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Abstract

A terrace-step—kink model for epitaxial step flow growth of steps with no bonds along them is derived from kinetic arguments. The
model is combined with an existing model for the steps that have strong bonding along them to describe steps of arbitrary orientation in
terms of densities of adatoms, step adatoms and kinks. A planar steady-state solution for a simplified version of the model is constructed
and analyzed. Different mass transport mechanisms are modeled that result in different far-from-equilibrium behavior, confirming that
edge diffusion is the main factor stabilizing the steps during growth. Furthermore kinetic Wulff shapes are constructed from the calcu-

lated step velocities.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Thin film growth by molecular beam epitaxy (MBE) is a
modern technology of growing single crystals that inherit
atomic structures from substrates. It is technologically rel-
evant, experimentally well-explored and a very active area
of theoretical research. Modeling of epitaxial growth is a
challenging multi-scale problem. Given the fact that the
macroscopic evolution of the growing film is directly re-
lated to movements of atoms on surfaces and their various
bonding configurations, it is appealing to use atomistic
scale simulations for a theoretical description of epitaxial
growth. However in order to reach the length and time
scales of interest for various applications continuum mod-
els have to be used. Today a hierarchy of models has been
investigated to describe epitaxial growth: From fully atom-
istic models, via semi-discrete step flow models to contin-
uum models for the height of the growing film. The main
challenge in modeling epitaxial growth is to bridge the
gap between these different models and to describe growth
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processes on a continuum scale by incorporating atomistic
effects. For a recent review on such attempts we refer to
[1,2] and the references therein. Here we will concentrate
on how to incorporate a detailed atomistic description of
processes in a semi-discrete step flow model. Step flow
models can be viewed as a mesoscopic description of crys-
talline surfaces. On an atomistic scale the surface consists
of atomistically flat terraces, which are separated by steps
of monoatomic height. As first pointed out by Burton
et al. [3] the advancement of these steps, their nucleation
and annihilation, can be used to describe the surface mor-
phology. The model is semi-discrete, discrete in the height
resolving the atomistic layers, but continuous in the lateral
direction, describing the hoping of adatoms on terraces via
a diffusion equation. The steps are thus free boundaries for
this diffusion equation, evolving according to the adatom
fluxes from the terraces.

The basis for our approach to incorporate atomistic de-
tails in such a mesoscopic model was given in [4,5]. They
introduced a terrace-step—kink model which circumvents
the close-to equilibrium assumption in the classical
Burton-Cabrera-Frank model [3,6,7], by relating the
adatom fluxes from the terraces to the step to kinetic fluxes
due to exchange processes between adatoms, step adatoms,
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kinks and the crystal itself in an atomistic picture. The
model is derived for [100] steps and assumes right- and left
facing kinks to be only of height one. Furthermore only
nearest-neighbor interactions are accounted for. Through
a more detailed description of the atomistic fluxes we were
able to extend the validity of this model to larger kink den-
sities [8,9], which allows us to use it in far-from-equilibrium
growth regimes and also for step orientations “[100]+ 6,
with 0 small. However, to simulate epitaxial growth a mod-
el is needed, which is valid for all orientations. If we con-
sider island growth, it is clear that a model, which is only
valid close to the [100] direction, is not sufficient. But also
in the step flow regime, a step train initially in [100] direc-
tion, will not remain in this direction, due to various insta-
bilities, leading to a meandering of the step and thus local
orientations far away from the initial direction.

The [100] model gives completely wrong results at large
deviations from the direction it is derived for. Take equilib-
rium, for instance: Treating [110] step as “[100]+ n/4”
would give the equilibrium kink density as kjyq. 0 =
27"2¢7!, while the correct value should be kio =
2712 /2 (see [3]). Out of equilibrium, the situation is
similar, since our “[100]+ 0” model does not allow for
kinks of heights larger than 1 making most of the processes
occurring at [100] steps impossible at [110] steps, for
example. Here we therefore will extend the previous work
to treat also step orientations “[110]— 6, with 6 small.
We thus propose a compromise solution by having two dif-
ferent models for vicinities of [100] and [110] steps.

The outline of the paper is as follows: In Section 2 we
review the structure of the terrace—step—kink model intro-
duced in [5] and adapt it to describe [1 10] steps. In Section
3 we analyze the model, considering the equilibrium solu-
tion and a specially constructed planar steady-state solu-
tion and compare the results with the [100] model. In
Section 4 we push the limits of both the [100] and [110]
model to consider orientations “[100]+ 6” and “[110] —
0, such that all orientations are covered and compute
kinetic Wulff shapes from specially constructed solutions.
Finally we draw conclusions in Section 5.

2. Kinetic step flow model

We denote by Q the projected domain of a film surface,
and assume that Q is independent of time 7. Now, islands or
terraces of discrete height i are subsets of this time indepen-
dent domain and we denote them by Q, = Q(¢), i =0,1,...
The steps are then the boundaries of these islands or ter-
races and we denote them by I';=1I'(1), i=1,2,... As in
the classical Burton—Cabrera—Frank model [3] we denote
by p; = pd{x,y,t) the adatom density on terrace Q) at po-
sition (x,y) and time z. The adatom diffusion on a terrace is
described by the diffusion equation for the adatom density:

0,p; _DTVZPi = _T_lpi +Fr in Qi(t)’ (2'1)

where D is the adatom diffusion coefficient on a terrace,
77! is the desorption rate and Fr is the deposition flux rate

onto the terrace. Now in contrast to [3] the fluxes of
adatoms to the steps are given by

—DrVp; -1 —vip; = fiy,
DrNp; - Hi - vipy = fio

(2.2)
(2.3)

where f; 4 is the net flux from the upper terrace Qf) and
Ji.— the net flux from the lower terrace ©;_,(¢) to the bound-
ary I'(t), which will be specified. In [3] and various gener-
alizations of it, e.g. [6,7] the definition of these net fluxes
assumes the step to be in equilibrium or close to equilib-
rium. The terrace-step—kink model circumvents this
assumption and allows more realistic far-from-equilibrium
situations. #; is the unit normal of the step I'(¢) pointing
from the upper to the lower terrace, and v; is the normal
velocity of the step I'() with the convention that v; > 0 if
the movement of I'y(¢) is in the direction of #;. The terms
vp; describe the convection of adatoms due to the motion
of the step and are needed for mass conservation.

In order to define the net fluxes f; . we introduce a step
adatom density ¢; and a kink density k; along each step
I'(t),i=1,2,... The step adatoms diffuse along the moving
step I'{?) according to

0,p; +v;(1+ az(pi;c,-) - DEaf(pi =Fg; (2.4)

in which D is the step adatom diffusion coefficient on a
step, Fg; is the net flux rate to the step, v; the normal veloc-
ity of the step, x; the mean curvature of the step and 0
denoted the derivative with respect to the arc length.
The equation holds on a smooth (coarse grained) step.
The same is true for the equation for the kink density along
the step I'{(t), which reads

atki + as(wi(ni,r - nL/)) = 2(g1 - hi)7 (25)

where w; is the kink velocity on step I'(1), g; the gain due to
production of kinks, /; the loss due to reduction of kinks
on step I'(?) and n;, and n,;; denote the density of right
and left facing no-kink positions. Among the elementary
processes that occur at the step there are those that create
or annihilate kinks. Assuming growth (as opposed to etch-
ing), we group these processes in g; and /;, so that they
represent the kink production and reduction rates, respec-
tively. In case of etching, their respective meaning would
obviously be reversed. Even if Egs. (2.4) and (2.5) are de-
fined on a coarse grained smooth step, what we essentially
model is the underlying microscopic picture. When we
speak of the step adatom diffusion, we essentially mean
migration along the straight segment of a close packed step
as it is discussed in [10,11], which will come clear in the def-
inition of the quantities Fg, w;, h; and g;. Here we do not
automatically consider step adatoms to be a simple pair
of kink of opposite sign facing away from each other.
When an atom is attached to either side of a step adatom,
these sides behave like individual kinks. There are, how-
ever, other processes. For instance, a kink is characterized
by a velocity, with which it moves along a step. Kinks of
opposite sign are expected to move with equal velocities
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but in opposite directions. Such a motion of kinks along a
step contributes to the step velocity and growth rate. How-
ever, when a step adatom moves along a step, both its sides
move in the same direction without contributing to growth
rate, which means that the two “weak kinks” forming a
step adatoms are so strongly bound to each other, that they
lose their individual characteristics. Also, in our general
treatment we allow for detachment of step adatoms back
to the terrace, this process being energetically different
from detaching an atom from a kink site. Overall, since
two sides of a step adatom do not always act like two
kinks, we choose to treat step adatoms as a special species
rather than a simple combination of two kinks. Step vacan-
cies, on the other hand, are treated as two kinks facing each
other, because both kinks retain their characteristics. In
case of etching, the situation might have to be reversed.

Egs. (2.4) and (2.5) have been introduced in [5] for [100]
steps. However, they are independent of the definition of
the fluxes f;. and the terms Fg; w;, g; h;, and thus can
be used for other orientations as well. Until now the model
is a general model without any restriction on the crystallo-
graphic structure of the film. However by defining the
quantities f; , Fg; w; g; and h; we will restrict ourself to
a simple cubic SOS model.

To relate the quantities defined per unit arc length in the
macroscopic description to the atomistic description, we
need to project them to the [110] direction. We therefore
introduce the projected quantities p; = a2p;, @; = 2~ *ag,
cos 1(0)), ki, =2""ak;,.cos 1 (0,), k;;=2"""ak;,;cos'(6;),
fi,, =2""2an;,cos(0;) and 7;; =2""*an; ;cos'(6;), which
are probabilities per site. Here a is the lattice constant.
These projections have been neglected in the previous mod-
els for [100] steps because deviations from this orientation
have not been considered. However the models in [8,9] can
be modified in the same way if in the definition of the atom-
istic fluxes the quantities are projected onto [100] direction.

For [100] steps, we have the relation tan(6;) = k;, — ki,
with k;, and k;, right and left facing kinks, respectively, and
ki = k;, + k;;. Here 0, is the angle between one of the low
index crystallographic directions and the normal to the
curved step I'(?).

&
2
¢

i fa fi

For [110] steps the total density of kinks on ') is
ki = k;, = k;; and the orientation of the step is given by
tan(60;) = 0.5(n;, — n;;). Here 0, is between [110] direction
and the step. We further have the constraint n;, = 1+
tan0 — k;, and #,; = 1 —tan0 — k;;, which results from
ni, +ni + ki, + I_Ci,l =2.

A definition of the fluxes f; 1 for [100] steps is given in
[8,9]. Here we derive the corresponding fluxes for [110]
steps. We thus now define the quantities Fg,;, w;, g; and h;
for [110] steps and relate them to the fluxes f; . in Egs.
(2.2) and (2.3). By doing so we go to an atomistic descrip-
tion of the step and consider all possible ways how an ada-
tom and a step adatom can be incorporated into the crystal
lattice. Within a mean field assumption all possible pro-
cesses which include adatoms on the upper (+) or lower
(—) terrace are illustrated in Fig. 1.

To define the fluxes let us consider an example: an adatom
from Q;_(#) becomes a step adatom on I'(z) on a straight
right-facing segment (f};) (see Fig. 2). The probability to
have an adatom is p;, ;. We need to have two no kink posi-
tions to be able to generate a new step adatom. The prob-
ability is 72,. Furthermore we do not want the position to
be already occupied by a step adatom. The probability to
find an open position is (1 — @;). The hopping rate is given
by D;a 2, where “—” indicates the hopping from the lower
terrace “7” to the step “E”. The contribution to the flux
f;; due to attachment is thus given by p, 72 (1 —
®i)D;za2. We also need to take the opposite process into
account to incorporate desorption from the step I'{z) back
to the terrace Q,_(¢). The probability to have one step ada-
tom on a right facing straight segment is @;, in addition we
again need two no kink positions fzir and an open position
on the terrace to hop on (1 — p, ). We multiply by the
hopping rate D;ya~>. This gives the contribution to f},
due to detachment —@;ii? (1 — p;—1)D;ra 2. Adding both
gives the definition of f;;. All other fluxes can be computed
in the same way and lead to the following definitions cor-
responding to the processes illustrated in Fig. 1. The nota-
tion is chosen in such that in f;7, + and — indicate the
upper and lower terrace, respectively, kK = 1,2 indicate pro-
cesses which do not change or change the density of kinks,

Fig. 1. Microscopic fluxes between the upper and lower terrace and a step, that explicitly change the density of adatoms, step adatoms (left) and kinks
(right). Adatoms (dark gray), step adatoms (light gray), kinks (white), dotted contours depict atoms inside the bulk.
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Fig. 2. Microscopic fluxes between a step and a kink site, that explicitly
change the density of step adatoms and kinks. Step adatoms (light gray),
kinks (white), dotted contours depict atoms inside the bulk.

respectively, and / =1,2,...
possibilities:

is a numbering of the different

S = Digaiy, (1 = @:)p; — Djza i, (1 = b)) i, (2.6)
fis = Diga (1 = @,)p; — Dira™ iy (1 — pi) i, 27)
oy =2D}a*pk} — 2D a (1 — po)kig iy, (2.8)
f3 = 2Dpa *pikin, — 2Djra > (1 — po)kini,, (2.9)
Sy =2Dj.a” 2pik; i, — 2Da” 21 - ,6,-)1}?, (2.10)
foh = 2Dha*piking — 2D a7 (1 — py)kingy, (2.11)

which include all processes in which adatoms on the upper
terrace are involved, and

f171 = 2D;Ea72ﬁi,r]_€i(1 - @i)pi 2DETa (1 Pz ) lrl_cl@h
(2.12)
fi2 = Dpa 0, (1 = @)piot — Dpra (1 = pi )11}, @i, (2.13)
Ji3 =2Dpa” ”i.,lki( — @i)pi-1 — 2Dgpa” (1 Pi—1)7; ki (i,
(2.14)
S = DTEa ” (1 — @i)pi-1 — Dira” (1 — pi1)i ,?,1(7’1‘, (2.15)
le = 2DTKa pi—lki — ZDKTa kl(l — ,—_l)ni,niyh (216)
Sy = Dea 2 pi 1 k27, — 2D (1 — piy) KA, (2.17)
foz = Dpea 2 pi k27 — 2D, (1 — piy)kPm (2.18)

for processes in which adatoms on the lower terrace are in-
volved (see Fig. 1). All fluxes are defined per unit site pro-
jected onto [110] direction. The diffusion coefficients Dy,
indicate hopping from X to Y, with X, Y = T (terrace), £
(edge), K (kink). The differences in Dj, and Dy, D;, and
Dy, as well as in their inverse counterparts model the Ehr-
lich—Schwoebel effect [12,13]. In order to relate these fluxes,
which are defined per unit site in [110] direction to f; 4 in
Eq. (2.2) and f; _ in Eq. (2.3), defined per unlt area on
the curved step, we need to multiply by 2124~ 'cos(0,). Thus

=SS LA S+ 2 Pa  cos 0, (2.19)
fie =+ S+ fia+ L+ Lo + o+ f53)22a" cosb;.
(2.20)

In order to define Fi;in Eq. (2.4), we have in addition to
the contribution from the upper and lower terraces f;" and

Ji» respectively, with fi" = /i + fi; and f" = fi + /o +
f13 + f12» to consider exchange processes between step ada-
toms and kinks. The corresponding fluxes are

for = Dixa > @ik;ni, — Dipa (1 — @))kiit;, iy (2.21)
oo = Diga™ > @ik} iy, — Digga™* (1 = @o)ki7;,., (2.22)
foi = Dja 20k, — Dfya (1 — qo,-)k,-ni,,.nivl, (2.23)
Joa =D K‘fz@zk, 7’,-2,/ - D]?EMZO - (771')1;,-2’771-2,/ (2.24)
for processes from above and

for = Dga 2@k’ i, — Dega (1 — @)k, (2.25)
for = Dpga @ikt i — Diga > (1 — @)k, (2.26)
fos = Dppa 2 pikin — Diga > (1 — @)k, (2.27)
oy = Dgxa ity iy — Digga™ (1 — 9k} (228)

for processes from below (see Fig. 2). The differences in
D}, and D, as well as Dy, and Dy, model the kink
Ehrlich—Schwoebel effect, e.g. [14-16]. For simplicity we
assume the same diffusion coefficients for left- and right-
facing kinks. Again we need to relate these fluxes defined
per unit site in [1 1 0] direction to Fi; through 21 2a~'cos(0))

Fro= (il + 5+ fio + fia + fiz + £13)2"a " cos ;.

Due to the attachment of adatoms and step adatoms
into kinks, the kinks move along the step. The velocities
for left- and right-facing kinks are —w; and w;, respectively.
The resulting convective flux of kinks with respect to s is
win;, — n;;) = w,—23/2cfl sinf); with

Wi = ﬁ(fzz + o+ o+ s e+ i+ fa
+ fi3)2"* cos 0.
The gain due to kink production is
g = (f3s + Joa + f0a)2" 70" cos 0,
and the loss due to kink reduction is
he = (fs + for + 1o + £i5)2"2a cos 0.

For the velocity law, describing the movement of the
steps I'(t) in normal direction, we take the same form as
for the [100] model with &; being replaced by n,, + 7;,

v = wi(g, + 1) + (g + h))a* (2.29)

3. Equilibrium and planar steady-state solution
3.1. Equilibrium and detailed balance

As in the [100] model [8,9] we first consider equilibrium.
At equilibrium, p; = p. The principle of detailed balance
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requires that all fluxes f;7 = 0. From these assumptions it
follows for equilibrium density of adatoms, edge adatoms
and kinks

+
DKT

[ ——{ — 3.30
DL+ D5 330
Di

ot =K 331
T Dy + D 30
- 1

K== 3.32
i 27 ( )

which is the same as for the [100] model for p;* and @;".
The equilibrium kink density coincides with BCF’s expres-
sion for the kink density for the corresponding case. With
expressions (3.30)—(3.32) for adatoms, step adatoms and
kinks, all expressions for f;7 =0 are satisfied identically
and provide consistency conditions, which restrict the pos-
sible values of the diffusion coefficients. The remaining
coefficients Dy, Dy and Dy, with X, Y =T, E,K, B are de-
fined through D = Pv, with /* the mean square distance
covered by a single jump and v = vy exp (— ,(BLT), the jump
rate, with vy the attempt frequency and £ = E, — Ej, the en-
ergy barrier that has to be overcome, with E the transition
state energy and Ej the binding energy. As in the [100]
model these are the only remaining parameters in the mod-
el, they can in principle be computed ab initio, which turns
the equations into a parameter free model.

3.2. Planar steady-state solution

We now consider as in the [100] model the simplest con-
ceivable statistical mechanics model of a crystal surface, a
cubic solid-on-solid (SOS) model and analyze a planar
steady-state solution for a periodic sequence of steps,
separated by distance 2L and moving at velocity v = v,
i=1,2,... along the [1 10] direction. From the constructed
equations, which are identical to the ones derived for the
[100] model, we can calculate steady-state values for the
densities of kinks, step adatoms and adatoms on terraces
near the step. We define the dimensionless edge Peclet num-
ber Pgep = 2a°F7L/Dg and the calculations are done with
Dg=10" and L = 10*

3.2.1. Kink density

Equilibrium kink density does not depend on either the
terrace or edge diffusion coefficients and is equal to
k4 = 1/2. Out of equilibrium, kink density starts to change
(see Fig. 3). We can see that at very small edge Peclet num-
bers the kink density is almost constant, then it starts
decreasing, i.e., the step roughens, and with further
increase of the edge Peclet number asymptotically ap-
proaches a certain constant. This means that [110] steps
do not fall apart into large segments of [100] steps but
are rather stable even far-from equilibrium. It turns out
that this asymptotic value is almost independent of either
the terrace or edge diffusion coefficients, while the value

0.5

=™ 0.48 \

0.46 N

log(P,,)

Fig. 3. Kink density as a function of the edge Peclet number.

of the edge Peclet number, at which the kink density starts
switching from its equilibrium value to the far-from-equi-
librium value, depends on those coefficients. Unlike kink
density along [100] step, we do not observe any scaling
law for the kinks as a function of the edge Peclet number.
The stabilization, keeping the step in the [1 10] direction re-
sults from edge diffusion, which will be shown by compar-
ing the step roughness if edge diffusion is allowed and
suppressed.

3.2.2. Step adatom and adatom density

Step adatoms and adatoms on terraces behave very sim-
ilarly. Their densities are almost constant at very small
edge Peclet numbers, then gradually increase and approach
linear dependence on the edge Peclet number far-from
equilibrium (see Figs. 4 and 5). Therefore, far-from-equilib-
rium adatom and edge adatom densities scale linearly with
the edge Peclet number. This is consistent with the kink
density being constant. If the kink density does not change
with increase of Peclet number, i.e., by increasing deposi-
tion flux, all the extra material must go into adatoms and
step adatoms. Linear scaling for both adatoms and step
adatoms means that far-from equilibrium the step adatom
density is linear with respect to adatom density, which is

-3
=4
g
_5 /

log (P,,,)

Fig. 4. Step adatom density as a function of the edge Peclet number.
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Fig. 5. Adatom density as a function of the edge Peclet number. Solid line corresponds to the density on the upper terrace, dashed to the density on the
lower terrace (left). Relative difference of the adatom densities on the upper and lower terrace (right).

expected, since we have no non-linear processes involving
adatom-step adatom interactions, such as one-dimensional
nucleation. The non-linear correction factors (1 — @) and
(1 — p) are both very close to unity and do not influence
the observed linear dependency.

The upper and lower terrace adatom densities show an
asymmetry. As for the [100] step, this results in an effective
inverse Ehrlich-Schwoebel barrier. At very small Peclet
numbers the adatom densities on the terraces are almost
symmetric, while far-from equilibrium the lower terrace is
about 20% more densely populated near the step than the
upper terrace (see Fig. 5). Thus as in the [100] model,
depending on the step configuration the asymmetry might
lead to step bunching, whereas an energetic difference in
the attachment and detachment processes from the upper
and lower terrace, due to the Ehrlich-Schwoebel barrier
might lead to step meandering. So both instabilities could
appear simultaneously on a surface, as experimentally ob-
served in [17] or obtained by KMC simulations [18]. On
the other side, depending on the local step configuration,
both effects, the effective inverse Ehrlich—-Schwoebel effect
and the usual step Ehrlich-Schwoebel barrier can also
eliminate each other. Computations demonstrating this
for [100] steps are shown in [19].

3.2.3. Mass transport mechanisms

Since we have included many different processes into our
model, we can simulate various mass transport mechanisms
by blocking some of the processes. In case of [100] step it
resulted in different scaling exponents for different mass
transport mechanisms. We consider several different sce-
narios for the [110] step. Of course, there are many more
options but these are the most illustrative. The results are
shown in Fig. 6.

1. General case. This is the case we have described so far.
All processes are possible. The step starts to roughen
with increase of the edge Peclet number but then the

1 (4)

=™ 0.5

log(P,, )

Fig. 6. Kink density as a function of the edge Peclet number for the
different mass transport mechanisms (1)—(5).

kink density saturates and does not decrease below
approximately 0.45. We obtain an effective inverse
Ehrlich-Schwoebel barrier from the asymmetry in the
adatom concentration.

2. No edge diffusion. The step roughens until the kink
density reaches 0.40, so the roughening is a little stron-
ger than in the general case, which indicates that
edge diffusion has a stabilizing effect on the step. Again
we observe an effective inverse Ehrlich-Schwoebel
barrier.

3. No direct adsorption. Processes of direct interaction
between terraces and bulk sites are blocked, thus ada-
toms first become edge adatoms, which are then incor-
porated into kinks. Thus edge diffusion is the only
mass transport mechanism. The steps start to smoothen
but stops at 0.61. Here we observe an effective normal
Ehrlich-Schwoebel barrier.

4. No direct adsorption and infinitely large normal kink
Ehrlich—Schwoebel barrier. In this case step adatoms
cannot jump into kinks from above. This results in the
extreme case of step smoothening [20] when the kink
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density approaches unity and indicates that it is the slid-
ing of step adatoms into kinks from below that has a
stabilizing effect on the step structure [14], while jumping
of step adatoms into kinks from above resist that
stabilization.

5. No direct adsorption and infinitely large inverse kink
Ehrlich—Schwoebel barrier. In this case step adatoms
cannot slide into kinks from below. The [110] step
separates itself into very long kink-free segments and
we can no longer apply our model as these segments
have to be treated as [100] steps, for example, we will
have to include negative kinks. This case is most likely
to be unphysical. We only use it to further illustrate
the point that while attachment of step adatoms by slid-
ing into kink from below stabilizes the structure, attach-
ment by jumping down into kink from above has the
opposite effect.

The first three cases correspond to the special cases
we considered in our [100] model (see [9]). The main
results are very similar: edge diffusion stabilizes the step
as it is rougher during growth without edge diffusion.
The difference is that the effect of edge diffusion on the
[110] step is so strong that the step can actually become
smoother than in equilibrium. But this has already been
reported [20]. The last two cases are variations of the
third case and have not been analyzed for the [100]
model.

4. Dependency on the angle 0

Until now we have analyzed the models for [100] steps
(see [8,9]) and [110] steps only in the crystallographic ori-
entations they are derived for. However these models are
also valid for orientations “[100]+ 6” and “[110]— 6",
for small values of 0, respectively. We will consider here re-
sults from the equilibrium and planar steady-state solu-
tions of both models for different values of 6.

4.1. Equilibrium properties

Fig. 7 shows the equilibrium kink density for both mod-
els as a function of 0. We compare the equilibrium kink
density with the expression derived in [3], which we correct
to include the change of unit length. We obtain a good
agreement for small angles with the [100] model and for
large angles with the [110] model.

Another equilibrium property of interest is the step
stiffness or the step free energy. Within a similar model
for [100] steps Margetis and Caflisch [21] compute the
step stiffness as a function of orientation close to the
[100] direction. The obtained functional form is close to
the recent derivations of Stasevich et al. [22]. We do not
intend to compute the angular dependence of the step
stiffness here, but rather are interested in kinetic properties
as they are assumed to play an even more important role in
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Fig. 7. Equilibrium kink density in the “[100]+ 6" and “[110]— 6
model. The equilibrium kink density is computed for each value of 0 and
shown as a function of 6. [ denotes the [100] model, ¢ denotes the [110]
model and — denotes the BCF model, which is corrected to account for
changes in unit length.

epitaxial growth, as a far-from-equilibrium growth process
[23].

4.2. Kinetic properties

Out of equilibrium, the two models lead to quantita-
tively different results, thus we do not intend to extend
either of the models to large angles. However, we do not
expect any special effects occurring at steps of such direc-
tion either. Any direction away from a low index crystallo-
graphic orientation has additional geometric kinks, which
will contribute to the growth process. Thus these directions
are assumed to grow faster than the low index crystallo-
graphic directions, and thus will not be present during
growth.

We now consider the normal velocity for various orien-
tations. The normal velocity of a step in the planar steady-
state setting is independent of the direction of a step and,
therefore, of its structure, and be always equal to 2FL,
where F is the deposition flux and 2L is the distance be-
tween the steps. What we do in our model essentially is
classify atoms on the surface into three types that are dis-
tinguished by the number of lateral bonds they have — ada-
toms on terraces with no lateral bonds, step adatoms with
one lateral bond and step (or bulk) atoms with two or more
lateral bonds. Then it is clear that the growth rate should
include all the processes that convert terrace and edge ada-
toms into bulk atoms, minus the opposite processes. This
is simply the mass conservation requirement. Therefore,
when the densities of adatoms, step adatoms and kinks
do not change in time, all of the deposition flux must con-
tribute to the step velocity. We define step velocity in terms
of various microscopic fluxes that contribute either to kink
velocity, kink creation or kink annihilation. None of these
fluxes explicitly contain either F or 2L, they only enter the
model through the boundary conditions for adatom den-
sity and the step. Thus, calculating step velocity and
comparing it with 2FL is a good check of the model’s
consistency. We did the consistency check for planar
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steady-state solution in both models for various angles and
it confirmed that both our models are mass-conserving.
Another point is the definition of the step velocity itself.
Based on the mass conservation arguments, we have de-
rived a velocity law that contains terms accounting for
the motion of kinks along a step as well as for creation
and annihilation of kink pairs. This velocity law is a very
general expression that is valid for steps of any direction.
Conventionally, it is assumed that growth only occurs at
kink sites [6]. Our expression for the step velocity, Eq.
(2.29) allows us to determine quantitatively the contribu-
tion of the kink creation g and annihilation / processes
to growth. We calculate the ratio of the fluxes correspond-
ing to creation and annihilation of kinks and the fluxes cor-
responding to the kink motion. We see that in the vicinity
of [100] step the contribution from the creation and anni-
hilation of kinks is small and the conventional expression
v; = aw;ikicos(0,), used in [6,5], is a fairly good approxima-
tion for the step velocity. In the vicinity of [110] step the
contribution from the creation and annihilation of kinks
is very essential and cannot be neglected (see Fig. 8). How-
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Fig. 8. Importance of kink creation-annihilation terms compared to kink
velocity in estimating step velocity. Solid lines correspond to F=0.1,
dashed lines to F=1.0.
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ever for a step of any direction, mass is not exactly con-
served without taking these processes into account.

4.3. Kinetic Wulff shape

In a crystal at equilibrium, the distances of the faces
from the center of the crystal are proportional to their sur-
face free energies per unit area, which determines the Wulff
shape [24]. However, crystals that grow under the control
of interfacial kinetic processes tend asymptotically toward
a “kinetic Wulff shape,” the analogue of the Wulff shape,
except it is based on the anisotropic interfacial kinetic coef-
ficient (see e.g. [25]).

The kinetic Wulff shape can not be computed from the
planar steady state of an equidistant sequence of steps.
But both our models, for [100] and [110] steps can be
modified to treat single steps instead of trains of steps. This
can be done as follows: instead of using the deposition flux
as an external parameter and solving adatom diffusion
equation on the terrace with boundary conditions at the
steps, we introduce the supersaturation of adatoms near
the step. In this case, steps do not feel each other and their
structure will not depend on the step-to-step distance. In
this limit we have a different type of boundary condition
in our system that does not require global mass conserva-
tion. So instead of (2.2) and (2.3) we consider in the defini-
tion 0fﬁ,+a ﬁ‘,, FE’[, Wi, i and //li

P = peq(l + ai)v
piy = Pl +0i1),

with o;;_; the supersaturation near the step. In this case the
adatom density is independent of the step orientation and
we can expect that the step velocity will become angle-
dependent, which will allow us to numerically construct a
kinetic Wulff shape.

First we use our [100] model with angles up to n/4 to
calculate the velocities of steps at the steady state and plot
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Fig. 9. Angular dependency of velocity obtained from [100] model (right) and [1 10] model (left). Radial scale is in units length per unit time.
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these velocities in polar coordinates. The angular velocity
diagram is shown in Fig. 9 (right). It shows how fast steps
of different orientations would grow. It has cusps at around
0, m/2, © and 31/2 suggesting that [1 00]-like steps will grow
slower than their vicinal steps, so [100] facets may develop
during growth if we start from a circular island. Another
thing that we see is that [110]-like steps grow even slower
the [100]-like steps. In fact, they are completely blocked
from growing at all, which means that if we start growing
a circular island, it will gradually become a perfect dia-
mond and will just stop growing, which is of course wrong
and only shows the limits of the [100] model. With increas-
ing deviation from [100] direction, the importance of kinks
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of multiple height increases, while the [100] model only
considers single kinks. Obviously, it underestimates the
step velocity at larger angles.

Now let us do the same for our [110] model. Again we
use the model for angles of up to /4 and plot the velocity
in polar coordinates (see Fig. 9 (left)). The [110] step grows
faster than any other step and the [100] steps are blocked
from growing. The reason is the same as before, at n/4
the kink density is zero and no processes are possible within
the [1 10]model. Thus, the [1 10]model fails at large angles.
Since it neglects negative kinks and one-dimensional nucle-
ation, it also underestimates the step velocity. Thus, until we
have a model that is accurate for any direction, which is not

-0.15 -0.10 —0.05 0
0, rad

0.05 0.10 0.15

Fig. 10. Angular dependency of velocity obtained from a combination of [100] and [110] model for different mass transport mechanisms (left).
Enlargement of the cusps near 0 in a Cartesian coordinate system (right). The lines correspond to cases 1-3 in Section 3.2.3: (red) general case, (yellow) no
edge diffusion and (black) no direct adsorption. Radial scale is in units length per unit time. (For interpretation of the references in colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 11. Kinetic Wulff shape obtained from the combination of the [100] and [110] model. Enlargement of Fig. 10 with corresponding Wulff shapes (left)
and enlarged Wulff shapes (right). The lines correspond again to cases 1-3 in Section 3.2.3: (red) general case, (yellow) no edge diffusion and (black) no
direct adsorption. Radial scale is in units length per unit time. (For interpretation of the references in colour in this figure legend, the reader is referred to
the web version of this article.)
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yet derived, we can roughly estimate the angular depen-
dence of the step velocity by taking the larger value of the
step velocity given by [100] and [110] models. This estima-
tion contains an implicit assumption that nothing special
happens at directions other than [100] and [110]. The
resulting plot is shown in Fig. 10. The plot has cusps at 0,
n/2, © and 3w/2 suggesting that the shape of a growing
island would be a square bounded by [100]-like facets.

We now plot the kinetic Wulff shape for the three differ-
ent mass transport mechanisms described in Section 3.2.3,
resulting from the angular dependency of the velocity (see
Fig. 11). The plot shows the suggested square as the kinetic
Wulff shape with [100]-like facets for all three mass trans-
port mechanisms.

5. Conclusions

In contrast to the boundary conditions in the Burton-
Cabrera—Frank model, which assume a close-to-equilib-
rium situation, we construct a kinetic model, which is also
valid far-from-equilibrium. The only remaining parameters
in this model are kinetic hopping rates for a given set of
microscopic processes. These are essentially the same
parameters as used in kinetic Monte Carlo (KMC) models,
and can be computed from first principles. Thus the con-
structed model combines a detailed microscopic description
with the computational efficiency of numerical methods for
differential equations.

Within a simple cubic solid-on-solid model, we consider
two different step orientations, [100]and [110] steps. [100]
steps are aligned along the closed-packed orientation and
have strong nearest-neighbor interaction bondings along
them, which makes them relatively smooth in equilibrium.
In contrast to that, [110] steps are aligned along the direc-
tion geometrically farthest from the closed-packed orienta-
tion and, since we do not take second-nearest-neighbor
interactions into account, have no bonding along them
making them rough in equilibrium. Out of equilibrium,
their behavior is also different. By modeling different mass
transport mechanisms, we conclude that diffusion of step
adatoms along the edge of the step provides a stabilization
of step against roughening. We use a combination of our
models for [100] and [110] to approximate steps of arbi-
trary orientation. For a specially constructed planar stea-
dy-state solution, we compute angular dependency of the

step velocity and use it to construct a kinetic Wulff shape.
Within such an approach, the growth velocities are likely to
be underestimated, yet this does not affect the final kinetic
Wulff shape.
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