t=600 �solid�, 3000 �dashed�, and 15 000 �dotted� for isotropic
�top� and anisotropic �bottom� edge energy. Depicted is an enlarge-
ment of Fig. 1. The coverage is 
=0.085 and the ripening is in the
intermediate regime ��=2.7 as given in Eq. �14��.

FIG. 9. Diffusion-limited ripening: log-log plot of the average

radius R̄ versus time for coverages 
=0.085 and 0.01. The scaling
exponent is determined by an affine linear fit in the late stage as
0.332 for 
=0.085 �solid line� and 0.325 for 
=0.01.

FIG. 10. Diffusion-limited ripening: Time evolution of the av-

erage island radius R̄�t�. The plot of the numerical results for both
coverages 
=0.01 �top� and 0.085 �bottom� indicates that the aver-

age radius R̄�t� obeys the temporal scaling law R̄�t�3= R̄�0�3

+K�
�t. The coarsening rate m=K�
� is obtained by an affine lin-
ear fit, and the values are similar to the theoretical results of Refs.
10 and 12.

FIG. 11. Scaling of the average island radius R̄: Crossover from
diffusion- to attachment- limited ripening ���1 to ��1�. The scal-
ing exponent a in Eq. �38� for different values of � is obtained by
an affine linear fit of the log-log plot �average radius versus time� of
the numerical data in the late stage. Here � is given in Eq. �14�,
with average radius R̄�22 taken at the end of the simulations,
where the number of remaining islands is N=50.
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from DL to AL ripening: by varying the attachment rate k,
with all other parameters fixed, the value of � as given in Eq.
�14� varies from �=0 to 72. As shown in Fig. 13, the late-
stage distribution function broadens with increasing �, be-
coming very close to the AL LSW distribution, if ��1.
Note, that we started with the very peaked DL LSW distri-
bution. To demonstrate that the initial distribution has a mi-
nor influence on the late-stage distribution, simulations for
�=37 and 
=0.05 but with different initial conditions have
been performed: the first set of random initial distribution
has been chosen according to the DL LSW distribution and
the second set to the AL LSW distribution �see Fig. 3�. The
results of the numerical simulations are presented in Fig. 14.
In both cases, the late stage is very close to the AL LSW
distribution.

Concluding, there are two reasons that cause a broadening
of the late-stage island size distribution function �as com-

pared to the DL LSW distribution�: The distribution becomes
broader with increasing coverage and with increasing �, i.e.,
on crossing from the DL to the AL regime.

V. CONCLUSIONS AND OUTLOOK

Using the numerical method as developed in Refs. 25 and
26, it is possible to perform numerical simulations of the step
flow model describing homoepitaxial Ostwald ripening,
without any simplifying assumptions. Anisotropic edge ener-
gies as well as edge diffusion may be incorporated. Most
important, the attachment-detachment kinetics at the step
edges is included. Thus it is possible, to investigate the cross-
over regime from diffusion-limited to attachment-limited rip-
ening by numerical simulations.

Simulations of the ripening of a four-island system al-
ready reveal the breakdown of the mean-field approach con-
cerning the prediction of the decay of a single island in the
ensemble, as known from experiments.7,8 This is due to the
influence of the local environment, which cannot be captured
by a mean-field approach. This becomes most pronounced in
the DL regime, whereas the local environment becomes less
important when approaching the AL regime, due to the fact
that in the first case the adatom density near the island
boundary �or equivalently, the local chemical potential� de-
pends very much on the local environment, whereas in the
latter case, the adatom density on the lower terrace ap-
proaches a constant value even near the island boundaries.

However, concerning scaling properties and asymptotic
island size distributions, predictions of a mean-field theory
may be very accurate. In particular we have found the pre-
dictions of a self-consistent mean-field theory proposed by
Yao et al.10 to correspond well to the numerical simulations
of the complete model in the DL regime. Moreover, predic-
tions of the classical LSW theory for AL ripening, concern-
ing the scaling exponent of the average island size and the
asymptotic island size distribution are in agreement with our
simulations when approaching the AL regime.

Our main results concern the crossover regime. The simu-

FIG. 12. Scaled normalized island size distribution for DL rip-
ening in the late stage. The numerical data have been averaged for
five different initial configurations randomly chosen according to
the DL LSW distribution, and over the distributions from N=100 to
50 �N being the number of remaining islands�, to get a good statis-
tic. We note that in all cases the distributions stop broadening at
least after N=200. The solid and dashed lines are the asymptotic
distributions for 
=0.01 and 0.05, respectively, as predicted by the
mean-field theory of Yao et al. and are taken from Ref. 10, Fig. 10.

FIG. 13. Scaled normalized island size distribution function in
the late stage: Crossover from DL to AL ripening. It is clearly seen,
that the distribution function broadens with decreasing attachment
rate, and becomes very close to the AL LSW distribution of Fig. 3,
if ��1.

FIG. 14. Island size distribution function �AL�: late-stage island
size distribution, for two different initial distributions. �a� DL and
�b� AL LSW distribution. In both cases, the late stage is very close
to the AL LSW distribution.
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lations indicate, that the coarsening kinetics of the average
island radius is described by a ta power law, where 1/3�a
�1/2. Here a takes the value a=1/3, if the ripening is
purely diffusion-limited and increases with decreasing at-
tachment rate–approaching a=1/2, if the ripening becomes
attachment-limited. Certainly this is valid only for systems of
medium size and finite times �i.e., this is not an asymptotic
result�, since for a very large �infinite� system, the
asymptotic regime should always become diffusion-limited

due to the fact that the average radius R̄→� for t→�. More-
over, the scaled island size distribution also becomes rather
time independent in the late-stage. The late-stage distribution

becomes broader when approaching the AL regime, and
seems to converge to the AL LSW distribution. In conclu-
sion, the reason for broadening of the asymptotic scaled is-
land size distribution �as compared to the DL LSW distribu-
tion� seen in experiments may either be an increasing
coverage 
 or an increasing value of the parameter �, given
in Eq. �14�, which describes the crossover from the DL re-
gime ���1� to the AL regime ���1�. We finally note that a
comparison of experiments and simulations in this crossover
have not yet been carried out, but seems to be a promising
way to determine material parameters such as attachment
rates.
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