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Abstract

Realistic interfacial energy densities are often non-conwénch results in backward parabolic behavior of the
corresponding anisotropic curve shortening flow, #bgrinducing phenomena such as the formation of corners
and facets. Adding a term that is quadratic in the curvatuteddnterfacial energy yieks a regularized evolution
equation for the interface, which is fabrorder parabolic. Using a semi-itigit time discretization, we present a
variational formulation of this equation, which allows the use of linear finite elements. The resulting linear system
is shown to be uniquely solvable. Wksa present numerical examples.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The evolution of interfaces is of great importance in many physical processes, including phase
transitions, epitaxial growth and the evolution of grain boundaries. One of the earliest theories describing
apurely interface-controlled evolution, i.e. independent of the behavior of the adjacent bulk phases, was
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introduced in 1]. Whenappropriately scaled, the derived equation, today known as mean curvature flow
— or curve bortening flow, if the interface is one dimensional — reads

V= —k, Q)

wherev is the scar normal velocity of the interface ardts (mean) curvature. Eql)is asecond-order
parabolic partial differential equation, which has been intensively studied in the2p&kbt [

For one-dimensional interfaces, a generalization that encompasses an anisotropic interface energ
densityy (¢), ¢ denoting the angle from a fixed axis to the unit normal the interfacel’, reads

v = —Vk, y=v+v" 2)

Herey « is the anisowpic (mean) curvature, which may also be introduced formally as the first variation
of the total interface energy

E, (I = fr y(@)dr.

Denoting withy also the one-homogeneous extensiofiRénthe Frak diagramF,, and the Wulff shape
W, of y are defined as

Fy={XeR?|y(X) <1}
W, ={X e R? | X-fi < y(f) Vi € R?, |ii| = 1).

The Wulff shape denotes the equilibrium shape of the interface according to the introduced anisotropic
energy. It is well known thaf is strictly positive iff the Fank diagram is convex or iff is a convex
function onR?. In this case, ) is pamabolic and well behaved; for a theoretical treatment $c8].[
But crystalline materials are often endowed with interfacial energies which are not convex,&ee [
Such energies may lead to corners, facets and wrinklings of the Wulff shgpand turn Eq. ) into
a backward parabolic equation within non-convex ranges 0One way to @ercome his inherently
unstable behavior is to regularize the equation by adding a curvature dependent term to the interfac
energy density, which was already proposed on physical ground@% iaqg introduced in 9], choosing
an interfacial energy

1 >

+ —€x”,
YTa

with € > 0 constant, leads to the highly nonlinear fourth-order parabolic evolution equation

1
V= —yK+¢€ (8ss/c + §K3> , 3)

wheredgs denotes the second tangential derivative along the interface. This problem is similar to the
evolution of elastic curves, which has been examined both from a theoretical and numerical point of
view in [10].

In Sedion 2 we derive a finite element discretization of E®) (Using methods similar to those
in [11-13. We start with reformulating Eq. ) as asystem of second-order equations. Using a semi-
implicit time discretization, we will derive a variathal formulation of this system, which allows a finite
element discretization in space using parametric linear finite elements. A Schur complement approach i
used to solve the reling linear system. IrSection 3we presensome numerical results.
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2. Variational for mulation and finite element discretization

Introducing the position vectax, the cuvature vectork = «i, and the velcity vectorv = v,
and using the geometric expressior= —dssX, EqQ. 8) becomes equivalent to the following system of
equations fok, «, v, andv:

K= —3552, (4)

K=K -, (®)
- 1

= —YKk +¢€ <355K + §K3) ) (6)

v = vi. (7)

Let I'(t) denote the interface at timte Now split the time inerval using disa@te time instants 0=ty <
t; < --- and defindime stepsry = tmy1 — tm. We represent ganext inerfacel™ ! = I'(tm1) in
terms of '™ = I'(ty,) by updating theposition \ecor

)?m+l < )?m + Tml_j. (8)

In the time discretization, all geometric quantities such asddss are evaluated on the current interface
I'™. In contrast to the geometriguantities, tie unknowns, «, v, andv are treated imigcitly, with the

exception of the nonlinear tere? which is treated semi-implicitly, i.ac® = ™1 («™)2. In particular,
in view of (8), we define

->m+1 -9 (X + T Um"rl) (9)

To derive a weak formulation, we proceed asid,[314]: multiply  (5)—(7) and @) by test finctions
1// € Hl(F) andy € HL(I"), and use integration by parts for the second-order oper@atorFor

simplicity, we have hereafter dropped the superseript 1 for the unknowng™*1, etc. Furthermore,
using the notatior-, -) for the L2 inner product over the current interfat®, we arrive at the following
set of semi-implicit equations:

Problem 1. Form = 1,2,... find¥ € HY(I'™), x € HY(I'™), v € HY(I'™), andd € H(I'™) such
thatvy € HY(I'™) andvy € HL(™™),

(&, ¥) — Tm(ds0, ds¥) = (3X™, Bs¥),
(e, ) — (€ - A, ¢r) =0,
(V, ¥) + (7K, ) + € sk, dst) — %e«xm)% ¥) =0,
(0, %) — (vii, ) =0,
Now the discretization in space is straightforward. Consider a polygonal dyfvapproximating

I'. The polygonal segments are thought of as finite elements. Also for the polygonal curve, we
denote byii the outer unit normal ta}", which may be discontinuous across inter-element boundaries.

Denote byW[" € H l(FrT) the finite element space of globally continuous, piecewise linear functions
with corresponding nodal basis functiohﬁq),'-:l, wherel is the number of degrees of freedom. By
Wm CH 1(1}?”) we denote the finite element space of vector valued functions with nodal basis functions

(1//| )q 1.2 Ls Whereg/ﬁflq = 1€ with y, the alar basis function defined above agd &) the standard

.....

basis mRZ. Problem lis discreized by expanding the functioRs«, v, v in terms of thebasis functions
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and testing against all discrete test functions, i.e. solN&ngpblem 1in the finite dimesional spaces
Wi, Wiy I
To arrive at an algorithm in matrix form, expand the unknowns

L L L L
/?h=|21:K|1/f|, Kh=|21:KI1//I, 17h=IXl:V|1/f|, Uh=|21:VIWI

for some
K=(Ky..., KDt e R¥L, L=(Kg,...,KD e RE
V =(Vy,..., V)t e R V=(Vy,...,V)eRt
and define the mass, stiffness, and normal matrices:
M = (My), My = (Yx, ¥1); M = (M), M = (M) = (8qr Mia)
A= (A), A = (9s¥k, dsyn); A= (Ag), A = (AY) = (8qr A)
. _ (= _ €, m2
M, = (My k), M, —((V 2(K ) >1/fk,1/f|>
N=(Na).  Ng=(NJ = (¥ ¥in%

where the index ranges are<lk,| < L and 1< q,r < 2,8q = & - & is the Kionecker symbol, and
n% =f . & is theg-th gatial component of the normal.
The following algorithm is the matrix form of the discretizBdoblem 1

Algorithm 2. FindK,V € R?*L K,V € R such that
V 0 0 —N\ /V
0 M —Nt 0 K
—TmA 0 M 0 K
0 M,+eA 0 M

M

<
p>T1

O X100 0o
3

A Schur complement equation fa€, V reads

of5)- ()

where
o (M O _(-mA O M o) '/ 0 —N
—\o M 0 M,+eA/J\0 M -N' 0
B M —tmAM TN
— M, +eAMIN M ‘

The above formulation in turn gives rise to the final Schur complement equation for the single
unknownV:

(tm(M, + eAMIN'MIAMIN + M)V = —(M,, + eAMINIMLAX™, (10)
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Once the scalar velocity is obtained by solving Eq10), the unknownV is easily computed by solving
MV = NV, and thenX is updated through

X < X+ tmV.
We would like to mention that the same algorithm may be used to describe the Willmore flow of curves.
Indeed, choosing(¢) = 0 ande = 1, Eq. @) redwces tov = dssk + %K?’.

In order to show uniqueness of the discrete system it is sufficient to show t@t, itn, vh, vh)
sdisfies

(Kn, ¥h) — Tm(dsTh, dsyn) = O, (11)

(knh, W) — (kh - i, ¥n) =0, (12)
1

(Vh, ¥n) + (Pkn, ¥n) + €(dskn, ds¥n) — ée«xmth, Yn) =0, (13)

{Un, ¥n) — (vnR, Yn) =0, (14)
then(kn, «n, vh, vh) = 0. Insating Uh = &n in (11) andusing an inverse inequality one obtains
||’_éh||i2(pr:n) < TmllasﬁhIILz(pp)||3s/?hll|_z(pp) < Cfmh_zllﬁhIILz(pp)IIEhIILz(pp),

whereh is a lower bound on the lengths of the segmentsfifandC is a generic constant. Withn = 3
in (14) one getSITJhIILz(Fg) < ||vh|||_z(pi?w) and theefore

kRl 2(pmy < Crmh ™2 llvnll 2¢rm)- (15)
Usingyh = vy in (13) and plying again an inverse inequality one gets
o018z my < CQA+ ™) lunllizr Iknllzr).
where ve ssume: (k™)? < C. With ¥ = «p in (12) one get51|/ch|||_z(pﬁw) < ||/?h|||_z(pﬁn) and theefore
lonllL2(rm < C(L+ eh™?)[IRnllL2¢rm)-

Inserting his into (15) yields k, = 0 provided thatCtmh=2(1 4+ €h~2) < 1. This indicates that the
paraméerse, tm andh may not be chosen independently of each other and the way in which they are
related will certainly influence the stability of the scheme. In applications where faceting is madeled,
is a small parameter ande sets the length scale of the rounded corners $&on 3 for a numerical
verification). In order to resolve this length scale we therefore héed . This means that in practice

we have a time step restrictiap, ~ h? (andnot~h?).

3. Implementation and results

We implenent our numerical method using ALBERT, adaptive finite element software for scientific
computation 15. A simple (space) adaptive strategy is used. The one-dimensional finite element
mesh for the initial interface consists of elemewith almost uniform element size. This size is kept
approximately constant during time evolution, i.e. in each time step, nodes are inserted or removed, if
necessary. We note that adaptivity is indispensable for the algorithm to work in a parametric setting, since
the fourth-order term tends to bring some nodes very close together! Alternatively mesh regularization
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X<

Fig. 1. Anisotropyy (¢) = 1.0 4 0.9 cog4¢); (left) FrankdiagramF, , (right) Wulff shapeW,.

Fig. 2. Evolution under anisotropy(¢) = 1.0 + 0.9 cog4¢), attimet = 0,0.1, 0.5, 2, 5, 10, 15, 20; (left)e = 1.0, (right)
e =05.

may be usedsee e.g.11,16]. In order to test the algorithm, we chose a strongly non-convex anisotropy
function:

y(@) = 1.0+ 0.9cog4¢),  i.e.7(¢) = 1.0— 135cog4s), (16)

which exhibits a fourfold symmetrizig. 1shows the corresponding Frank diagram and the Wulff shape.
At ¢ = 0, %n, T, %n the conveified Frank diagram contains straight lines leading to the corners of
the associated Wulff shape. We compute the regularized anisotropic curve shortening flow starting from
a circle with radiusr = 5.0 for different values of the parametersee Figs. 2and3. The time step is
chosen to be;, = 10~ andh = 0.06.
The time evolution of the flow depends enfor decreasing the shriking of the curve is enhanced.
In all four cases the facets of the corresponding Wulff shapEign 1 are approximated very well.
Furthermore, as theoretically expected, it can be seer/thaets the length scale of the rounded corners;
seeFig. 4 The zoom in the upper corner in this figure clearly demonstrates this introduced length scale.
For e small enough, the solution becomes corrugated at the critical angles. This can be observed ir
Fig. 3(right) and is further described Fig. 5. Thenumber of wrinkles which develop in the early stage
of the evoldion is related to the size af. These oscillations turn into “facets”. After the “facets” are
built they tend to coarsen and lead to the final shape which corresponds to the Wulff shape.
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Fig. 3. Evolution under anisotropy(¢) = 1.0 + 0.9 cog4¢), attimet = 0,0.1, 0.5, 2, 4, 6, 8, 10; (left)e = 0.25, (right)
e =0.1.
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55} .
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45¢
- = ~05 0 0.5 1

Fig. 4. Solutions at = 3.0; from outer to inner curvee = 1.0, 0.5, 0.25, 0.1; (left) whole shape, (right) zoom in the upper
corner.
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Fig. 5. Zoom fore = 0.01, tm = 107, h = 0.03.
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Similar coarsening behavior has already been observed for a convective Cahn—Hilliard equation
in [17]. The conective Cahn—Hilliard equation can be interpreted as a small slope approximation of
the geometric evolutioralv sudied, as was shown irl]. A detailed analysis of the coarsening and
the dependence of the time evolution erfor the full geometric problem studied here will be given
elsewhere.
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