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Abstract

Realistic interfacial energy densities are often non-convex, which results in backward parabolic behavior of the
corresponding anisotropic curve shortening flow, thereby inducing phenomena such as the formation of corners
and facets. Adding a term that is quadratic in the curvature tothe interfacial energy yields a regularized evolution
equation for the interface, which is fourth-order parabolic. Using a semi-implicit time discretization, we present a
variational formulation of this equation, which allows the use of linear finite elements. The resulting linear system
is shown to be uniquely solvable. We also present numerical examples.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The evolution of interfaces is of great importance in many physical processes, including phase
transitions, epitaxial growth and the evolution of grain boundaries. One of the earliest theories describing
apurely interface-controlled evolution, i.e. independent of the behavior of the adjacent bulk phases, was
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introduced in [1]. Whenappropriately scaled, the derived equation, today known as mean curvature flow
– or curve shortening flow, if the interface is one dimensional – reads

v = −κ, (1)

wherev is the scalar normal velocity of the interface andκ its (mean) curvature. Eq. (1) is asecond-order
parabolic partial differential equation, which has been intensively studied in the past [2–5].

For one-dimensional interfaces, a generalization that encompasses an anisotropic interface energy
densityγ (φ), φ denoting the angle from a fixed axis to the unit normal�n of the interfaceΓ , reads

v = −γ̃ κ, γ̃ = γ + γ ′′. (2)

Hereγ̃ κ is the anisotropic (mean) curvature, which may also be introduced formally as the first variation
of the total interface energy

Eγ [Γ ] =
∫
Γ
γ (φ)dΓ .

Denoting withγ also the one-homogeneous extension onR
2, the Frank diagramFγ and the Wulff shape

Wγ of γ are defined as

Fγ = {�x ∈ R
2 | γ (�x) ≤ 1}

Wγ = {�x ∈ R
2 | �x · �n ≤ γ (�n)∀�n ∈ R

2, |�n| = 1}.
The Wulff shape denotes the equilibrium shape of the interface according to the introduced anisotropic
energy. It is well known that̃γ is strictly positive iff the Frank diagram is convex or iffγ is a convex
function onR

2. In this case, (2) is parabolic and well behaved; for a theoretical treatment see [3,6].
But crystalline materials are often endowed with interfacial energies which are not convex; see [7,8].
Such energies may lead to corners, facets and wrinklings of the Wulff shapeWγ and turn Eq. (2) into
a backward parabolic equation within non-convex ranges ofγ . One way to overcome this inherently
unstable behavior is to regularize the equation by adding a curvature dependent term to the interface
energy density, which was already proposed on physical grounds in [7]. As introduced in [9], choosing
an interfacial energy

γ + 1

2
εκ2,

with ε > 0 constant, leads to the highly nonlinear fourth-order parabolic evolution equation

v = −γ̃ κ + ε
(
∂ssκ + 1

2
κ3

)
, (3)

where∂ss denotes the second tangential derivative along the interface. This problem is similar to the
evolution of elastic curves, which has been examined both from a theoretical and numerical point of
view in [10].

In Section 2 we derive a finite element discretization of Eq. (3) using methods similar to those
in [11–13]. We start with reformulating Eq. (3) as asystem of second-order equations. Using a semi-
implicit time discretization, we will derive a variational formulation of this system, which allows a finite
element discretization in space using parametric linear finite elements. A Schur complement approach is
used to solve the resulting linear system. InSection 3, we presentsome numerical results.
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2. Variational formulation and finite element discretization

Introducing the position vector�x , the curvature vector �κ = κ �n, and the velocity vector �v = v�n,
and using the geometric expression�κ = −∂ss �x , Eq. (3) becomes equivalent to the following system of
equations for�κ , κ, v, and�v:

�κ = −∂ss �x, (4)

κ = �κ · �n, (5)

v = −γ̃ κ + ε
(
∂ssκ + 1

2
κ3

)
, (6)

�v = v�n. (7)

Let Γ (t) denote the interface at timet. Now split the time interval using discrete time instants 0= t0 <
t1 < · · · and definetime stepsτm := tm+1 − tm . We represent the next interfaceΓm+1 = Γ (tm+1) in
terms ofΓm = Γ (tm) by updating theposition vector

�xm+1← �xm + τm �v. (8)

In the time discretization, all geometric quantities such as�n and∂ss are evaluated on the current interface
Γm . In contrast to the geometricquantities, the unknowns�κ, κ, v, and�v are treated implicitly, with the
exception of the nonlinear termκ3 which is treated semi-implicitly, i.e.κ3 = κm+1(κm)2. In particular,
in view of (8), we define

�κm+1 = −∂ss(�xm + τm �vm+1). (9)

To derive a weak formulation, we proceed as in [11,13,14]: multiply (5)–(7) and (9) by test functions
�ψ ∈ �H1(Γ ) andψ ∈ H1(Γ ), and use integration by parts for the second-order operator∂ss . For
simplicity, we have hereafter dropped the superscriptm + 1 for the unknowns�κm+1, etc. Furthermore,
using the notation〈·, ·〉 for theL2 inner product over the current interfaceΓm , we arrive at the following
set of semi-implicit equations:

Problem 1. For m = 1,2, . . . find �κ ∈ �H1(Γm), κ ∈ H1(Γm), v ∈ H1(Γm), and�v ∈ �H1(Γm) such
that∀ψ ∈ H1(Γm) and∀ �ψ ∈ �H1(Γm),

〈�κ, �ψ〉 − τm〈∂s �v, ∂s �ψ〉 = 〈∂s �xm, ∂s �ψ〉,
〈κ,ψ〉 − 〈�κ · �n, ψ〉 = 0,

〈v,ψ〉 + 〈γ̃ κ, ψ〉 + ε〈∂sκ, ∂sψ〉 − 1

2
ε〈(κm)2κ,ψ〉 = 0,

〈�v, �ψ〉 − 〈v�n, �ψ〉 = 0.

Now the discretization in space is straightforward. Consider a polygonal curveΓm
h approximating

Γm . The polygonal segments are thought of as finite elements. Also for the polygonal curve, we
denote by�n theouter unit normal toΓm

h , which may be discontinuous across inter-element boundaries.
Denote byWm

h ⊆ H1(Γm
h ) the finite element space of globally continuous, piecewise linear functions

with corresponding nodal basis functions(ψl)
L
l=1, whereL is thenumber of degrees of freedom. By

�Wm
h ⊆ �H1(Γm

h ) we denote the finite element space of vector valued functions with nodal basis functions

( �ψq
l )

q=1,2
l=1,...,L , where�ψq

l = ψl �eq with ψl the scalar basis function defined above and(�e1, �e2) the standard

basis inR
2. Problem 1is discretized by expanding the functions�κ, κ, v, �v in terms of thebasis functions
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and testing against all discrete test functions, i.e. solvingProblem 1in the finite dimensional spaces
W

m
h , �Wm

h .
To arrive at an algorithm in matrix form, expand the unknowns

�κh =
L∑

l=1

�Klψl, κh =
L∑

l=1

Klψl, �vh =
L∑

l=1

�Vlψl, vh =
L∑

l=1

Vlψl

for some

�K = ( �K1, . . . , �KL)
t ∈ R

2×L , L = (K1, . . . , KL)
t ∈ R

L

�V = ( �V1, . . . , �VL )
t ∈ R

2×L, V = (V1, . . . , VL)
t ∈ R

L

and define the mass, stiffness, and normal matrices:

M = (Mkl), Mkl = 〈ψk, ψl〉; �M = ( �Mkl ), �Mkl = (Mqr
kl ) = (δqr Mkl )

A = (Akl), Akl = 〈∂sψk, ∂sψl〉; �A = ( �Akl), �Akl = (Aqr
kl ) = (δqr Akl)

Mγ = (Mγ,kl ), Mγ,kl =
〈(
γ̃ − ε

2
(κm)2

)
ψk, ψl

〉
�N = ( �Nkl), �Nkl = (N q

kl) = 〈ψk, ψln
q〉

where the index ranges are 1≤ k, l ≤ L and 1≤ q, r ≤ 2, δqr = �eq · �er is the Kronecker symbol, and
nq = �n · �eq is theq-th spatial component of the normal.

The following algorithm is the matrix form of the discretizedProblem 1:

Algorithm 2. Find �K , �V ∈ R
2×L , K , V ∈ R

L such that


�M 0 0 −�N
0 M −�Nt 0
−τm �A 0 �M 0

0 Mγ + εA 0 M






�V
K
�K
V


 =




0
0
�A �Xm

0


 .

A Schur complement equation for�K , V reads

S
( �K

V

)
=

(�A �Xm

0

)
,

where

S =
( �M 0

0 M

)
−

(−τm �A 0
0 Mγ + εA

)( �M 0
0 M

)−1 (
0 −�N
−�Nt 0

)

=
( �M −τm �A �M−1 �N
(Mγ + εA)M−1 �Nt M

)
.

The above formulation in turn gives rise to the final Schur complement equation for the single
unknownV :

(τm(Mγ + εA)M−1 �Nt �M−1�A �M−1 �N +M)V = −(Mγ + εA)M−1 �Nt �M−1�A �Xm . (10)
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Once the scalar velocityV is obtained by solving Eq. (10), theunknown �V is easily computed by solving
�M �V = �NV , and then�X is updated through

�X ← �X + τm �V .
Wewould like to mention that the same algorithm may be used to describe the Willmore flow of curves.
Indeed, choosingγ (φ) = 0 andε = 1, Eq. (3) reduces tov = ∂ssκ + 1

2κ
3.

In order to show uniqueness of the discrete system it is sufficient to show that if(�κh, κh , �vh, vh)

satisfies

〈�κh, �ψh〉 − τm〈∂s �vh, ∂s �ψh〉 = 0, (11)

〈κh, ψh〉 − 〈�κh · �n, ψh〉 = 0, (12)

〈vh, ψh〉 + 〈γ̃ κh, ψh〉 + ε〈∂sκh, ∂sψh〉 − 1

2
ε〈(κm

h )
2κh, ψh〉 = 0, (13)

〈�vh, �ψh〉 − 〈vh �n, �ψh〉 = 0, (14)

then(�κh, κh, �vh , vh) = 0. Inserting �ψh = �κh in (11) andusing an inverse inequality one obtains

‖�κh‖2L2(Γm
h )
≤ τm‖∂s �vh‖L2(Γm

h )
‖∂s �κh‖L2(Γm

h )
≤ Cτmh−2‖�vh‖L2(Γm

h )
‖�κh‖L2(Γm

h )
,

whereh is a lower bound on the lengths of the segments ofΓm
h andC is a generic constant. With�ψh = �vh

in (14) one gets‖�vh‖L2(Γm
h )
≤ ‖vh‖L2(Γm

h )
and therefore

‖�κh‖L2(Γm
h )
≤ Cτmh−2‖vh‖L2(Γm

h )
. (15)

Usingψh = vh in (13) and applying again an inverse inequality one gets

‖vh‖2L2(Γm
h )
≤ C(1+ εh−2)‖vh‖L2(Γm

h )
‖κh‖L2(Γm

h )
,

where we assumeε(κm)2 ≤ C. With ψh = κh in (12) one gets‖κh‖L2(Γm
h )
≤ ‖�κh‖L2(Γm

h )
and therefore

‖vh‖L2(Γm
h )
≤ C(1+ εh−2)‖�κh‖L2(Γm

h )
.

Inserting this into (15) yields �κh = 0 provided thatCτmh−2(1+ εh−2) < 1. This indicates that the
parametersε, τm andh may not be chosen independently of each other and the way in which they are
related will certainly influence the stability of the scheme. In applications where faceting is modeled,ε

is a small parameter and
√
ε sets the length scale of the rounded corners (seeSection 3 for a numerical

verification). In order to resolve this length scale we therefore needh2 ≈ ε. This means that in practice
we have a time step restrictionτm ≈ h2 (andnot≈h4).

3. Implementation and results

We implement our numerical method using ALBERT, adaptive finite element software for scientific
computation [15]. A simple (space) adaptive strategy is used. The one-dimensional finite element
mesh for the initial interface consists of elementswith almost uniform element size. This size is kept
approximately constant during time evolution, i.e. in each time step, nodes are inserted or removed, if
necessary. We note that adaptivity is indispensable for the algorithm to work in a parametric setting, since
the fourth-order term tends to bring some nodes very close together! Alternatively mesh regularization
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Fig. 1. Anisotropyγ (φ) = 1.0+ 0.9 cos(4φ); (left) FrankdiagramFγ , (right) Wulff shapeWγ .

Fig. 2. Evolution under anisotropyγ (φ) = 1.0+ 0.9 cos(4φ), at time t = 0, 0.1,0.5, 2,5, 10, 15, 20; (left) ε = 1.0, (right)
ε = 0.5.

may be used;see e.g. [11,16]. In order to test the algorithm, we chose a strongly non-convex anisotropy
function:

γ (φ) = 1.0+ 0.9 cos(4φ), i.e. γ̃ (φ) = 1.0− 13.5 cos(4φ), (16)

which exhibits a fourfold symmetry.Fig. 1shows the corresponding Frank diagram and the Wulff shape.
At φ = 0, 1

2π , π , 3
2π the convexified Frank diagram contains straight lines leading to the corners of

the associated Wulff shape. We compute the regularized anisotropic curve shortening flow starting from
a circle with radiusr = 5.0 for different values of the parameterε; see Figs. 2and3. The time step is
chosen to beτm = 10−5 andh = 0.06.

The time evolution of the flow depends onε; for decreasingε the shrinking of the curve is enhanced.
In all four cases the facets of the corresponding Wulff shape inFig. 1 are approximated very well.
Furthermore, as theoretically expected, it can be seen that

√
ε sets the length scale of the rounded corners;

seeFig. 4. The zoom in the upper corner in this figure clearly demonstrates this introduced length scale.
For ε small enough, the solution becomes corrugated at the critical angles. This can be observed in

Fig. 3(right) and is further described inFig. 5. Thenumber of wrinkles which develop in the early stage
of the evolution is related to the size ofε. These oscillations turn into “facets”. After the “facets” are
built they tend to coarsen and lead to the final shape which corresponds to the Wulff shape.
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Fig. 3. Evolution under anisotropyγ (φ) = 1.0+ 0.9 cos(4φ), at time t = 0,0.1, 0.5,2, 4,6, 8,10; (left) ε = 0.25, (right)
ε = 0.1.

Fig. 4. Solutions att = 3.0; from outer to inner curve:ε = 1.0, 0.5, 0.25, 0.1; (left) whole shape, (right) zoom in the upper
corner.

Fig. 5. Zoom forε = 0.01,τm = 10−5, h = 0.03.
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Similar coarsening behavior has already been observed for a convective Cahn–Hilliard equation
in [17]. The convective Cahn–Hilliard equation can be interpreted as a small slope approximation of
the geometric evolution law studied, as was shown in [18]. A detailed analysis of the coarsening and
the dependence of the time evolution onε for the full geometric problem studied here will be given
elsewhere.
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