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Abstract

We consider the heteroepitaxial growth of thin films by numerical simulations within a diffuse interface model. The
model is applicable to describe the self-organization of nanostructures. The influence of strain, surface energies and kinet-
ics on the surface evolution is considered. A matched asymptotic analysis shows the formal convergence of an anisotropic
viscous Cahn–Hilliard model to a general surface evolution equation. The system is solved by adaptive finite elements in
three dimensions and in special cases compared with sharp interface models.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Self-organized semiconductor nanostructures are a promising inexpensive and effective approach to man-
ufacture novel electronic devices. The phenomena of self-organization of nanostructures have been an area of
extensive experimental and theoretical research over the past several years. However, producing such quan-
tum-dot-based devices is still challenging. A fundamental understanding of the self-organization process
during epitaxial growth therefore could help to produce large numbers of spatially ordered nanostructures
with narrow size distribution. In order to understand the nucleation, growth and coarsening phenomena in
heteroepitaxial growth, the influence of strain, surface energies and kinetics on the surface evolution has to
be considered. These lead to several modeling and numerical issues which have to be taken into account,
before simulations can describe the self-organization process.

Strain driven instabilities of a flat surface have been reported for isotropic surface energies by Asaro and
Tiller [1], Grinfeld [2] and Srolovitz [3]. This surface instability is a consequence of the competition between
strain energy stored in the film and surface energy. Gao and Nix [4] first used this approach to describe
the breakup of an unstable film into islands. The growth mode related to this breakup is often refered as
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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Fig. 1. Schematic description of surface evolution due to elastic misfit including a deposition flux J (top), strong anisotropy in surface
energy (middle) and kinetic fluxes (bottom).
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Stranski–Krastanov growth. In heteroepitaxial growth the strain in the film results from a mismatch in lattice
parameters between film and substrate, see Fig. 1(top).

In addition to the influence of strain there is strong evidence that anisotropic surface energies play a crucial
role in heteroepitaxial growth [5]. The formation of nanostructures can result from a thermodynamic instabil-
ity due to spinodal decomposition into faceted structures with stable orientations [6–12]. This faceting of crys-
tal surfaces is caused by strongly anisotropic surface energies, see Fig. 1(middle). In a continuum framework
the corresponding evolution equations to describe the surface evolution with such anisotropic functions are ill
posed unless an additional energy of edges and corners is introduced. This leads to curvature dependent sur-
face energies and have been discussed in [13].

For certain materials also anisotropic surface fluxes due to step edge barriers can be responsible for the for-
mation of three-dimensional islands, see Fig. 1(bottom). Villain [14] pointed out that such barriers can give
rise to instabilities and lead to pyramidal structures. Siegert and Plischke [15] for example derive a theory
which selects the slope of these pyramidal structures by the crystalline symmetry of the growing film.

Approaches towards a continuum description including some of these phenomena derived from a step flow
perspective have been performed by [16–19] for example. However their approaches are restricted to 1 + 1
dimensions and only consider uniform step trains. We will follow a different ansatz from a rational mechanics
perspective as recently proposed by Fried and Gurtin [20]. A direct numerical treatment of the equations
seems today not feasible. Several aspects however have already been addressed by numerical simulations in
[21–23] using sharp interface methods. We will consider a phase-field description which will allow to overcome
some of the numerical difficulties and opens the possibility to add more and more of the relevant phenomena
in a consistent way. We consider a viscous Cahn–Hilliard model introduced by Cahn and Taylor [24] and
add a deposition flux, elastic misfit strain, anisotropy in the surface free energy density and anisotropy in
the kinetic coefficient.



A. Rätz et al. / Journal of Computational Physics 214 (2006) 187–208 189
In Section 2, we will start with reviewing the connection between surface motion laws and their diffuse inter-
face approximations for isotropic and anisotropic situations, show how elastic effects and deposition flux can
be incorporated and discuss the formation of wetting layers and the incorporation of further phenomena, like
phase separation and intermixing. In Section 3, we discuss an adaptive finite element discretization of the
model in detail. Finally in Section 4, we show numerical results of the strain driven instability in growing films
and compare the simulations with results from sharp interface models. The influence of anisotropy in the
surface free energy and kinetic coefficient is discussed and three-dimensional simulations are performed, which
show the formation of nanostructures. In Appendix A, we provide a matched asymptotic analysis for aniso-
tropic surface evolution in two dimensions.

2. Continuum modeling of nanoscale surface evolution

Though the basic growth laws have been known from Mullins work [25], who derived them in the context
of thermal grooving, strong interest in surface motion has only been initiated recently by the growth of nano-
structures. We discuss a continuum model for surface evolution derived from a rational mechanics point of
view and relate the sharp interface models to its diffuse interface analogs.

2.1. Surface motion by surface diffusion

We consider the evolution of a d � 1-dimensional surface C = C(t) embedded in Rd representing the inter-
face between the vapor and a thin film. A growth law for the motion of the surface C that combines surface
diffusion and interface kinetics was introduced by Cahn and Taylor [24]. In the isotropic situation the equation
reads
v ¼ �Ds
1

M
Ds �

1

D

� ��1

Kw0
ð2:1Þ
with v the normal velocity, Kw0
¼ w0K ¼ w0

Pd�1
i¼1 ji the weighted mean curvature including an isotropic surface

free energy density w0 and the principal curvatures ji and using the convention that an interface given by the
graph of a convex function has negative curvature. Furthermore M denotes a positive kinetic coefficient, D a
positive diffusion coefficient and Ds the surface Laplacian. Two extreme cases of this equation can be consid-
ered. In the limit of infinitely fast attachment kinetics (M = 1, D bounded) the equation reduces to
v ¼ DDsKw0
; ð2:2Þ
whereas for infinitely fast surface diffusion (D =1, M bounded) we get
1

M
v ¼ �Kw0

þ c ð2:3Þ
with the constant c chosen to fulfill conservation of volume. Eqs. (2.2) and (2.3) are known as motion by sur-
face diffusion and motion by the difference of mean curvature and average mean curvature, respectively. In
both cases, volume is preserved and the only driving force for surface motion is surface energy reduction.
However, in most applications in modern materials science both growth mechanisms are involved, but numer-
ical studies of the combined model (2.1) do not exist. We can rewrite Eq. (2.1) as a system of two second order
equations:
v ¼ DDsw; ð2:4Þ

w ¼ Kw0
þ 1

M
v ð2:5Þ
with the chemical potential w being the second unknown. In this form the model consists of an equation which
follows from the balance of configurational forces and momenta (2.4) and an equation related to mass balance
(2.5) and is in agreement with the general framework for interface evolution summarized by Fried and Gurtin
[20]. Furthermore, the system (2.4) and (2.5) can be recognized as the sharp interface limit of a diffuse interface
approximation, which is based on the introduction of a phase-field function / obtained by smearing out the
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discrete function being zero in the vapor and one in the film on a length of �. This diffuse interface approx-
imation of (2.4) and (2.5) is given by a viscous Cahn–Hilliard equation:
ot/ ¼ Dr � ð��1Bð/ÞrwÞ; ð2:6Þ

gð/Þw ¼ w0ð��D/þ ��1G0ð/ÞÞ þ �
1

M
ot/ ð2:7Þ
with mobility function B(/) = 36/2(1 � /)2, double well potential G(/) = 18/2(1 � /)2, stabilizing function
g(/) = 30/2(1 � /)2. In this context, the interface is given by the levelset
C ¼ CðtÞ ¼ fx 2 X : /ðt; xÞ ¼ 1=2g.

Cahn, Elliott and Novick-Cohen [26] showed by formal matched asymptotic expansion, that Eqs. (2.6) and

(2.7) with M = 1 and g(/) = 1 reduced for � ! 0 to (2.2). Following their analysis with M bounded yields
Eqs. (2.4) and (2.5), as already pointed out in [27]. The function g(/) does not change the asymptotic analysis
but forces the phase-field variable / to remain within the two phases 0 and 1, see [28].

2.2. Curvature-dependent energy

By extending the evolution equations to the anisotropic situation Eqs. (2.4) and (2.5) read ([24] for
example):
v ¼ rs � ðDðnÞrswÞ; ð2:8Þ

w ¼ w0ðnÞPþ o2w0ðnÞ
on2

� �
� Lþ 1

MðnÞ v ð2:9Þ
with n the unit normal pointing from the film to the vapor, M(n) an anisotropic positive kinetic coefficient,
D(n) an anisotropic positive definite diffusion tensor, w0(n) the anisotropic surface free energy density,
P = 1 � n � n the projection onto the surface, L = �$sn the curvature tensor and $s the surface gradient.
If the surface free energy density w0 is convex the governing equations are well posed. To derive an anisotropic
analog of the viscous Cahn–Hilliard model (2.6) and (2.7), we allow the diffusion coefficient D, the mobility
function M and the surface free energy density w0 to depend on the normal to the levelset / = 1/2. Anisotro-
pies in phase-field models have already been discussed. Taylor and Cahn [29] link anisotropic sharp and diffuse
surface motion laws via a gradient flow perspective and introduce an appropriate tensor A of rank 2 with the
symmetry of the material. The term �2D/ is replaced by �2$ Æ A 0($/). In [30], the gradient energy coefficient � is
allowed to depend on n and in [31] the mobility function M is chosen anisotropic. As long as the anisotropy in
the surface free energy is weak the governing equations read:
ot/ ¼ r � ð~DðnÞ��1Bð/ÞrwÞ; ð2:10Þ

gð/Þw ¼ w1ð��r � ðcðnÞr/þ cðnÞjr/j2rr/cðnÞÞ þ ��1G0ð/ÞÞ þ �
1

~MðnÞ
ot/; ð2:11Þ
where the normal is defined by n = �$//j$/j, the surface free energy density is given by w0 = w0(n) = w1c(n)
with a constant w1 and a dimensionless anisotropy function c = c(n). If one chooses the diffusion tensor
~DðnÞ ¼ DðnÞ=cðnÞ and the kinetic coefficient ~MðnÞ ¼ MðnÞ=cðnÞ, a matched asymptotic analysis which formally
shows the convergence of (2.10) and (2.11) to (2.8) and (2.9) for � ! 0 in a two-dimensional setting is given in
Appendix A.

If the anisotropy in the surface free energy density is increased the equilibrium shape develops corners and
edges whereby certain high energy orientations are excluded from the crystal shape. Thus, for sufficiently large
anisotropy, certain orientations are missing resulting in a discontinuous variation in the normal with position
along the surface. An analytic criterion to determine the missing orientations on three-dimensional equilib-
rium shapes was recently given by Sekerka [32]. For such orientations the tensor w0ðnÞPþ o2w0ðnÞ

on2
is no longer

positive definite and the governing equations become backward parabolic, and hence unstable. One way to
deal with such orientations is to allow the interface to contain corners that exclude nonconvex intervals
[33]. By using common tangent planes to convexify the 1/w0-plot and using an appropriately regularized gra-
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dient energy coefficient � also the viscous Cahn–Hilliard model (2.10) and (2.11) can be used with such
anisotropies to describe corners and facets, as shown numerically in a two-dimensional setting in [34]. How-
ever, this ansatz can not characterize the formation of corners or the nucleation of facets, nor can it be used for

an initial-value problem in which the initial interface has regions for which w0ðnÞPþ o2w0ðnÞ
on2

is not positive

definite. In order to study these effects a regularization of Eqs. (2.8) and (2.9) is needed. A possible method
is to allow the energy to depend on curvature, thereby penalizing spatial oscillations as well as the tendency
to form corners. Such a regularization was first proposed for the dynamic evolution in two dimensions by
DiCarlo, Gurtin and Podio-Guidugli [35]. It should be noted that two-dimensional equilibrium shapes should
always be smoothly curved at any finite temperature, which follows from general arguments on the absence of
long range order in one dimension [36,37]. Therefore, the discussion on missing orientations and their
regularization in two dimensions is artificial and should be viewed only as a preliminary study of the three-
dimensional case. An extension to three dimensions was given by Gurtin and Jabbour [13]:
v ¼ rs � ðDðnÞrswÞ; ð2:12Þ

w ¼ w0ðnÞPþ o2w0ðnÞ
on2

� �
� L� a DsK þ KjLj2 � 1

2
K3

� �
þ 1

MðnÞ v ð2:13Þ
with a positive constant a. The derivation of this model is based on a surface free energy density of the form
wðn;KÞ ¼ w0ðnÞ þ 1

2
aK2, in which a Willmore-energy is added to the surface free energy in combination with a

new lengthscale
ffiffiffi
a

p
on which sharp corners and edges are smeared out. As a phase-field approximation of Eqs.

(2.12) and (2.13), we propose:
ot/ ¼ r � ð~DðnÞ��1Bð/ÞrwÞ; ð2:14Þ
gð/Þw ¼ w1ð��r � ðc2ðnÞr/þ cðnÞjr/j2rr/cðnÞÞ þ ��1G0ð/ÞÞ

þ aðDð�D/� ��1G0ð/ÞÞ � ð�D/� ��1G0ð/ÞÞ��2G00ð/ÞÞ þ �
1

~MðnÞ
ot/. ð2:15Þ
The additional term if compared with Eqs. (2.10) and (2.11) results from a diffuse interface approximation of
the Willmore problem introduced in [38]. A formal matched asymptotic analysis showing the convergence for
� ! 0 to Eqs. (2.12) and (2.13) is under investigation. The sixth order system in / can be rewritten into a sys-
tem of three second order equations for /, w and x, with x = �D/ � ��1G 0(/).

2.3. Elastically stressed films

An important additional driving force for surface motion is due to reduction of elastic energy in stressed
films. The elastic stress results from a mismatch in lattice parameters of the film and the substrate and can
lead to an instability. This stress-driven instability was first described by Asaro and Tiller [1] and indepen-
dently rediscovered by Grinfeld [2] and Srolovitz [3]. If the film is relatively thick, then the behavior is equiv-
alent to that of a stressed, semi-infinite solid. An initially planar surface is unstable and evolves to form a
cusped morphology. If the film is relatively thin islands or nanocrystals form on the substrate [21,22,39–
41]. Both effects follow from a competing influence of surface and elastic energy. For convenience, we intro-
duce the elastic energy in the isotropic model (2.4) and (2.5). We need to add the elastic energy density W:
v ¼ DDsw; ð2:16Þ

w ¼ Kw0
þ 1

M
vþW ð2:17Þ
and supplement the evolution law with an elasticity equation in the film
r � r ¼ 0 ð2:18Þ

for the stress field r. If we assume that the vapor exerts neither standard nor configurational forces on the film
and neglect surface stress, the boundary condition for r at the surface reads
r � n ¼ 0. ð2:19Þ
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In order to compute the elastic energy density W we follow Hooke�s law. The stress is equal to the elastic stiff-
ness times the strain
rij ¼
X3
k¼1

X3
l¼1

Cijklðekl � F klÞ; ð2:20Þ
where Cijkl the stiffness tensor, eij ¼ 1
2
ðoui
oxj

þ ouj
oxi
Þ the strain tensor, with u the displacement field, and Fij = Fdij is

the misfit strain tensor, with F the coherency strain and dij the Kronecker delta. The elastic energy density W is
then defined through
W ¼ 1

2

X
i;j;k;l

ðeij � F ijÞCijklðekl � F klÞ
and can be computed from the displacement field. For an elastically isotropic film, Hooke�s law takes the
form:
rii ¼ 2lðeii � F Þ þ k
X3
k¼1

ðekk � F Þ;

rij ¼ 2leij; i 6¼ j;

ð2:21Þ
with Lamé moduli l and k. Substituting (2.20) and using Hooke�s law (2.21), the elastic energy density W can
be computed as
W ¼ l
X
i

ðeii � F Þ2 þ 2lðe212 þ e213 þ e223Þ þ
1

2
k
X
i

ðeii � F Þ
 !2

. ð2:22Þ
To incorporate the elastic energy in the viscous Cahn–Hilliard model (2.6) and (2.7) we need to add the
partial derivative of W with respect to the phase-field variable /:
ot/ ¼ Dr � ��1Bð/Þrw; ð2:23Þ

gð/Þw ¼ w0ð��w2
0D/þ ��1G0ð/ÞÞ þ �

1

M
ot/þW0ð/Þ; ð2:24Þ
whereW = W(/) will be defined in the following. The system is related to the Cahn–Larché system [42]. Similar
approaches to incorporate elastic effects into phase-field models have been considered in [43–47]. If we let
the stiffness tensor Cijkl (or in the isotropic situation the Lamé moduli k and l) and the coherency strain F

to depend on the phase-field variable /, we can formulate the elasticity Eq. (2.18) on the whole domain. In
the isotropic situation the equation reads for each component i = 1,2,3
�r � l/rui �r � k/
X
j

Aijruj �r � l/

X
j

Ajiruj ¼ � o

oxi
ðð2l/ þ 3k/ÞF /Þ; ð2:25Þ
where Aij is the matrix with one in position ij and zero elsewhere. The elastic energy density W is thus defined
through
Wð/Þ ¼ l/

X
i

ðeii � F /Þ2 þ 2l/ðe212 þ e213 þ e223Þ þ
1

2
k/

X
i

ðeii � F /Þ
 !2

ð2:26Þ
and its derivative with respect to / is
W0ð/Þ ¼ o/l/

X
i

ðeii � F /Þ2 þ 2o/l/ðe212 þ e213 þ e223Þ þ
1

2
o/k/

X
i

ðeii � F /Þ
 !2

� ð2l/ þ 3k/Þo/F /

X
i

ðeii � F /Þ.
The coefficients l/, k/ and F/ are given by
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l/ ¼ lhð/Þ þ lv; k/ ¼ khð/Þ; F / ¼ Fhð/Þ; ð2:27Þ
where lv is a small positive value to avoid numerical instabilities that are present when l/(0) = 0, l, k and F
the material parameters of the film and h(/) such that h 0(/) = g(/).

2.4. Deposition flux

A deposition flux is incorporated into (2.6) and (2.7) by adding ��1j to Eq. (2.6), with j given by
j ¼ �J � n ¼ �J znz ¼ J z
oz/
jr/j ¼ �VBð/ÞR oz/

jr/j ;
where J is the vector valued deposition flux. Furthermore V denotes the constant velocity of a flat interface
and R is a random number in [1 � R, 1 + R], R 2 (0,1), modeling noise. In this form the deposition flux is
smeared out over the diffuse interface.

2.5. Wetting layer

In order to simulate the formation of islands or nanocrystals an interaction between substrate and vapor
has to be considered. If the film wets the substrate, the formed islands are usually separated by a thin wetting
layer. For such a wetting layer to be favored, the surface free energy of the film wf

0 must be less than that of the
substrate ws

0. As shown by Spencer [48], the abrupt change in material parameters can be approximated within
a boundary-layer model in which the surface free energy is allowed to depend on the film height
w0ðhÞ ¼ wf
0 þ ðws

0 � wf
0Þ expð�h=h0Þ; ð2:28Þ
with h0 the transition layer thickness. If h � h0 the surface properties of the film are identical with the bulk
properties and are not effected by the substrate, but if h = 0 the effective surface free energy corresponds to
that of the exposed substrate. However an exposed substrate would result in a larger surface energy and
should therefore be prevented. In addition the coherency strain F can be modeled as
F ðhÞ ¼ F ð1� expð�h=h0ÞÞ ð2:29Þ

or another appropriate function leading to a misfit strain Fij when h � h0 and zero in the substrate. If the tran-
sition layer thickness is in the order of the lattice spacing the boundary layer model is a reasonable continuum
approach to describe wetting layers with thickness of a few monolayers.

2.6. Further effects

Besides the described effects further reasons responsible for the formation of islands are assumed to be rel-
evant and should be accounted for in a quantitative simulation of heteroepitaxial growth [20]. One of these
sources is surface stress. Shchukin and Bimberg [49] show a strong influence of surface stress on the formation
of surface pattern. Furthermore Shenoy and Freund [19] demonstrate the existence of an instability induced
solely by surface strain. They used the underlying physics of crystallographic steps to provide a basis for the
orientation and strain dependence of the surface energy. Another effect not accounted for is a diffusion path
through the bulk and the presence of several species, which can lead to phase separation and inhomogeneities
in the film, as numerically studied in [50]. The driving force for these atomic motions is assumed to be strain-
enhanced diffusion. Intermixing effects in the wetting layer furthermore might give an explanation for the
occurence of relatively thick wetting layers which can not be described with the approach in Section 2.5. Fur-
thermore the presence of adatoms on the surface is not accounted for. Adatoms are important in describing
segregation effects at the surface [51,52] and even if only one species is present they are able to provide a dif-
fusion path on flat parts of the surface, where due to the constant curvature surface diffusion would no longer
be active. And as already mentioned in Section 1, anisotropic surface fluxes due to step-edge barriers might be
responsible for the formation of islands, however how to incorporate this effect in a 3D continuum description
is still open.
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3. Discretization of a viscous Cahn–Hilliard model for stressed films

Here we describe the numerical approach in the isotropic case and only consider the fourth order system.
Modifications in the anisotropic situation are straight foreward and are only briefly addressed in Section 4.
The effect of elastic stress due to lattice mismatch on the surface morphology has already been studied numer-
ically within a phase-field approximation in [53,54] in two dimensions with convexified anisotropic surface
energies and in the isotropic case by Barrett, Garcke and Nürnberg [55]. Neither of these approaches takes
into account the kinetic coefficient M.

We solve the system in a cubic domain X � R3. On the top of the cube the boundary conditions are pre-
scribed by / = w = 0 and null flux for the displacement. The boundary between film and substrate are null flux
for / and w and ui = 0, which is the natural condition if we have a rigid substrate. The remaining parts are
assumed to be periodic, see Fig. 2.

The system is solved by an operator splitting ansatz, thereby in each timestep the derivative of the elastic
energy density serves as a given quantity in the computation for the phase-field variable / and the chemical
potential w, whereas the phase-field variable serves as a given parameter in computing the displacement field.
The algorithm is implemented in AMDiS, an adaptive finite element toolbox for scientific computing, [56,57].

3.1. Numerical computation of phase-field and chemical potential

The time interval is split by discrete time instants 0 = t0 < t1 < � � �, from which one gets the time steps
Dtm: = tm+1 � tm, m = 0, 1, . . . The derivative of the doublewell potential is linearized by
G0ð/ðmþ1ÞÞ � G0ð/ðmÞÞ þ G00ð/ðmÞÞð/ðmþ1Þ � /ðmÞÞ ¼ G00ð/ðmÞÞ/ðmþ1Þ þ G0ð/ðmÞÞ � G00ð/ðmÞÞ/ðmÞ.
Using this time discretization one ends up with the weak formulation
1

Dtm

Z
X
/ðmþ1Þwþ ��1

Z
X
DBð/ðmÞÞrwðmþ1Þ � rw

¼ 1

Dtm

Z
X
/ðmÞwþ ��1

Z
X
jð/ðmÞ;r/ðmÞÞw

Z
X
gð/ðmÞÞwðmþ1Þw

� �w0

Z
X
r/ðmþ1Þ � rw� ��1w0

Z
X
G00ð/ðmÞÞ/ðmþ1Þw� �

Dtm

Z
X

1

M
/ðmþ1Þw

¼ � �

Dtm

Z
X

1

M
/ðmÞwþ

Z
X
W0ð/ðmÞÞwþ ��1w0

Z
X
ðG0ð/ðmÞÞ � G00ð/ðmÞÞ/ðmÞÞw
=0φ

=1φ

Γ=Γ(t)

Γ2

∆φ.n=0

∆.n=µ

Γ0

Γ1Γ1

x1

x2

x3

solid

µ=φ=0

periodic
µ, φ

vapor

J

Fig. 2. Computational domain and boundary conditions.
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for all w 2 X :¼ fw 2 H 1ðXÞ : wjC0
¼ 0;wjC1

periodicg. To discretize in space, let Tm
h be a conforming triangu-

lation of X at time instant tm. Define the finite element space of globally continuous, piecewise linear elements
Vm
h ¼ fvh 2 X : vhjT 2 P1 8T 2 Tm

h g.

The space discretization now reads: find /ðmþ1Þ

h ;wðmþ1Þ
h 2 Vmþ1

h such that
1

Dtm

Z
X
/ðmþ1Þ

h wþ ��1

Z
X
DBð/ðmÞ

h Þrwðmþ1Þ
h � rw

¼ 1

Dtm

Z
X
/ðmÞ

h wþ ��1

Z
X
jð/ðmÞ

h ;r/ðmÞ
h Þw

Z
X
gð/ðmÞ

h Þwðmþ1Þ
h w

� w0�

Z
X
r/ðmþ1Þ

h � rw� ��1w0

Z
X
G00ð/ðmÞ

h Þ/ðmþ1Þ
h w� �

Dtm

Z
X

1

M
/ðmþ1Þ

h w

¼ � �

Dtm

Z
X

1

M
/ðmÞ

h wþ
Z
X
W0ð/ðmÞ

h Þwþ w0�
�1

Z
X
ðG0ð/ðmÞ

h Þ � G00ð/ðmÞ
h Þ/ðmÞ

h wÞ
for all w 2 Vmþ1
h . These lead to a linear system of equations for U(m+1) and W(m+1), with /ðmþ1Þ

h ¼
P

Uðmþ1Þ
i wi

and wðmþ1Þ
h ¼

P
W ðmþ1Þ

i wi:
1

Dtm
M1Uðmþ1Þ þ ��1A1W ðmþ1Þ ¼ 1

Dtm
M1UðmÞ þ ��1J ;

M2W ðmþ1Þ � �A2Uðmþ1Þ � ��1G iUðmþ1Þ � �

Dtm
M3Uðmþ1Þ ¼ � �

Dtm
M3UðmÞ þ F þ ��1Ge
with
M1 ¼ ðM1
ijÞ; M1

ij ¼ ðwi;wjÞX; M2 ¼ ðM2
ijÞ; M2

ij ¼ ðgð/ðmÞ
h Þwi;wjÞX;

M3 ¼ ðM3
ijÞ; M3

ij ¼
1

M
wi;wj

� �
X

; A1 ¼ ðA1
ijÞ; A1

ij ¼ ðDBð/ðmÞ
h rwi;rwjÞX;

A2 ¼ ðA2
ijÞ; A2

ij ¼ ðw0rwi;rwjÞX; J ¼ ðJ iÞ; J i ¼ ðjð/ðmÞ
h ;r/ðmÞ

h Þ;wiÞX;

F ¼ ðF iÞ; F i ¼ W0ð/ðmÞ
h Þ;wiÞX; G i ¼ ðGi

ijÞ; Gi
ij ¼ ðw0G

00ð/ðmÞ
h Þwi;wjÞX;

Ge ¼ ðGe
i Þ; Ge

i ¼ w0ðG0ð/ðmÞ
h Þ � G00ð/ðmÞ

h Þ/ðmÞ
h ;wiÞX;
where (Æ,Æ)X denotes the L2 scalar product. Thus, written in block-matrix-form the linear system
��1A1 1
Dtm

M1

M2 ��A2 � ��1G i � �
Dtm

M3

 !
W ðmþ1Þ

Uðmþ1Þ

 !
¼

1
Dtm

M1UðmÞ þ ��1J

� �
Dtm

MUðmÞ þ F � ��1Ge

 !
has to be solved in every timestep. The system is not symmetric and is iteratively solved by a stabilized bicon-
jugate gradient method (BiCGStab).

3.2. Numerical computation of displacement and energy density

The numerical solution of the elasticity problem (2.25) using finite elements is standard. Multiplying (2.25)
by a test function w 2 Y, where Y :¼ fw 2 H 1ðXÞ : wjC2

¼ 0;wjC1
periodicg, with C2 the Dirichlet boundary and

C1 the periodic boundary of the domain X, and integrating by parts yields
Z
X
l/ruirwþ

Z
X
k/
X
j

Aijruj � rwþ
Z
X
l/

X
j

Ajiruj � rw ¼ �
Z
X
ð2l/ þ 3k/ÞF /

ow
oxi
for i = 1,2,3. The space discretization now reads: find ui;h 2 Wm
h , with
Wm
h ¼ fvh 2 Y : vhjT 2 P1 8T 2 Tm

h g.

such that for all w 2 Vm

h
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Z
X
l/rui;h � rwþ

Z
X
k/
X
j

Aijruj;h � rwþ
Z
X
l/

X
j

Ajiruj;h � rw ¼ �
Z
X
ð2l/ þ 3k/ÞF /

ow
oxi
for i = 1,2,3. This leads to the following symmetric positive definite system of equations for Ui with
ui;h ¼

P
Ui;kwk, which we iteratively solve using the conjugate gradient method (CG).
A11 A12 A13

A21 A22 A23

A31 A32 A33

0
B@

1
CA

U 1

U 2

U 3

0
B@

1
CA ¼

f1
f2
f3

0
B@

1
CA;
where
ðAiiÞkl ¼
Z
X
ð2l/ þ k/Þ

owl

oxi

owk

oxi
þ l/

X
j 6¼i

owl

oxj

owk

oxj
;

ðAijÞkl ¼
Z
X
l/

owl

oxi

owk

oxj
þ k/

owl

oxj

owk

oxi
; i 6¼ j;

ðfiÞk ¼ �2F ð2lþ 3kÞ
Z
X
gð/Þg0ð/Þ o/

oxi
wk.
For computing the elastic energy density the gradient of the displacement field is needed. We use a recovery
technique based on averaging of the gradient of the computed solution to obtain a continuous approximation
of the gradient. To be precise, for each vertex x of the finite element mesh, let
T x ¼ [x2T T
be the union of all elements of the partition that contain x as a vertex. The value of the recovered gradient at
vertex x is given by
Gui;hðxÞ ¼
X
T2T x

jT j
jT xj

rui;hjT .
Here, G ui,h is the recovered gradient, and jTj, jTxj denote the volume of T and Tx.

3.3. Adaptive strategy of local refinement and coarsening

To obtain satisfactory computational results, a mesh with a sufficiently fine resolution near the interface is
needed. Noting that a uniform refinement would be prohibitive from the computational point of view, we are
naturally led to adopt local mesh refinement and coarsening. At every time step, the finite element mesh from
the previous time step is locally refined and/or coarsened according to a L2-like error indicator for the Cahn–
Hilliard equation. For every element T, we define gT ð/hÞ :¼ ð

P
e2oT

R
e h

3 j ½o/h
one
�j2Þ1=2, where ½o/h

one
� denotes the

jump of the normal derivative of /h across an edge e � oT. This can be used to define an indicator for the error
i/ � /hi on the whole domain gð/hÞ :¼ ð

P
T2Tm

X
g2T ð/hÞÞ

1=2. The criterion for refinement and coarsening is
based on an equidistribution strategy, which attempts to enforce gT ð/hÞ ¼ gT 0 ð/hÞ for all T ; T 0 2 Tm

X. If this
condition were enforced, at least approximately, then we would have gð/hÞ � N 1=2

m gT ð/hÞ, where Nm is the
number of elements in Tm

X. We thus mark an element T 2 Tm
X for refinement and/or coarsening, if

gT ð/hÞ > gð/hÞ
N1=2

m
, gT ð/hÞ 6 h gð/hÞ

N1=2
m
, respectively, with some h 2 (0,1). Even if this strategy is only based on the

phase-field variable / the adapted mesh is also used to solve the elasticity problem. The recovered gradient
of / is used to estimate the error in the displacement field [58] and verify the used grid. The performed sim-
ulations show that no further refinement for the elasticity problem is necessary. However a coarser mesh at the
boundary might be possible to obtain the same accuracy.

4. Numerical results

We start by comparing the solution of the viscous Cahn–Hilliard equation with the sharp interface solution
for isotropic surface diffusion and volume preserved mean curvature flow with a prescribed elastic energy
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density in two dimensions. As a second test case we introduce a weakly anisotropic surface free energy density
and a strong anisotropy function in the kinetic coefficient, and analyse the convergence towards the Wulff-
shape and the kinetic Wulff-shape, respectively. Here elasticity is neglected. As a final result we couple the
viscous Cahn–Hilliard equation with the elasticity problem and solve the overall system with anisotropy in
the free energy density and the kinetic coefficient in three dimensions.

4.1. Comparison between phase-field and sharp interface model

In order to demonstrate the validity of the viscous Cahn–Hilliard equation with elasticity we will first com-
pare the numerical solutions with the corresponding sharp interface models in the limits M ! 1 and D! 1.
For these equations and a prescribed elastic energy density the Asaro–Tiller–Grinfeld instability can be used
as a test case in two dimensions. In all simulations we keep the parameter � = 0.1. We introduce the evolution
equation
v ¼ ossðK þWÞ; ð4:30Þ

with os the derivative with respect to the arclength. The elastic energy density W is given by
Wðx1; x2Þ ¼ � C
x2 � a2 þ r

; a2 ¼ inf
x2X

x2; r > 0. ð4:31Þ
In the case of a graph formulation (4.30) and (4.31) with r = 0 have been considered in [59] in order to study
crack formation. The positive number r in (4.31) has a regularizing meaning. We consider the domain
X: = (�1,1) · (�1,1) and a perturbation
~C :¼ fðx1; x2Þ 2 X : x2 ¼ �0:05 cosðpx1Þg

of the flat interface
C :¼ fðx1; x2Þ 2 X : x2 ¼ 0g.

Following the linear stability analysis in [59] one obtains the growth rate
xðk ¼ 1Þ ¼ �p4 þ C

ð1þ rÞ2
p2. ð4:32Þ
For the numerical results presented here C = 50 and r = 1/2 have been used, which yields the growth rate
x ¼ p2ð200

9
� p2Þ � 121:92.

In Fig. 3 a comparison of a sharp interface simulation of (4.30) with a phase-field simulation of (2.6) and
(2.7) with w0 = 1, D = 1 and M = 500 is shown.

For the sharp interface simulations the algorithm in [60] is used. We show the plots of the evolving curve at
three different timesteps compared to the levelsets / = 1/2 at the corresponding timesteps. Fig. 4 shows for one
timestep convergence of the levelsets to the sharp interface solution for increasing M. This convergence can
also be seen in the plots of the logarithm of the amplitudes versus time in Fig. 5. In order to compute the
growthrate linear fits of these plots have been performed to determine the slope (fit-interval: [0,0.01]). The re-
sult of this can be seen in Table 1.

As a second example we introduce the evolution law
v ¼ ðK � �K � ðW� �WÞÞ; ð4:33Þ

where
�K ¼ 1

jCj

Z
C
K ds and �W :¼ 1

jCj

Z
C
Wds.
and W as in (4.31). Similar as in the case of (4.30) linear stability analysis yields the growth rate
xðk ¼ 1Þ ¼ �p2 þ C

ð1þ rÞ2
¼ �p2 þ 50

2:25
� 12:35 ð4:34Þ
with C and r as before.
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Fig. 3. Sharp interface versus phase-field at various timesteps, M = 500.
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Fig. 6 shows the approximation of the result of a sharp interface simulation of (4.33) by levelsets of the
phase-field function / computed as a solution of the system (2.6) and (2.7) with w0 = 1, M = 1 and D = 16
at different times. Again the algorithm in [60] is used for the sharp interface solution. In Fig. 7, the convergence



Table 1
Convergence of growthrate computed by phase-field model for increasing M

Analytic Sharp interface M = 500 M = 200 M = 100

Growthrate 121.92 121.45 120.17 116.41 110.69
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Fig. 6. Sharp interface versus phase-field at various timesteps, D = 16.
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of the levelsets resulting from phase-field computations with increasing D to the sharp interface solution for a
selected time is shown. Fig. 8 shows the convergence of the logarithm of the amplitudes for increasing param-
eter D to the result of the sharp interface computation. Table 2 shows the growthrates obtained from the linear
fits of the curves in Fig. 8 (fit interval [0,0.05]).

For both extreme cases the viscous Cahn–Hilliard equation shows excellent agreement with the sharp inter-
face results and the theoretically predicted growthrates. As a consequence the viscous Cahn–Hilliard equation
can be assumed to be valid in the whole parameter range going from surface diffusion to attachment-detach-
ment dominated evolution.

4.2. Anisotropic surface evolution

As a second example we analyze various anisotropies in the viscous Cahn–Hilliard equation without elas-
ticity. We consider a weak anisotropy in w0 and a strong anisotropy in M. The modifications of the described
numerical algorithm are straight forward. All additional nonlinear term are treated explicitly, meaning n is
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Table 2
Convergence of growthrate computed by phase-field model for increasing D

Analytic Sharp interface D = 16 D = 2 D = 1

Growthrate 12.35 12.58 12.52 11.97 11.41
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computed by n ¼ � r/ðmÞ

jr/ðmÞj. Therefore only the weighting factors in the definition of the mass and stiffness matri-

ces M3, A1, A2 and the right hand side vector J have to be modified, see Section 3.
We first use an anisotropy function w0(n) of the form
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-0.8

-0.6

-0.4

-0.2
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0.2

0.4

0.6

0.8

1

-1
w0ðnÞ ¼ 1þ �4
Xd
i¼1

n4i ; ð4:35Þ
with dimension d and �4 = 0.3, providing w0ðnÞPþ o2w0ðnÞ
on2

to be positive definite. Figs. 9 and 10 show the con-
vergence of a closed curve or surface to its Wulff shape in two and three dimensions, respectively. We solve
Eqs. (2.10) and (2.11) with D = 1, M = 1 and w1 = 1. The initial condition is a circle or a sphere, respectively.
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Fig. 9. Evolution of levelset / = 0.5 towards the Wulff shape in two dimensions.

Fig. 10. Evolution of levelset / = 0.5 towards the Wulff shape in three dimensions.
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Applying this anisotropy to a flat interface, does not have any influence. Because all orientations are
allowed, a flat interface with K = 0 is a minimizer of the surface energy. Therefore, an initially flat interface
will remain flat.

We now account for an anisotropy in the kinetic coefficient M(n)
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1
MðnÞ ¼ 1� �5 þ 2�5 tanh k
ffiffiffi
d

p
�
Xd
i¼1

jnij
 !

= 1�
Xd
i¼1

n4i

 !( )
ð4:36Þ
with k = 50 and �5 = 0.9. Figs. 11 and 12 show the convergence of a closed curve or surface to its kinetic Wulff
shape in two and three dimensions, respectively.

We solve Eqs. (2.10) and (2.11) with D = 1 and w1 = 1 and an additional deposition flux
��1~j ¼ ���1 1

cðnÞ VBð/ÞR
oz/
jr/j
in Eq. (2.10) with V = 10. The initial condition is again a circle or a sphere, respectively. Applying this anisot-
ropy to a flat interface still does not lead to formation of faceted structures. The flat interface remains stable.

4.3. Coupled system in three dimensions

Now we solve the visous Cahn–Hilliard equation with elasticity in the anisotropic case in the domain
X = (�400,400)3. The anisotropy function w0(n) as in (4.35) with �4 = 0.3 is used as well as the kinetic coef-
ficient M(n) as in (4.36) with k = 50 and �5 = 0.9.

The parameters for the elasticity problem are as follows: k = 3.24 · 104, l = 3.48 · 104, F = 0.008, which
corresponds to Si0.82Ge0.18, see [21] (adjusted to the model introduced in Section 2). Further parameters used
in the simulations are D = 2.56 · 1010, V = 1, w1 = 1, � = 40. Fig. 13 shows the evolution of an initially flat
interface in the anisotropic situation.

The competition between surface and elastic energies leads to the formation of nanomounds. Faceted
mounds can be observed. The faceting here results from the anisotropic kinetic coefficient. The instability
however is only due to the elastic misfit. Detailed parameter studies addressing the influence of the different
processes still has to be done before the simulational results can be compared with [21–23] or experiments.
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Fig. 11. Evolution of levelset / = 0.5 towards the kinetic Wulff shape in two dimensions.

Fig. 12. Evolution of levelset / = 0.5 towards the kinetic Wulff shape in three dimensions.



Fig. 13. Evolution of levelset / = 0.5 under the influence of elasticity, deposition flux, anisotropic surface free energy and anisotropic
kinetic coefficient.
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Qualitatively however they are in good agreement and demonstrate the validity of phase-field models to sim-
ulate surface evolution.

5. Conclusion

A connection between sharp interface models for anisotropic surface evolution and its diffuse interface
counterpart is given. A deposition flux and elastic stress are introduced in the diffuse interface model in order
to model self-organization processes in heteroepitaxial growth. The nonlinear system of equations is solved by
adaptive finite elements in three dimensions. The influence of anisotropies in the surface free energy density
and the kinetic coefficient on the surface evolution have been addressed.

Coming back to the different processes which can lead to self organization described in the introduction (see
Fig. 1) only the evolution due to elastic misfit has been addressed in the simulations. To model the spinodal
decomposition into facetted structures resulting from strong surface anisotropies the proposed sixth order sys-
tem (2.12) and (2.13) has to be solved. How to incorporate mound formation resulting from kinetic fluxes
resulting from step-edge barriers in a three-dimensional model is still open.
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Appendix A. Asymptotic analysis in two-dimensions

We provide a matched asymptotic analysis to show the formal convergence of:
ot/ ¼ r � ð~DðnÞ��1Bð/ÞrwÞ; ðA:1Þ

gð/Þw ¼ ð��r � ðc2ðnÞr/þ cðnÞjr/j2rr/cðnÞÞ þ ��1G0ð/ÞÞ þ ��1 1
~MðnÞ

ot/ ðA:2Þ
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for � ! 0 to
v ¼ os � ðDðnÞoswÞ; ðA:3Þ

w ¼ ð~w0ðhÞ þ ~w
00
0ðhÞÞK þ 1

MðnÞ v ¼ w1ð~cðhÞ þ ~c00ðhÞÞK þ 1

MðnÞ v ðA:4Þ
with h = h(n). This is the two-dimensional counterpart of Eqs. (2.8) and (2.9), with anisotropy function
~cðhÞ ¼ c � hðhÞ;

where hðhÞ ¼ ðcosðhÞ; sinðhÞÞ ¼ n. This relation allows to rewrite Eq. (A.2) as
gð/Þw ¼ ��r � ðc2ðnÞr/þ cðnÞ~c0ðhÞð�oy/; ox/ÞÞ þ ��1G0ð/Þ þ �
1

~MðnÞ
ot/. ðA:5Þ
A.1. New coordinates and useful expansions

New coordinates are established in a neighborhood of the interface C(t). To this end r = r(x,y,t;�) is defined
as the signed distance of (x,y) from C(t;�), where r < 0, if (x,y) is in the film and r > 0 if (x,y) is in the vapor.
The curve C then can be parametrized with respect to arclength s by
c ¼ cð�; t; �Þ : I � R ! Cðt; �Þ; I :¼ ½0; LðCÞ�;
where L(C) denotes the length of C. Let s = s(s,t;�) and n = n(s,t;�) denote the tangent and the normal. Then
for 0 < q 	 1 there exists a neighborhood
Uðt; �Þ ¼ fðx1; x2Þ 2 X : jrðx; y; t; �Þj < qg ðA:6Þ
of C(t;�) such that one can write (x,y) = c(s,t;�) + r(x,y,t;�)n(s,t;�) for (x,y) 2 U(t;�). Now one transforms w and
/ to the new coordinate system:
ŵðr; s; t; �Þ :¼ wðcðs; t; �Þ þ rnðs; t; �Þ; t; �Þ; ðx; yÞ 2 Uðt; �Þ;
/̂ðr; s; t; �Þ :¼ /ðcðs; t; �Þ þ rnðs; t; �Þ; t; �Þ; ðx; yÞ 2 Uðt; �Þ.
Furthermore a stretched variable is introduced z :¼ r
�
, and one defines
W ðz; s; t; �Þ :¼ ŵðr; s; t; �Þ;
Uðz; s; t; �Þ :¼ /̂ðr; s; t; �Þ.
In addition the following Taylor expansion approximations for small � are assumed to be valid
wðx; y; t; �Þ ¼ w0ðx; y; tÞ þ �w1ðx; y; tÞ þ � � � ; ðA:7Þ
ŵðr; s; t; �Þ ¼ ŵ0ðr; s; tÞ þ �ŵ1ðr; s; tÞ þ � � � ; ðA:8Þ
W ðz; s; t; �Þ ¼ W 0ðz; s; tÞ þ �W 1ðz; s; tÞ þ � � � ; ðA:9Þ
/ðx; y; t; �Þ ¼ /0ðx; y; tÞ þ �/1ðx; y; tÞ þ � � � ; ðA:10Þ
/̂ðr; s; t; �Þ ¼ /̂0ðr; s; tÞ þ �/̂1ðr; s; tÞ þ � � � ; ðA:11Þ
Uðz; s; t; �Þ ¼ U0ðz; s; tÞ þ �U1ðz; s; tÞ þ � � � ; ðA:12Þ
for which (A.7), (A.8) and (A.10), (A.11) are called outer expansions while (A.9) and (A.12) are called inner
expansions. It is assumed that these hold simultaneously in some overlapping region and represent the same
functions, which yields the matching conditions
lim
r!
0

ŵ0ðr; s; tÞ ¼ lim
z!
1

W 0ðz; s; tÞ; ðA:13Þ

lim
r!
0

/̂0ðr; s; tÞ ¼ lim
z!
1

U0ðz; s; tÞ. ðA:14Þ
Let v = v(s,t;�) and K = K(s,t;�) denote the normal velocity and the curvature. Using
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oss ¼ �Kn; osn ¼ Ks ðA:15Þ

the transform of the derivatives into the new coordinates (r,s) lead
os/̂ ¼ r/ � ðoscþ rosnÞ ¼ r/ � ðoscþ rKoscÞ ¼ ð1þ rKÞr/ � s;
which yields
r/ � s ¼ ð1þ rKÞ�1
os/̂. ðA:16Þ
Furthermore we get
or/̂ ¼ r/ � n ðA:17Þ
as well as
or/̂otr þ os/̂otsþ ot/̂ ¼ ot/þr/ � ðoscotsþ otcþ otrnþ rosnotsþ rotnÞ
which leads by using (A.16) and (A.17) to
ot/ ¼ or/̂otr þ os/̂otsþ ot/̂�r/ � ðotssþ ðotc � nÞnþ ðotc � sÞsþ otrnþ rKotssþ rotnÞ
¼ or/̂otr þ os/̂otsþ ot/̂�r/ � ðotsð1þ rKÞsþ vnþ ðotc � sÞsþ otrnþ rotnÞ
¼ or/̂otr þ os/̂otsþ ot/̂� os/̂ots� vor/̂� otror/̂�r/ � ððotc � sÞsþ rotnÞ
¼ ot/̂� vor/̂� ð1þ rKÞ�1

os/̂ðotcþ rotnÞ � s.

ðA:18Þ
One can express the gradient of / as
r/ ¼ ðr/ � sÞsþ ðr/ � nÞn ¼ or/̂nþ ð1þ rKÞ�1
os/̂s ðA:19Þ
and compute for the divergence of a vector field j
r � j ¼ orĵ � nþ ð1þ rKÞ�1
osĵ � s ¼ or ð̂j � nÞ þ ð1þ rKÞ�1ðosð̂j � sÞ � ĵ � ossÞ

¼ or ð̂j � nÞ þ ð1þ rKÞ�1ðosð̂j � sÞ þ Kĵ � nÞ. ðA:20Þ
In the coordinate system (z,s) the corresponding expressions read
ot/ ¼ ���1vozUþ otU� ð1þ �zKÞ�1
osUðotcþ �zotnÞ � s; ðA:21Þ

r/ ¼ ��1ozUnþ ð1þ �zKÞ�1
osUs; ðA:22Þ

r � j ¼ ��1ozðJ � nÞ þ ð1þ �zKÞ�1ðosðJ � sÞ þ KJ � nÞ. ðA:23Þ
Before we turn to analyse the outer and inner expansions we provide some useful calculations. For this pur-
pose we expand
n ¼ � r/
jr/j ¼ � ozUnþ �ð1þ �zKÞ�1

osUs

½ðozUÞ2 þ ð�ð1þ �zKÞ�1
osUÞ2�1=2

¼ � ozU0n

jozU0j
þ �

ozU1nþ osU0s

jozU0j
� ozU02ozU0ozU1n

2jozU0j3

 !
þOð�2Þ

¼ nþ �
osU0

ozU0

sþOð�2Þ;
where we already used ozU0 < 0, see Eq. (A.27). Using this representation we can conclude d
d� cðnÞj�¼0 ¼

~c0ðhÞ osU0

ozU0
. Another expansion, which will be used is
ð�ox2/; ox1/Þ ¼ ��1ozUs� ð1þ �zKÞ�1
osUn.
Combining these results we obtain for
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�r � ðc2ðnÞr/þ cðnÞ~c0ðhÞð�ox2/; ox1/ÞÞ
¼ ozfc2ðnÞ��1ozU� cðnÞ~c0ðhÞð1þ �zKÞ�1

osUg
þ �ð1þ �zKÞ�1Kfc2ðnÞ��1ozU� cðnÞ~c0ðhÞð1þ �zKÞ�1

osUg
þ �ð1þ �zKÞ�1

osfc2ðnÞð1þ �zKÞ�1
osUþ cðnÞ~c0ðhÞ��1ozUg

¼ ��1ozðc2ðnÞozU0Þ þ fc2ðnÞozzU1 þ ozð2cðnÞ~c0ðhÞosU0Þ � cðnÞ~c0ðhÞozsU0g
þ fKc2ðnÞozU0 þ osðcðnÞ~c0ðhÞozU0Þg þOðeÞ

¼ ��1~c2ðhÞozzU0 þ f~c2ðhÞozzU1 þ 2~cðhÞ~c0ðhÞozsU0 þ K~c2ðhÞozU0g
þ fðð~c0ðhÞÞ2 þ ~cðhÞ~c00ðhÞÞKozU0g þOð�Þ;
where we have used cðnÞ ¼ ~cðhÞ, oscðnÞ ¼ ~c0ðhÞK and os~c
0ðhÞ ¼ ~c00ðhÞK, which follows from
oscðnÞ ¼ osðc � h � h�1 � nÞ ¼ ~c0ðhÞosðh�1 � nÞ ¼ ~c0ðhÞ 1

1þ n22=n
2
1

osn2n1 � n2osn1
n21

¼ ~c0ðhÞosn2n1 � n2osn1

¼ ~c0ðhÞosn � s ¼ ~c0ðhÞKs � s ¼ ~c0ðhÞK.
We now turn to the outer and inner expansion of (A.1) and (A.2).

A.2. Outer expansion

By inserting the outer expansions into (A.2) we obtain:
G0ð/0Þ ¼ 0 ) /0 2 f0; 1g ðA:24Þ

and
lim
r!þ0

/0 ¼ 0; lim
r!�0

/0 ¼ 1. ðA:25Þ
A.3. Inner expansion

By inserting the inner expansions into (A.5) we obtain Oð��1Þ in (A.5)
0 ¼ ~c2ðhÞozzU0 � G0ðU0Þ. ðA:26Þ

From this we get by multiplying (A.26) by ozU0 and integrating from �1 to z
~c2ðhÞðozU0Þ2 ¼ 2GðU0Þ;

which yields
ozU0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GðU0Þ

p
~cðhÞ ðA:27Þ
leading to
Z þ1

�1
ðozU0Þ2 dz ¼

1

~cðhÞ

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gð/Þ

p
d/ ¼ 1

~cðhÞ ðA:28Þ
by the concrete choice of G = G(/). This will be used in the inner expansion in (A.1)
���1vozU ¼ ��3ozð~DðnÞBðUÞozW Þ þ ��2Kð1þ �zKÞ�1 ~DðnÞBðUÞozW
þ ��1ð1þ �zKÞ�1

osð~DðnÞBðUÞð1þ �zKÞ�1
osW Þ;
which yields in Oð��3Þ in (A.1)
0 ¼ ozð~DðnÞBðU0ÞozW 0Þ.
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From this one gets
~DðnÞBðU0ÞozW 0 ¼ const;
the constant being zero because of limjzj!1 B(U0) = 0. So one finally arrives at
ozW 0 ¼ 0 ) W 0 � W 0ðs; tÞ. ðA:29Þ
Using (A.29) one obtains in Oð��2Þ in (A.1)
0 ¼ ozð~DðnÞBðU0ÞozW 1Þ.
As before this yields
ozW 1 ¼ 0. ðA:30Þ
Finally one makes use of (A.29) and (A.30) to obtain in Oð��1Þ in (A.1)
�vozU0 ¼ ozð~DðnÞBðU0ÞozW 2Þ þ osð~DðnÞBðU0ÞosW 0Þ.

Integrating this equation along the z-axis one obtains
v ¼ os ~DðnÞ
Z þ1

�1
BðU0ÞdzosW 0

� �
; ðA:31Þ
where
Z þ1

�1
BðU0Þdz ¼ 36

Z þ1

�1
U2

0ð1� U0Þ2 dz ¼ �36

Z þ1

�1

U2
0ð1� U0Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GðU0Þ

p ~cðhÞozU0 dz ¼
36

6
~cðhÞ

Z 1

0

/ð1� /Þd/

¼ 6~cðhÞ
6

¼ ~cðhÞ.
So we end up using the definition of ~D ¼ D=c
v ¼ osð~DðnÞ~cðhÞosW 0Þ ¼ osðDðnÞosW 0Þ; ðA:32Þ

which is Eq. (A.3). Now we turn back to (A.2) and obtain Oð�0Þ in (A.2)
gðU0ÞW 0 ¼ w1ð�~c2ðhÞozzU1 � 2~cðhÞ~c0ðhÞozsU0 � K~c2ðhÞozU0 � ðð~c0ðhÞÞ2 þ ~cðhÞ~c00ðhÞÞKozU0

þ G00ðU0ÞU1Þ �
1

~MðnÞ
vozU0.
Testing this equation with ozU0 one gets
W 0

Z þ1

�1
gðU0ÞozU0 dz ¼ w1 �~c2ðhÞ

Z þ1

�1
ozzU1ozU0 dz� ~cðhÞ~c0ðhÞos

Z þ1

�1
ðozU0Þ2 dz

�

�K~c2ðhÞ
Z þ1

�1
ðozU0Þ2 dz� ðð~c0ðhÞÞ2 þ ~cðhÞ~c00ðhÞÞK

Z þ1

�1
ðozU0Þ2 dz

þ
Z þ1

�1
G00ðU0ÞU1ozU0 dz

�
� 1

~MðnÞ
v
Z þ1

�1
ðozU0Þ2 dz.
We use integration by parts to obtain
~c2ðhÞ
Z þ1

�1
ozzU1ozU0 dz�

Z þ1

�1
G00ðU0ÞU1ozU0 dz ¼ ~c2ðhÞ

Z þ1

�1
U1ozzzU0 dz�

Z þ1

�1
ozðG0ðU0ÞÞU1 dz

¼
Z þ1

�1
U1ozð~c2ðhÞozzU0 � G0ðU0ÞÞdz ¼ 0.
Furthermore we have
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Z þ1

�1
gðU0ÞozU0 dz ¼ �1;
which together lead to
W 0 ¼ w1ð~cðhÞ~c0ðhÞos
1

~cðhÞ þ
~cðhÞK þ ðð~c0ðhÞÞ2 þ ~cðhÞ~c00ðhÞÞ K

~cðhÞÞ þ
1

~MðnÞ~cðhÞ
v

and finally to
W 0 ¼ w1 �ð~c0ðhÞÞ2

~cðhÞ K þ ~cðhÞK þ ð~c0ðhÞÞ2

~cðhÞ K þ ~c00ðhÞK
 !

þ 1
~MðnÞ~cðhÞ

v

¼ w1ð~cðhÞ þ ~c00ðhÞÞK þ 1
~MðnÞ~cðhÞ

v. ðA:33Þ
Together with the definition of ~M ¼ M=c this is Eq. (A.4), which completes the analysis. Finally we would like
to remark that the incorporation of the anisotropy c in the diffusion coefficient ~D and the mobility function ~M
naturally follows from the asymptotic analysis. If we in addition would consider a deposition flux in (A.1),
also the flux has to be changed to ~j ¼ j=c.
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