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Abstract

We adapt a cellular automata algorithm in order to track the steps in a continuum model of epitaxial growth and couple it to adatom
diffusion at the terraces. The model is capable to treat the Ehrlich—Schwoebel barrier at steps, which leads to instabilities during epitaxial
growth. In order to examine the mound formation a nucleation model beyond the mean field approximation is included in our
simulations. We show that the meander instability as well as the onset of mound formation can be treated by this model.
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1. Introduction

Modeling of epitaxial growth involves the interplay of
different length and time scales. In order to predict
macroscopic properties of a thin film, information of the
atomic processes on the surface has to be transferred to a
coarse level to connect atomic length and time scales to
macroscopic one. One possibility to treat phenomena of
long time and length scale in epitaxial growth is done by
continuum models. Here the atomistic processes are
modeled by mean field approximation in lateral direction
and discrete in height. This has been introduced by Burton,
Cabrera and Frank (BCF) in 1951 [1]. The BCF model
including the Ehrlich—-Schwoebel barrier (ESB) [2] is
defined by the diffusion equation for adatom density p
on the terraces,

dp=DAp+F—1""p, (1)
and the kinetic boundary condition at a step from below
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k* are the attachment rates from below and above and
account for the ESB. 7 is the desorption rate, p* is the
equilibrium density of adatoms at a step, ¢ is the step
stiffness and F is the deposition flux. The normal velocity v
of steps is then defined by mass conservation:

. [(0p" Op”
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There are several methods published to treat this set of
equations which differs in the treatment of the free
interface: parametric elements [3], level set [4] and phase
field [5,6]. Level set and phase field are naturally capable to
treat morphological changes while the strength of para-
metric elements is the very efficient treatment of effects
along the step. We adapt a cellular automata (CA)
algorithm to this problem of phase tracking and couple it
to the BCF Egs. (1)-(3). The CA algorithm already proved
its capability to treat problems with a lot of free interfaces
efficiently [7]. Topological changes and local events as
nucleation may be incooperated in a natural way. The
intrinsic anisotropy of the CA algorithm is a promising
feature of the method to treat anisotropic growth laws in
epitaxy.

The paper is organized in the following way. In the first
part of the second chapter a finite difference (FD) scheme is
shown to solve adatom diffusion, Eq. (1), with the
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appropriate boundary condition. The non-trivial boundary
condition, Eq. (2), requires a modification of the method
proposed in Ref. [4].

In the second part of the second chapter a new CA
algorithm is sketched to treat the step evolution. In the
second chapter the method is validated by two typical
setups and instabilities in epitaxy: meander instability and
mound forming. To simulate the formation of mounds a
nucleation beyond the mean field approximation is
included in the model [8.9].

2. Method
2.1. Adatom diffusion—finite differences (FDs)

Assuming a given step, the partial differential equation
for adatom density with appropriate boundary conditions
has to be solved, Egs. (1)-(3). For thermodynamic
boundary conditions a FDs method is presented in Ref.
[4]. In order to treat the kinetic boundary conditions, Eq.
(2), at the step, the ghost value method used in Ref. [4] has
to be extended.

The standard stencil for FD discretization is

1
Ap;; ~ ?(Piﬂ,; + pijp1 + Pyt pijo — 4P C))

In the vicinity of an inner boundary, Fig. 1, some of the
neighbours of p;; are on the other side of the boundary.
They are replaced by ghost values, p$ and p}(,}, respectively.
The ghost values are calculated in order to fulfill the
appropriate boundary condition.

The discrete form of the boundary condition, Eq. (2),
projected on the x-direction is

o= k(@) — p) = 5 (60 ~ ) ©

where n, is the x-component of 7. Superscripts + and
curvature are skipped in the derivation without loss of
generality. A simple linear interpolation of p along the
intersection of node (i,j) and (i + 1,j), Fig. 1,

p(@) = (pS — pi)O +pij (6)
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Fig. 1. Sketch of a part of the grid for finite differencing. The grid spacing
is h. An inner boundary (step) crosses the grid at two points near node
(i,). 7 is the unit normal to the boundary. The discretization including the
treatment of the boundary is described in the text.
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So p¢ depends only on nodes on one side of the boundary.
Then the FD stencil for the Laplacian adjacent to a
boundary is

Apy ~ oy~ (24
Pij = 3a \ Pim1y T Pij-1 1+ O.hk 1+ Oyhk
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This discretization is used for the Laplacian of nodes
adjacent to the boundary and standard FDs are used
otherwise. The discrete system is solved using the iterative
methods library IML+ + [10]. The implementation is
tested for various analytical tractable situations, e.g.,
Fig. 2.

The step velocity is defined by Eq. (3) and can be
calculated straightforward [4].

leads to an expression for p

2.2. Step evolution—cellular automat (CA)

Let us sketch the idea of the CA algorithm for the
simplest case of a single step. The CA consists of a regular
grid of cells. Every cell is in a state, which specifies if
this cell belongs to a upper terrace, a boundary or a
lower terrace. This already gives a rough description of the
morphology of the problem, see Fig. 3. In the CA
algorithm the step is more precisely defined by the union
of evolution elements (EEs) at the boundary cells. An EE is
a rectangle defined relatively to the center of the cell by a
set of normals 7; and facets f';, Fig. 3. The union of the EE
at the boundary provides a refined representation of the
step compared to the CA cells. But to solve for adatom
density on the same scale as the CA grid a smoother
description of the step is needed. Hence, for every EE
tangents ¢ to neighboring EEs are constructed. These
tangents 7 are used to define a signed distance to the step
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Fig. 2. Stationary adatom distribution for a circular island in the center of
a circular region. Boundary conditions at the step are according to Eq. (2)
and zero flux at the boundary of the region. Parameters are
(F,D, p*, ki, k_,&) = (1,10°,10° 10° 10°,0). The open and closed sym-
bols indicate different cutting through the two-dimensional adatom field.
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Fig. 3. CA definitions. Boundary cells (dark gray), upper terrace cells
(black) and lower terrace cells (gray). The step is represented by tangents 7
to the evolution elements at the boundary cells. That is, the line segments
defined by corners a and b (b and c resp.).

for all cells in the neighborhood and the normal to the step
7. The zero isoline of this function is a smooth description
of the step and is used to solve the BCF Egs. (1)—(3).

In order to control the intrinsic anisotropy of the EE the
evolution algorithm provided in Ref. [7] has been altered.
By solving BCF Egs. (1)—(3) a normal velocity v is defined
in every boundary cell and its vicinity. The evolution
algorithm is constructed to propagate a corner of the EE
parallel to v, i.e.,

fi— fi + max(vot cos(a;), 0), )

where cos(o;;) = rii1; and d¢ is a time step.

A cell that is a lower terrace is captured by an adjacent
EE if its center is inside of the EE. These newly infected cell
becomes a boundary cell. Furthermore, a new EE is
constructed to represent the step relative to this cell center.
Boundary cells surrounded only by boundary or upper
terrace cells become upper terrace cells. So the representa-
tion and evolution of the step is locally defined by the
boundary cells and their neighborhood.

This CA algorithm controls the intrinsic anisotropy
given by the EE, Fig. 4. The anisotropy was specially
introduced in Ref. [7] to account for the anisotropy in the
dendritic structure of a grain. In further studies we want to
exploit the anisotropy of the EE to treat anisotropic
growth of steps in the BCF framework. But in order to
adapt for different anisotropies, e.g., crystal structure, the
isotropic case has to be tractable.

The overall algorithm works as follows. The diffusion
equation (1) is solved in every timestep by FDs on the grid
defined by the CA. The velocity is extracted from the
adatom diffusion field according to Eq. (3). This velocity is
then used to evolve the step with the CA by Eq. (9).

3. Results

Simulations are done for two configurations: a periodic
step train and island growth with nucleation, Fig. 5. If
not stated otherwise the used parameters are (F,D,p*,
ki k_, &) =(1,10°,10% 10° 10°,0) [4,11]. The units are per
lattice constant.
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Fig. 4. Simulation of island growth with constant velocity. The gray scale
of the islands indicates the growth time. (a) The CA described in Ref. [7] is
used. Corners of the EE propagate with constant velocity. The nucleus
becomes a rectangular island with the same orientation as the EE. (b) The
new CA algorithm is used. The initial nucleus becomes a circular island
independent on the EE.

a b

s

Fig. 5. Setup for simulation of (a) a step train and (b) mound formation.
The simulation domain is (a) 100 x 100 and (b) 80 x 80 in atomic units.

3.1. Step train

In order to validate the implementation of our method a
periodic step train with terrace width / is considered,
Fig. 5(a). An ESB leads to the well known Bales—Zangwill
(BZ) instability of steps [12,13]. This is a quite interesting
feature in epitaxial growth, as this instability may lead to
step meandering, which affects the roughness of the
surface. In the linear regime the BZ instability is solved
analytically [12,13]. Using the same nomenclature as in
Ref. [13] and taking the limit of vanishing step stiffness and
desorption, the dispersion relation w is

_ N(g,9)
(g, ¢) = QF(dy —d-) D) (10)
with
N(gq, ¢) = q(d+ + d-)[cos(¢) + gl sinh(gl)

— cosh(gl)] + 1¢° 1% sinh(gl) (11)

and
D(q) = [(dy +d-) + 1] x [(d+ + d-)qcosh(ql)

+ (dyd_g* + 1)sinh(ql)], (12)

where ¢ is the phase shift between steps, Q is the atomic
area and ¢ is the wavenumber of the perturbation. A
measure of the ESB is defined by d+ = D/k..

In the limit of vanishing step stiffness there is no most
unstable wavelength selected by the BZ instability. To
validate the numerics a straight step is initially distorted by
a fixed wavelength with a small amplitude.
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To investigate a periodic step train with zero phase shift
and terrace width / = 100 it is sufficient to consider a single
step in a periodic domain of length L =/ = 100.

Fig. 6 shows the logarithm of the amplitude of the step
over time for different discretizations. For small times the
amplitude increases exponentially. After a while, depen-
dent on discretization the amplitude grows faster. Numeri-
cally induced noise is amplified and smaller wavelengths
begin to dominate the step evolution. So w has to be
measured as the slope of the logarithm of amplitudes in the
linear regime.

As a second validation, the dependence of w on the
strength of the ESB is analyzed in Fig. 7. In the limit of
vanishing ESB, d, =d_ =1, there is no instability
expected and o tends to zero. As the ESB increases the
instability becomes stronger. This is quantitatively well
reproduced by our simulation model, Fig. 7.
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Fig. 6. Logarithm of amplitude over time for various discretizations,
labeled by the number of grid points along the step.
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Fig. 7. Dependence of dispersion w on strength of Ehrlich-Schwoebel
barrier (ESB) and discretization. Keeping all other variables fixed D/k_ is
a measure for the ESB strength.

3.2. Onset of mound formation

In addition to the BZ instability the ESB may cause a
second instability in epitaxial growth: forming of mounds
[14]. The nucleation on top of islands is enhanced by the
ESB and the impingement of steps slowed down. Both
effects may lead to an increase of surface width. In order to
model this effects an appropriate nucleation model has to
be added to the BCF model.

In the BCF framework, Egs. (1)—(3), nucleation is the
sudden appearance of a new island. So a nucleation model
has to define the nucleation rate and the position of
nucleation.

Following the work of Politi and Castellano [8,9], the
nucleation rate is

Tres
Opue = FAW —,
Tres + Tdep

(13)
where the deposition time tgqep = 1/FA is the mean time
between two deposition events on the island of area A. Ty
is the mean residence time of an adatom on an island
before attaching to a step. W describes the probability that
two adatoms on an island meet before one of them leaves
the island. The meeting probability W and residence time
Tres are dependent on the strength of ESB as well as the size
and geometry of the island [9]. Here we use a model for
circular islands on (1 00) surfaces with W and 7, defined
in Ref. [9].

The probability that no nucleation has occurred up to
time 7 [14],

P(5) = e ot (14)
is integrated during simulation. The nucleation position is
chosen to be at the position of the maximum adatom
density on the island. Thus, nucleation occurs at the center
of the island.

First simulations are done with a single island in the
center of a periodic domain of size L = 80. During growth
a new island of fixed small size is put to the top island,
whenever the integration of P reaches 0.5 [14]. The surface
width over time for different strengths of ESB is shown
in Fig. 8(a). Except for vanishing ESB, the surface
width is increasing in time. For no ESB the surface
begins to grow with a constant surface width after a few
layers. An ESB leads to a mound instability, i.e.,
an increasing surface width. In Fig. 8(b) and (c) the
configuration of the steps after 16s of deposition is
shown in case of vanishing and strong ESB. The ESB
leads to a mound consisting of about 10 layers. The
influence of non-rotational setup is enlarged by the BZ
instability and leads to fourfold symmetry. Furthermore,
wavy steps occur.

In Fig. 9 the simulations of four regularly arranged
mounds are shown. In between the islands deep valleys
occur caused by step bunches.
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Fig. 8. (a) Surface width over time for several values of d_. The step
configuration is shown after 16s for (b) d_ = 1 and (c) d_ = 10. Keeping
the other parameters constant as before, the strength of the ESB is
increasing with increasing d_.
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Fig. 9. Simulation of four mounds. (a) and (b) show two snapshots after 1
and 5s of deposition without ESB. (c¢) and (d) show snapshots after 1 and
5s of deposition with ESB, d_ = 10.

4. Conclusions

We adapted a cellular automata (CA) algorithm in order
to track the steps in a Burton—Cabrera—Frank framework.
The algorithm is validated for two instabilities due to the
Ehrlich-Schwoebel barrier (ESB): meander instability and
mound formation. The Bales—Zangwill instability is
quantitatively reproduced by the numerical method. The
onset of mound formation is shown qualitatively.

The equations describing adatom diffusion is solved by
finite differences on the same scale as the CA. The ESB is

included by kinetic boundary condition at the step. In
order to treat the non-trivial boundary condition with FDs
a ghost value method is described.

A new CA algorithm has been developed to track the
steps during epitaxial growth. The CA provides a grid
based description of the step. Thus, morphological changes
and impingement of steps are easily treated. Special effort
has been made to extract a smooth approximation of the
step out of the CA.

The CA algorithm is by nature a local algorithm. That is,
the information of the boundary is mostly stored on grid
cells near the step and the step propagation is only
dependent on the neighboring cells. So local effects may
be modeled naturally, e.g., nucleation. The local nature of
the algorithm is perfectly suited to account for short range
interaction of steps, e.g., step pairing. Furthermore, the
new CA algorithm is specially constructed to overcome and
control the intrinsic anisotropy of the CA by rectangular
EEs. The intrinsic anisotropy of the CA, which we are now
able to control, is a promising feature of the CA. That is,
corners of the step may be represented by the CA directly.
Regularizations as needed for parametric elements, level
sets or phase field are not needed [15,16]. In further studies
we want to exploit the intrinsic anisotropy to model
anisotropic growth laws in epitaxy. Additionally we want
to combine simulations of step trains with nucleation.
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