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Introduction 
 
International genetic evaluations as carried out 
by Interbull rely on the results of national 
evaluations undertaken by numerous 
computing centres throughout the world. The 
BLUP method has become the standard 
methodology for the estimation of breeding 
values. Worldwide, a large number of BLUP 
computer programs, each one usually tailored 
towards the needs of an individual country, are 
in use. It is of vital interest for Interbull as well 
as all countries participating in MACE 
evaluations that national evaluations reach a 
high quality level. This quality is a demand at 
all tiers of the evaluation procedure, starting at 
the quality of data entering from recording 
systems and stretching over data editing and 
preparation, the BLUP run itself to post-
processing of the results. 
 

Aim of the present project is the 
development of a method to generate data, i.e. 
the simulation of breeding values and 
phenotypes such that the BLUP procedure used 
is able to estimate the simulated breeding 
values numerically exact and not only 
asymptotically. The method should be viewed 
as an aid for the development and further 
refinement of BLUP programs  
 
 
Material and Methods 
 
Multiple trait model  
 
As usual, a general model for phenotypes listed 
in vector y is 
 

y = Xß + Zu +e      (1) 
 
where u ~ N (0, G), e ~ N (0, R), G = G0 ⊗ A, 
R = R0 ⊗ I. A is the numerator relationship 
matrix, G0 and R0 are the variance/covariance 
matrixes of genetic and residual effects. X and 
Z are incidence matrices pertaining to fixed 

and random effects, respectively, and u denotes 
a vector of genetic effects (breeding values) 
which are unknown and are to be predicted. 
The vector of unknown fixed effects is given 
as ß, and e is the vector of residual effects. 
 

Following Henderson (1973), under the 
assumption that residual effects among 
observations (animals) are uncorrelated, ß and 
u can be estimated using the Mixed Model 
Equation (MME) given as 
 

 
 
 
Estimation method 
 
From theory, it is well known that a solution to 
the MME maximises the Likelihood-function 
for model (1) 
 

L(u,e) = c exp(-uTG-1u/2) exp(-eTR-1e/2) 
 
c is a normalization factor depending on G and 
R. The Maximisation of L(u,e) is equivalent to 
the minimisation problem 
 

eT R-1 e + uT G-1 u → Min . 
 
Setting 

 
 
we end up with the Least Squares Problem 
minimise ||r||22 = eT R-1 e + uT G-1 u where 
 
 

 
 
is obtained by substituting e = y – Xß - Zu 
from model (1). 
||.||2 is the euklidian norm. R-1/2 is the unique 
symmetric positive definite matrix B with BB 
= R-1. 
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Using the definitions of A, b and x as 
given above, the analogy of MME and the 
normal equation can be shown. A general 
Least Squares Problem has the formulation: 
find the vector x with  
 

||Ax - b||2 → Minx  (2) 
 

It is well known that x is a solution of (2) 
if and only if the normal equation  

 
ATAx = ATb is fulfilled which is equivalent to 
ATr = 0 for the residual   
r = Ax-b. By substituting the definitions of A, 
b and x in the normal equation, the MME can 
be represented by: 
 

 
 
 
Residual condition 
 
Now a constraint can be derived such that the 
MME are exactly fulfilled. If vectors ß, u and e 
are given such that ATr = 0 and the y-values 
are derived using model (1), the MME are 
fulfilled exactly. The term ATr = 0 gives: 
 

 
 
This leads to the following residual conditions: 

 
0 = XT R-1 e   (3) 
0 = ZT R-1 e - G-1u (4) 
u = GZT R-1 e             (4’) 

 
With model equation (1) and the residual 

condition (3), and (4), Henderson’s MME are 
fulfilled exact. The vector of fixed effects ß 
can be chosen arbitrarily since the residual 
conditions are independent of this vector. 
However, the residual condition (4) depends 
on A-1 since G-1 = G-1

0 ⊗A-1. A linear system of 
equations has to be solved to fulfil residual 
condition (3) and (4). 

Model (1) is very simple. In addition to the 
residual effect e, only one random effect is in 
the model. Following, an extension of the 
model equation for further random effects is 
derived. Let’s assume a further random effect 
is added to model (1), denoted by w with 
associated incidence matrix Zw. Model (1) 
becomes: 
 

y = Xß + Zu + Zww + e      (1’) 
 
with w ~ N (0, W), W = W0 ⊗ M. The residual 
vector r to be minimised becomes: 
 

 
 
and by using e = y - Xß - Zu - Zww the 
resulting  matrices A, x and b become: 
 

 
 
Again using ATr = 0 as an additional residual 
condition leads to: 
 

0 = ZT
w R-1 e - W-1 w   (5) 

or  
w = WZT

w R-1 e   (5’) 
 

Analogously to condition (4’) which 
represented the relation between residual effect 
e and random effect u, condition (5’) gives the 
relation between residual effect e and the new 
random effect w. It is trivial to see that the 
extension made here is not limited to the 
inclusion of one additional random effect. 
Rather, further random effects may be included 
and by this most scenarios in animal breeding 
can be represented (random regression, 
maternal effects, dominance, gametic 
effects, …) . 

 
The residual condition (3) as a stand-alone 

condition is equivalent to (1) without any 
random effect except e.  
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If condition (3) and analogously conditions 
(4), and (5) are fulfilled (and possibly even 
more conditions as necessary), the MME are 
fulfilled exactly if we use model (1) or 
extensions like in (1’) to generate data sets y.  
 
 
Implementation 
 
To fulfil conditions (3) and (4), two 
approaches have been proposed up to now. The 
first approach is based on an idea by 
Thompson (1997). Thompson’s idea for a 
single trait scenario can be characterized as 
follows: 
 

 
 
with B = number of base animals (animal 1,…, 
B are base animals), s = sire, d = dam and o = 
offspring. Furthermore, Thompson assumed 
one fixed effect class for base animals. With u 
and e as given above the residual conditions (3) 
and (4) are fulfilled exactly.  
 

The single trait case was implemented by 
Täubert et al. (2002). The resulting data 
equation for y values for the multiple trait case 
has been shown in Wensch-Dorendorf et al. 
(2005). Solving for u, e and y is very cheap 
and hence an implementation is simple. A 
reason for the simplicity is that for any trait in 
the model  
 

A-1u = (ub
 T,0 T)T 

 
is valid which means that it is unnecessary to 
set up A-1 . Vector u contains all genetic effects 
for the respective trait and ub the genetic 
effects for the base animals (ub

 T = (u1,…,uB)). 
The vector 0T is a nullvector with dimension 
equal to the number of none base animals. 
 

A proposal for a second approach was 
given by Leclerc and Ducrocq (2006). The idea 
of this approach is to fulfil condition (3) first 
and than solve for other random effects by 
using (4’), (5’) etc. . Leclerc and Ducrocq 
(2006) give a proposal for e to fulfil condition 
(3) by using the normal equation: 

 
 
where e* is arbitrary. To fulfil condition (3), 
other proposals for e are possible, for instance: 
 

 
 
or to express e by using LQ decomposition of 
XT (or QR) 
 

 
 
where e* is also arbitrary, k=Rank(X) and  Lk 
is regular.  
 

All these approaches and special proposals 
fulfil condition (3) and (4) in such a way that 
an audit of BLUP-Programs is possible.  
 
 
Results 
 
In our project as a first step the programs 
PEST (Groeneveld, 1990) and three BLUPF90 
variants (Misztal, 1999, Ducrocq et al., 2003) 
have been tested. Work on a case study (up to 
10 Mio animals, 3 traits with 2 random effects 
+ fixed regression + rest) is in progress. 
 

The yet preliminary results from the 
comparison of true (simulated) and estimated 
breeding values point out the following: 
 

• The correlation between simulated 
BV and EBV is very high (0.999 to 
1.0) for all programs 

• However, minor changes in rank 
when inspecting top 100 lists can be 
observed.  

 
Summary 
 
With the procedure presented here, an effective 
and general method to audit BLUP computer 
programs is introduced. This method can be of 
help when developing and validating a BLUP 
program. Work on the comparison of several 
well known programs is under way. 
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Preliminary results indicate that minor rank 
changes may occur although the correlation 
between true (simulated) and estimated 
breeding values may be close to unity. 
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