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Summary

In this work, we present a new parallelization concept for adaptive finite element methods. Compared to
classical domain decomposition approaches, the concept of adaptive full domain covering meshes reduces
the parallel communication overhead. Furthermore, it provides an easy way to transform sequential codes
into parallel software by changing only a few lines of source code.
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Keywords: parallel computing; finite element method; adaptivity; partition of unity.

1. Introduction

In traditional parallelization concepts each process computes within a partition �i

of the full problem domain �. At partition boundaries a copy of needed neighboring
data (shadow data) is stored to reduce the communication between the processes.
But communication must be done anytime when the neighboring data changes. So,
the parallel structure must be considered in many parts of the code. Therefore, paral-
lelizing a sequential code is a complex matter if not only the solver is parallelized but
the whole problem including setup, grid generation, assembly, solving, error estima-
tion and visualization. Using adaptive full domain covering meshes can circumvent
this complexity. Here, each process computes a solution on the whole domain �.
But outside of the local partition �i a relatively coarse mesh is used. At the end of
computation the different processes combine their solutions into one global solution
by a partition of unity method.

Bank and Holst presented a similar technique in [1]. Their approach consists of
the following steps: First, the problem is solved on a relatively coarse mesh and
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local error estimates are computed. Next, partitions with approximately the same
error are created, assuming that equal errors will lead to approximately equal future
work. Then each process computes on the whole domain, but refinements are limited
largely to its own partition. Finally, after parallel computations, a global solution
is constructed on the union of the refined partitions. This can be done e.g., by a
parallel multigrid solver or by a partition of unity method.

In contrast to our approach, no repartitioning is provided there, but only one
partitioning based on local error estimates at the beginning. This makes it hard to
obtain a good load balance, because local error estimates are only a rough estimate
for the future work to be done in some region. Furthermore, repartitioning becomes
useful in time dependent problems to consider instationary solution properties.

Mitchell introduced a concept called full domain partitions in [2]. It combines the
adaptive finite element method with a parallel solver and a load balancing step in
each iteration. Outside of the local partition the coarsest possible compatible mesh
is used for each process. The global solution is built directly by a specialized parallel
multigrid solver. So, no partition of unity is needed. A load balanced repartitioning
is done in every iteration.

The concept of adaptive full domain covering meshes presented in this paper com-
bines the benefits of both approaches. No specialized solvers or other specialized
modules are needed. Our repartitioning strategy allows one to handle time depen-
dent problems in a straightforward way. Load balance quality and repartitioning
overhead can be balanced against each other. Furthermore, the concept of Mesh
Structure Codes (Sect. 4.1) presents a very efficient way to exchange mesh informa-
tion between the processes and further reduces the need for communication.

We introduce our approach in the context of adaptive multidimensional simu-
lations (AMDiS), a finite element toolbox for the solution of systems of partial
differential equations (PDEs) that is written in C++. Problem formulations can be
done on a high level of abstraction in a dimension independent way. Numerical issues
are kept away from the user as far as possible. More information about AMDiS can
be obtained from [3].

The remainder of this paper is organized as follows: Section 2 shortly describes
adaptivity and the adaptive mesh structure used in AMDiS. This is the context, in
which the approach is implemented. Section 3 gives a survey of the concept followed
by implementation aspects presented in Sect. 4. In Sect. 5, we give a short source
code example that should demonstrate the simplicity of parallelizing a sequential
program. Afterwards we present some numerical results in Sect. 6. We close this
paper by drawing conclusions in Sect. 7.

2. Adaptive meshes

In AMDiS, the mesh adapts to solution properties within the adaptation loop. So,
a given error tolerance can be reached with a minimal amount of unknowns. One
iteration of an adaptation loop consists of four steps. In the first step (assemble step)
a linear equation system is built with one equation for each unknown of the actual
discretization. In the second step (solve step) this system is solved by an iterative
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Fig. 1a. A two-dimensional macro mesh. (b) Some refinements of it. (c) Binary tree of macro element 0.
(d) A bisected triangle with local node numeration of parent and children

solver. The result is an approximate solution of the PDE. Non-adaptive methods
stop here. In adaptive codes the quality of the current approximation is rated by
estimating the global error and local element-wise error indicators (estimate step).
If the global error estimation exceeds a given error tolerance, those elements with
a high local error indicator will be refined (adapt step). In regions with a very low
error indicator the mesh may be coarsened, which is important for time dependent
problems. With this adapted mesh a new iteration is started. If the global error esti-
mation fulfills the tolerance criterion, the adaptation loop stops and the adaptive
computation is finished. Otherwise, a new iteration will be started.

AMDiS meshes consist of simplicial elements which are lines in 1D, triangles in
2D and tetrahedra in 3D. If an element has to be refined during the adaptation loop,
it will be bisected into two elements of the same dimension. The refinement algo-
rithm is described in [4] in more detail. The two new elements are called children of
the original parent element. For each element of the coarsest mesh (macro mesh) a
binary tree arises during adaptation. To avoid hanging nodes (vertices of an element
which are not vertices of the neighbor element), it may be necessary to first refine
a neighbor of an element before refining the element itself. So, a single refinement
can cause some propagation refinements of elements in the neighborhood. In Fig. 1
a triangular macro mesh consisting of four elements (a), some refinements of this
macro triangulation (b), and the corresponding binary tree for macro element 0
(c) are shown. Figure 1d illustrates the bisection of a triangle and the element-wise
node numeration of parent and children in the case of linear basis functions with
one node at each element vertex.

3. Overview

The main idea of the parallelization approach presented in this work is the concept
of adaptive full domain covering meshes. Starting with a very coarse macro mesh,
a partitioning mesh is obtained by some global or adaptive refinement steps. The
leaf elements of the resulting mesh build the partitioning level which is the basis
for all future domain decompositions. After partitioning the mesh, each process
computes on the whole domain, but refinements are allowed only on the local parti-
tion including a certain overlap region and some necessary propagation refinements.
The overlap is needed to construct a global solution after the adaptation loop. The
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Fig. 2a. A triangular macro mesh, (b) domain decomposition after six global refinements and over-
lap for partition 0, (c) composite mesh after adaptation loop, (d) local mesh of process 0 after

adaptation loop

propagation refinements are needed to preserve mesh compatibility. Figure 2 illus-
trates the concept of adaptive full domain covering meshes. To simplify matters, in
this example the partitioning did not change during the adaptation loop. In Sect. 4.4,
we show how repartitionings within the adaptation loop are handled.

Due to adaptive refinements, the load may get out of balance during the adaptation
loop. Then a new load balanced repartitioning will be necessary. The load balancing
can be done before or after adapting the local meshes. If it is done before the adap-
tation step (predictive load balancing), the load situation after the adaptation has
to be estimated considering the local error estimates at the elements. In this work
we applied regular load balancing in which the new partitioning is computed after
mesh refinements. This leads to a little more communication, because a finer mesh
has to be redistributed after repartitioning, but on the other hand the load balance
is more accurate. After the adaptation loop the global solution is constructed by a
parallel partition of unity of all local solutions. Algorithm 1 describes the parallel
adaptation loop on a high abstraction level. In the initialization step of line 1 the
partitioning level is constructed and the first domain decomposition is done.

Algorithm 1 parallel adaptation loop
1: initialize parallelization
2: assemble, solve, estimate
3: while tolerance not reached do
4: adapt mesh
5: if load out of balance then
6: repartition mesh
7: end if
8: assemble, solve, estimate
9: end while

10: build global solution

Initialization, repartitioning and building the global solution are described in more
detail later in this paper. Without these three steps the algorithm would describe the
usual non parallel adaptation loop for stationary problems in AMDiS, which is
described in [3].

In Fig. 3, the domain notation used in this paper is shown. � stands for the whole
problem domain and �i for the local partition of process i. The local partition
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Fig. 3. Domain notation used in this paper

of process i including overlap is denoted by �+
i . �

j
i is the sub domain of �i that

belongs to the overlap of �j (�j
i := �i ∩ �+

j ).

4. Implementation

The parallelization was realized on top of the message passing interface (MPI), which
is the standard for message passing in distributed memory environments.

In Sect. 4.1, the concept of Mesh Structure Codes is introduced which is an efficient
way to exchange mesh information between the processes. Mesh Structure Codes
can be used to construct global element and node indices, addressed in Sect. 4.2.
Section 4.3 describes the three level approach which allows one to decouple parti-
tioning level, overlap level and global coarse grid level. The repartitioning algorithm
is the topic of Sect. 4.4. Section 4.5 addresses the construction of a global solution
by a parallel partition of unity method. Finally, in Sect. 4.6 the parallelization of
time dependent problems and systems of PDEs is discussed.

4.1 Mesh structure codes

At some points in the computation, e.g., when the global solution should be built
or a repartitioning is performed, the current mesh states have to be communicated
between the parallel processes. Therefore, a compact mesh representation is needed,
which can be used for MPI communication. The concept of Mesh Structure Codes
provides such a compact representation.

Like mentioned in Sect. 1 all processes start with the same coarse macro trian-
gulation, which is refined in different ways during parallel computation. The only
allowed refinement operation is bisection of elements. Every element has either two
children or no children. The same holds for the nodes of the corresponding binary
tree. For each node we store a 1 if the corresponding element is refined and a 0
otherwise. To obtain a unique node order, we perform a pre-order traversal on the
tree: First, the root of the tree is visited, then the left sub tree and, finally, the right
sub tree is traversed in pre-order recursively. The resulting binary sequence can be
interpreted as an (unsigned long) integer value which can be sent over MPI very effi-
ciently. If the number of mesh elements exceeds the capacity of one integer variable,
an array of integers has to be used. Using this code the receiver can easily reconstruct
the senders mesh or fit the local mesh to it. Figure 4 illustrates how to construct the
Mesh Structure Code of an adaptively refined triangle. The corresponding binary
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Fig. 4. Mesh Structure Code of an adaptively refined triangle

code 1101000 is represented by the integer value 104 together with the position of the
first relevant bit within the binary representation. In this way, the code 1101000 can
be distinguished from the code 0 . . . 01101000. The Mesh Structure Code of a mesh
is the concatenation of the Mesh Structure Codes of its macro elements. The Mesh
Structure Code of the mesh showed in Fig. 1b is 110110000−0−0−101101000 (the
“-” character is used for a higher readability to seperate the macro elements). Since
the construction of Mesh Structure Codes is not expensive, no update procedure for
them is needed. A Mesh Structure Code is constructed for the current mesh based
on the hierarchical mesh data structure described in Sect. 2. It will be deleted after
its usage.

Another feature of Mesh Structure Codes is the possibility to build the compo-
sition of multiple meshes on a binary level. Therefore, in Algorithm 2 we firstly
define a recursive algorithm to extract a sub code subT reeCode which represents
the sub tree starting from the node corresponding to position pos in the Mesh
Structure Code structureCode. If subT reeCode is not empty at the beginning, the
result is pushed to the back of subT reeCode. The return value of the algorithm
is the first position within structureCode after the extracted sub tree. The first
recursive call of getSubTreeCode delivers the first child’s (or left) sub tree code, the
second call the second child’s (or right) sub tree code. If subT reeCode is not given
(subT reeCode == NULL), the algorithm just skips the corresponding sub tree
and returns the first position after it. This feature will be used, e.g., in Algorithm 4
to skip unused sub trees in the Mesh Structure Code. In Algorithm 3 getSubTree-
Code is now used to merge two codes into a composite Mesh Structure Code. The
result of this procedure is a code which represents the composition of the two meshes
represented by structureCode1 and structureCode2.

To synchronize the local meshes during the parallel computation, each process
computes its local Mesh Structure Code. After that the codes are exchanged between
the processes via MPI. Now each process knows the Mesh Structure Code of each
other process and can build the composite code by merging all local codes. Then
the local mesh can be locally adapted to fit to the composite code in some region.
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Algorithm 2 getSubTreeCode(structureCode, pos, subT reeCode)
1: if structureCode[pos] == 0 then
2: pos = pos + 1
3: if subT reeCode �= NULL then
4: push 0 to back of subT reeCode

5: end if
6: else
7: pos = pos + 1
8: if subT reeCode �= NULL then
9: push 1 to back of subT reeCode

10: end if
11: pos = getSubTreeCode(structureCode, pos, subT reeCode)
12: pos = getSubTreeCode(structureCode, pos, subT reeCode)
13: end if
14: return pos

Algorithm 3 merge(structureCode1, structureCode2)
1: result = empty structure code
2: size1 = binary length of structureCode1
3: size2 = binary length of structureCode2
4: pos1 = 0, pos2 = 0
5: while (pos1 < size1) and (pos2 < size2) do
6: if structureCode1[pos1] == structureCode2[pos2] then
7: push structureCode1[pos1] to back of result

8: pos1 = pos1 + 1
9: pos2 = pos2 + 1

10: else
11: if structureCode1[pos1] == 0 then
12: pos1 = pos1 + 1
13: pos2 = getSubTreeCode(structureCode2, pos2, result)
14: else
15: pos1 = getSubTreeCode(structureCode1, pos1, result)
16: pos2 = pos2 + 1
17: end if
18: end if
19: end while
20: return result

Usually the local mesh is adapted only within the local partition including the corre-
sponding overlap region. To skip the parts of the code that are not needed for local
mesh refinements, Algorithm 2 can be used again. Now, the result in subT reeCode

can be ignored and only the new position returned by the algorithm is of interest.

4.2 Global indexing

Different refinement and coarsening orders on the processes can lead to different
element and node numerations on the processes, even if the final mesh structure
is the same. To create global numerations, which are necessary for inter process
communication, the concept of Mesh Structure Codes described in Sect. 4.1 can be
used.

Global element indices: First the composite Mesh Structure Code is built on each
process by exchanging the local codes and merging them. In the little example
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a b c

Fig. 5. Node indices and binary trees with element indices for two differently refined meshes (a, b) and
corresponding global node and element indices for the composite mesh (c)

Table 1. Global element indices for composite mesh structure code 1100100 and corresponding element
indices for mesh 1 and mesh 2

Composite code 1 1 0 0 1 0 0
Global element index 0 1 2 3 4 5 6
Mesh 1 element index 0 1 – – 2 3 4
Mesh 2 element index 0 1 3 4 2 − −

illustrated in Fig. 5 the local codes 10100 and 11000 are merged into the com-
posite Mesh Structure Code 1100100. Now a pre-order traversal is performed on
the local mesh of each process. Simultaneously the composite Mesh Structure Code
is traversed. If the current element in the local mesh is a leaf element but the struc-
ture code entry is 1 (for refined element), the corresponding sub tree of the code is
skipped using Algorithm 2. The global index of the current local element is always
its position in the composite Mesh Structure Code. In Algorithm 4 this procedure
is shown. The mapping from local to global element indices in our example can be
seen in Table 1.

Algorithm 4 create global element numeration
1: Create composite mesh structure code: code

2: pos = 0
3: for all elements el of local mesh (pre-order) do
4: globalElementIndex(localIndexel) := pos

5: if el is leaf element then
6: pos := getSubTreeCode(code, pos, NULL)
7: else
8: pos := pos + 1
9: end if

10: end for
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Table 2. Global node indices in local element order according to global element indices

Global element index 0 1 2 3 4 5 6
Global node indices 0, 1, 2 2, 0, 3 3, 2, 4 0, 3, 4 1, 2, 3 3, 1, 5 2, 3, 5

Table 3. Global and local node indices

Global node index 0 1 2 3 4 5
Mesh 1 node index 0 1 2 3 − 4
Mesh 2 node index 0 1 2 3 4 −

Global node indices: To create a global node numeration the composite Mesh Struc-
ture Code is used to create a binary tree, corresponding to the structure of the com-
posite mesh. At each node of this binary tree the list of global node indices will
be stored in local element order as a result of the algorithm. In our example for
global element 5 the list of global node indices (3, 1, 5) is stored. Once such a binary
tree is created, it is easy to obtain a mapping from local to global node indices.
To create this binary tree, we can use the local node indices on macro elements as
global indices, too, because the numeration at macro level is the same for each pro-
cess. If the node indices of an element are known, the indices of its children can be
constructed depending on the element type. For linear Lagrange elements with one
node at each vertex and parent node indices (p0, p1, p2), the indices of the first child
are (p2, p0, newIndex) and those of the second child are (p1, p2, newIndex). The
counter newIndex is set to the first number which is not used for the macro mesh
nodes. It is incremented by one for each refined element. Now the whole binary tree
for every macro element can be constructed and filled with global node indices in a
recursive way. Table 2 lists the global node indices for the composite mesh elements
for our example. This leads to the mappings illustrated in Table 3.

4.3 Three level approach

As mentioned in Sect. 3, the domain decomposition is done on a fixed partitioning
mesh. This partitioning mesh should be defined on a relatively coarse level for two
reasons. First, the partitioning process is faster for fewer elements. Second, in time
dependent problems it should be possible to coarsen the mesh in regions where such
a fine mesh is not longer needed.

On the other hand a large overlap would lead to a bad parallel speedup behavior,
because on overlap regions more than one process computes on a fine grid. And
defining the overlap on the coarse partitioning level would lead to large overlaps.

A third point is that the quality of the local solution of process i on �i partially
depends on the mesh level outside of �i , see, e.g., [5]. So, these three levels should be
determined separately. First, the partitioning level is created and the domain decom-
position is computed. Then the mesh is refined uniformly on the whole domain � to
create the global coarse grid, which now is set to the coarsest mesh for future com-
putations on �. In a third step the local coarse grid is constructed by uniform refine-
ments within �i , which builds the coarsest mesh for future computations within the
partition. To ensure a smaller overlap due to local coarse grid construction, not only
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Fig. 6. Example for the three levels of partitioning. The partitioning mesh is globally refined twice to
get the global coarse grid level. Then another two global refinement steps applied on �i and its direct

neighbor elements (in each step) result in the local coarse grid level

refinements within �i are performed, but in every refinement step all elements with
element distance 1 to �i are refined, too. Then on the resulting mesh the overlap
computation is performed.

In Fig. 6 an example for this three level approach is shown. Notice the size of the
final overlap compared to the size the overlap would have on partitioning level.

In Algorithm 5, we can now take a closer look at the initialization procedure
needed for the parallel adaptation loop, introduced in Sect. 3.

Algorithm 5 initialize parallelization (on process i)
1: create partitioning level
2: create initial partitioning
3: set element weights on initial �i
4: create new partitioning (in parallel)
5: mark elements of new �i
6: create global coarse grid level
7: create local coarse grid level
8: create overlap
9: create parallel estimator

10: create parallel marker

After the creation of the partitioning level, an initial randomized partitioning is
done. This first partitioning is needed to compute the first useful domain decomposi-
tion in parallel. The element weights set in line 3 are used for the partitioning. Every
element of the partitioning mesh is weighted by 1 at this point because we want
a partitioning with the same number of elements in each partition. At later stages
of the computation, when further refinements of the partitioning mesh exist, the
element weights are set to the number of leaf elements belonging to one partitioning
element. In Sect. 4.4 setting the element weights for repartitioning is addressed in
more detail.
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In the last two steps a parallel marker and a parallel estimator are created for
each process. The marker is responsible for marking elements for coarsening and
refinement depending on local error estimates. The parallel marker is responsible
for marking elements for coarsening and refinement depending on local error esti-
mates – with the requirements that only elements within �+

i can be adapted, and
coarsening is limited by the local coarse grid. Propagation refinements are done by
the refinement module automatically. So, no markings have to be done for them.
The parallel estimator extends an arbitrary sequential estimator by communicating
needed global values like estimation sums or maxima after each estimation step.

The parallel marker and estimator are created only once at the beginning of the
parallelization. They use information about the current partitioning which is stored
at the elements. This information is set in line 2 of Algorithm 5 and adapted within
the adaptation loop after each repartitioning (line 6 of Algorithm 1).

4.4 Domain decomposition and repartitioning

For the domain decomposition the parallel graph partitioning library ParMETIS,
described in [6], is used. First, a dual graph of the mesh that should be partitioned
has to be constructed. Then the nodes of the dual graph, which corresponds to the
elements of the mesh, are decomposed considering weight constraints on the graph
nodes. The algorithm also tries to minimize the number (or edge weight sum) of
graph edges that are cut by domain boundaries. Furthermore, a diffusive reparti-
tioning of adaptively refined meshes is supported.

The goal of the domain decomposition is to decompose the domain � into n

partitions (n is the number of processes in the parallel computation), such that the
work load is approximately the same on every process. Each of the partitions should
be connected and the boundaries between the partitions should be minimized to
reduce the communication overhead and the size of the resulting overlap. In this
work, we use node weights to enable partitioning of a fine mesh on a coarser level
(see Sect. 4.3). So far we do not use edge weights for partitioning. The partition-
ing algorithm in ParMETIS works in parallel. This means that an initial arbitrary
partitioning must exist before the first call of ParMETIS. Each process then gener-
ates a new partition number for every element of its old partition. Redistribution
of the new partitioning information is not part of ParMETIS and has to be done
by the calling application. In the context of this work, every process has to collect
its new partition elements from all other processes and mark them, including all
descendants, as elements of the local partition.

When an element is refined, the partition status (IN, OUT or OVERLAP), is
handed down to its children. Coarsening is only allowed if the resulting coarse ele-
ment has a defined partition status. So, the partitioning mesh is the coarsest possible
mesh for all future computations.

During the parallel adaptation each process adapts its local mesh due to local
error indicators. In general, this leads to a more and more unbalanced load between
the processes. Repartitioning then is applied to recover the optimal load balance.
Like mentioned in Sect. 3, the basis of repartitioning is a fixed repartitioning mesh.
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Fig. 7. Element weights for an adaptively refined macro triangle. The partitioning mesh is built by the
elements of level two

An optimal load balance is assumed if all partitions have the same number of leaf
elements within their local partitions. One could imagine other criteria which could
count the number of degrees of freedom or the number of all tree elements of the
hierarchical mesh (not only leaf elements). Furthermore, one could consider the
work to be done outside of the local partition on each process. To count the number
of leaf elements within �i probably is not the most accurate approximation, but it
is very easy to implement and fast to execute.

In Fig. 7, the element weights used for domain decomposition are shown for an
adaptively refined macro triangle. One pre-order mesh traversal is needed to obtain
these element weights. If a partitioning element is reached during the traversal, this
element is stored as the current partitioning element. If a leaf element is reached,
the weight of the current partitioning element (initially set to zero) is incremented
by one. Note that in pre-order traversal the partitioning elements are visited before
all of the corresponding leaf elements. The mesh of process i is not necessarily the
finest on �i because other processes have an overlap with �i , in which they can refine
also. Therefore, before the element weights are set, local Mesh Structure Codes are
exchanged and merged, and the local mesh on process i is adapted to the composite
mesh within �i .

The goal of repartitioning is to optimize the load balance and to reduce total
computation time. But the repartitioning itself is an expensive procedure. To repar-
tition after every mesh adaptation is not necessarily the best choice. Repartitioning
is useful only if the time loss due to load imbalance is higher than the time needed
for the total repartitioning process. To consider this aspect, we introduce a mecha-
nism which after each mesh adaptation step decides whether to repartition or not.
First, on every process the sum over all element weights is computed, and then the
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sum average over all processes is built. After that every process compares its local
sum to this average. If the difference is too large for at least one of the processes,
a repartitioning is scheduled. More precisely, a repartitioning is done if any of the
local weight sums sumi satisfies one of the following inequalities:

sumi > rthigh · sumaverage rthigh > 1 (1)

sumi < rtlow · sumaverage 0 < rtlow < 1, (2)

where rthigh and rtlow stand for upper and lower repartitioning thresholds and
sumaverage is the average over all local weight sums.

Algorithm 6 repartition on process i

1: adapt to composite mesh on �i
2: set element weights on �i
3: if repartitioning useful then
4: compute new partitioning (in parallel)
5: mark elements of new �i
6: create local coarse grid level
7: create overlap
8: adapt to composite mesh on new �+

i
9: exchange values

10: coarsen outside of �+
i

11: end if

4.5 Building the global solution

After the parallel adaptation loop, each process i has computed a solution on a fine
mesh within �+

i and on a relatively coarse mesh outside of this region. We build one
global solution uPU out of the N rank solutions ui by a partition of unity method
(see, [7]):

uPU(x) :=
N−1∑

i=0

γi(x)ui(x) ∀x ∈ �, (3)

where

γi(x) := Wi(x)
∑N−1

j=0 Wj(x)
. (4)

Equation (4) ensures
∑N−1

i=0 γi(x) = 1 for all x ∈ �, and γi(x) ≥ 0 if Wi(x) ≥ 0 for

all i ∈ [0 : N − 1] and for all x ∈ �. We define

Wi(x) :=
∑

φ∈�c
i

φ(x), (5)

where �c
i is the set of all linear basis functions of the local coarse grid level of par-

tition i located at vertices with an overlap distance to �i smaller than the given
overlap size. This choice leads to functions Wi which are constant 1 within �i , con-
stant 0 outside of �+

i , and have a linear slope in the overlap region. Figure 8 shows
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Fig. 8. Global view of W0
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Fig. 9. Necessary communication for process 0

such a function in the two dimensional case for an overlap size of 1. After construc-
tion of the γi functions on the local coarse grids, Eq. (3) can be evaluated at each
discretization point of the fine composite mesh to obtain the final solution.

For a parallel computation of uPU , each process i computes the partition of unity
within its local partition �i . For this purpose the process needs the local solution
uj of process j in �

j
i = �i ∩�+

j for all j �= i. In Fig. 9, the communication scheme
for one process is illustrated.

In [8], an upper bound for the error in H 1 semi norm resulting from the partition
of unity is given. Assume u ∈ H 2(�), then ‖u − uPU‖H 1 ≤ C(h + H 2), where h is
the maximal edge size of mesh i in �i and H is the maximal edge size of mesh i in
� \ �i . In particular, if h ≤ √

H :

‖u − uPU‖H 1 ≤ C(h). (6)

As in [1], we do not require this constraint in the simulations in Sect. 6. However,
the results still fulfill our tolerance requirements on the H 1-error with the analytic
solution, which was set to be 10−3.
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4.6 Time dependent and vector valued problems

The parallelization of time dependent problems is straight forward. Because rep-
artitioning is provided already in the stationary adaptation loop, the partitioning
will also adapt to mesh changes over time automatically (see Sect. 4.4). The basis
for repartitioning is always the relatively coarse partitioning level, defined at the
beginning of computation. In time dependent problems not only refinement but
also coarsening of elements can occur. But the coarsest possible mesh is defined by
the local coarse gird level and the global coarse grid level respectively introduced in
Sect. 4.3. Further coarsening decisions are ignored. After each timestep the global
solution is constructed by a partition of unity. And after each repartitioning the
solution of the last timestep is sent from the former owner process of a fine element
to the new owner process of this element, like it is done for all relevant values located
at mesh nodes or elements.

If a system of PDEs should be solved in one vector valued problem, all PDEs are
discretized on one common mesh and result in one linear equation system. So, all
aspects concerning the mesh, e.g., the partitioning, are handled in exactly the same
way as in the scalar case. Aspects concerning the values defined on the mesh, like
value exchange and partition of unity, must be treated separately for each compo-
nent, but also in the same way as in the scalar case.

5. Code example

In this section, we want to give an impression of how easy it is for the user to par-
allelize a given sequential code. The most work is done by a parallel problem class,
which extends the original problem, and adds the needed parallelization abilities to
it. Instead of the original problem this parallel problem is handed over to the adap-
tation loop. Before the loop is started an initParallelization routine has to be called.
And after the loop has finished an exitParallelization routine has to be called. In
the following example the relevant code lines of a stationary scalar problem called
parallelellipt are shown:

#include "mpi.h" // added
#include "ParallelProblem.h" // added
...
int main(int argc, char* argv[])
{

MPI::Init(argc, argv); // added
...
ParallelProblemScal parallelellipt

("ellipt->parallel", &ellipt); // added

AdaptStationary *adaptationLoop =
NEW AdaptStationary("ellipt->adapt",

&parallelellipt, // modified
adaptInfo);
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parallelellipt.initParallelization(adaptInfo); // added
adaptationLoop->adapt();
parallelellipt.exitParallelization(adaptInfo); // added
...
MPI::Finalize(); // added

}

In this example ellipt is the name of the original sequential problem. After compil-
ing and linking this code for MPI use, it can be started in parallel by mpirun. Needed
parallelization parameters, like partitioning level or partitioning thresholds, can be
set in a parameter file. Otherwise, they are set to predefined default values.

6. Numerical results

In this section, we present some numerical results that demonstrate the possibilities
and the limits of our approach.

6.1 Varying local coarse grid level

To analyze the effect of the local coarse grid level, introduced in Sect. 4.3, we look
at the following 2D Poisson problem:

−�u = f in �,

u = g on ∂� (7)

with

f (	x) = n (sin(2πnx) + sin(2πny))
(8)

g(	x) = 1
4π2n

(sin(2πnx) + sin(2πny))

with 	x = (x, y). The right-hand side f and boundary function g are constructed
such that the problem results in a sine-shaped solution. The scaling parameter n

determines frequency and amplitude of the solution. In this example we set n = 4
and solve on � = (0, 1)2. Figure 10a shows the corresponding solution and parti-
tion boundaries for 4 partitions (thick lines) and 16 partitions (thin lines). Because
of the periodic shape, in each partition nearly the same sub-problem has to be solved
(except for different boundary situations). So, we obtain an optimal load balance
in each iteration and no repartitionings become necessary. We perform the initial
partitioning on a mesh consisting of 64 triangles (four global refinements of four
macro elements), and measure the speedup to the corresponding sequential code for
different choices of the local coarse grid level. The adaptation tolerance was set to
5 × 10−4.
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Fig. 10. Solutions of Eq. (7). (a) f and g according to Eq. (8) with n = 4. (b) f and g according
to Eq. (9)

Fig. 11. Speedup factors for different local coarse grid levels with 4 and 16 processes. The local coarse
grid level describes the number of uniform refinements within �i starting from the partitioning level

(see Sect. 4.3)

Figure 11 shows the resulting speedup factors for computations with 4 and with
16 processes. In both cases a local coarse grid level of 0 results in a very bad speedup.
The reason is that here the overlap for each partition was computed at the relatively
coarse partitioning level and covers a large part of �. On those overlap regions
more than one process computes the solution on a fine mesh. In the worst case,
where the overlap of each partition covers the whole remaining domain, every pro-
cess would perform exactly the same computations on the same mesh on whole �.
Including the overhead for partitioning and building the global solution, this would
result in a speedup factor smaller than one. Increasing the local coarse grid level,
the size of the resulting overlap will be decreased. For a local coarse grid level of
8 we obtain a speedup of 3.48 with 4 processes and a speedup of 15.41 with 16
processes. For higher values the speedup becomes worse again, because the num-
ber of needed adaptive iterations to reach the desired tolerance is getting smaller.
So, the needed time is getting smaller, too, and the relative parallelization overhead
grows.
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Fig. 12. Speedup for varying repartitioning values with 4, 16 and 32 processes. The lower repartitioning
threshold is always set to the reciprocal of the upper threshold. The last value in each case describes the

speedup when no repartitioning was performed at all

6.2 Varying repartitioning thresholds

While the example in Sect. 6.1 was constructed to avoid any repartitionings, the next
example explores the influence of repartitioning thresholds, described in Sect. 4.4.
For this purpose we use Eq. (7) again and define f and g as follows:

f (	x) = −
(

400	x2 − 40
)

e−10	x2

(9)
g(	x) = e−10	x2

.

This problem can be seen as worst case scenario for the parallelization approach,
because the irregularity of the solution can never be resolved by all processes
equally.

The solution on � = (0, 1)2 is shown in Fig. 10b. The fact that the source is lo-
cated in a corner of the domain leads to successive refinements towards this corner
and to load imbalance between the partitions. We use the eight times global refined
macro mesh as the partitioning level and set the local coarse grid level to 4. Then
we solve the problem with 4, 16 and 32 processes with a tolerance of 5 × 10−4 and
with varying values of upper and lower repartitioning thresholds. Then we compare
the computation times with the sequential case. In Fig. 12, the results are shown for
upper repartitioning thresholds between 1 and 8. The lower repartitioning threshold
was always set to the reciprocal of the upper one. No on the x-axis means that no
repartitioning was performed during the whole computation. This was realized by
setting the upper threshold to 10,00,000 and the lower one to 0. As one can see,
the optimal value for the upper threshold in this example is four in all cases. The
benefit compared to an upper threshold of one increases when more processes are
used. Whereas the overall relative speedup is worse if more processes are used. The
worst speedup is achieved in each case when no repartitioning was performed. This
is further illustrated by comparing our approach with [1].

The optimal choice for the repartitioning thresholds is probably problem specific.
Therefore, we added an algorithm which adapts the thresholds depending on the
relationship between the time used for the last repartitioning and the elapsed com-
putation time since the last repartitioning. The resulting speedup was similar to that
with the fixed optimal thresholds.
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6.3 Comparison with the approach of Bank and Holst

Bank and Holst make the assumption that partitions with approximately equal error
lead to approximately equal work for each process. They note in [1] that this is a
fragile assumption, but show that it works well for several examples.

However, for the problem defined in Sect. 6.2 this assumption does not hold. Using
the approach of Bank and Holst, partitioning is done only once at a relatively coarse
mesh at the beginning of the computation. Element weights are the local error esti-
mates of this mesh. We use four processes. The partitioning results in four partitions
with approximately the same estimation sums. The highest errors were estimated in
the lower left corner of the domain. This leads to small partitions 0, 1 and 2 around
this corner, compared to the much larger partition 3, see Fig. 13a.

Like described in [1] we avoid any communication within the adaptation loop to
decouple the iterations of the different processes. So, decisions concerning which
elements are marked for refinement and when the total tolerance is reached, can be
based only on local process information. We distribute the total tolerance equally
between the four processes, which is reasonable if the assumption holds that equal
errors lead to equal work loads.

In Fig. 13b the mesh after the parallel computation is shown. Figure 13c shows
the mesh after the corresponding sequential computation, which differs from the
parallel computation. In this example, the reached speedup factor was 0.6, which
actually is a slow down for the parallel case. One reason for this bad result is that
it needs much less work to reduce the error on the small partitions 0, 1 and 2 with
very few elements, than on the large partition 3, where the same error is distributed
on many more elements. The final mesh of partition 3 has over 3,25,000 elements,
whereas the meshes of partition 0 and 1 have about 7,000 elements, and the mesh of
partition 2 has 20,000 elements. So, nearly the whole work is done by process 3.

This effect is enhanced by distributing the tolerance equally between the processes.
We force each process to reduce the error by the same factor, which is not what hap-
pens in the sequential case. Bank and Holst stop the computations at each process,
when a given target number of elements or degrees of freedom is reached. This,
however, does not guarantee a solution, which fulfills the given tolerance criterion.
Furthermore, a comparison with the sequential case can not be done. Therefore, we
use the tolerance to stop the computation.

For this example our approach provides a far better speedup than the Bank and
Holst approach does. In Sect. 6.2, we showed that, with the right repartitioning
thresholds, a speedup of over 3 can be reached. Even if no repartitionings are applied,
the speedup is still better than with the Bank and Holst approach, see Fig. 12.

6.4 Scaled problem domain

The previous examples showed that the relative speedup (speedup divided by num-
ber of used processes) for a given problem gets worse, when the number of processes
grows. One way to avoid that, is to adapt the local coarse grid level according to the
number of used processes. In this section, we analyze another kind of scalability: We
use a higher number of processes to solve an accordingly more complex problem.
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Fig. 13a. The four partitions with approximately equal estimation sums. (b) The composite mesh after
the parallel computation. (c) The mesh after sequential computation

Fig. 14. Final mesh of partition 0 in the different cases. The value of n corresponds to the square root
of the used process number

Table 4. Time factor compared to the sequential case

p 1 4 16 64
Factor 1 1.279 1.496 1.589

This is a realistic scenario for many problems in materials science, where the overall
goal is not a reduction of computing time but the increase in domain size, see, e.g.,
[9]. We use the problem defined by Eqs. (7) and (8) in Sect. 6.1 again, but now we
use different values for n. To double the value of n is equivalent to double the x and
y expansion of � and continue the problem formulation on the extension. We use
n = √

p with p the number of processes for p ∈ {1, 4, 16, 64}. The partitioning level
is set to log2(p), the local coarse grid level is set to 8. In Fig. 14, the final meshes for
partition 0 in the different cases are shown.

In Table 4, the resulting time factors compared to the sequential case are shown.
Solving the problem, which is 64 times more complex than the original one, needs
only about 1.6 times the time when using 64 processes.

6.5 Moving source

In this section, we give an example of a simple time dependent problem solved in
parallel with four processes. The problem is defined by
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ut (	x, t) − �u(	x, t) = f (	x, t) in �

u(	x, t) = g(	x, t) on ∂�.

The function ut is the time derivative of u. The functions f and g are chosen such
that the source is moving from the lower left corner to the upper right corner of
� = (0, 1)2 while the time t proceeds from 0 to 1. Furthermore, the source ampli-
tude grows from 0 to 1 until t = 0.5 and falls back to 0 until t = 1.0 following a sine
function. We use a fixed timestep of 0.1 and an implicit time strategy, which adapts
in each timestep until the tolerance of 10−4 is reached. Also element coarsening is
allowed if local error indicators are sufficiently small. We use a partitioning level of
6 and a local coarse grid level of 6. Upper and lower repartitioning thresholds are

set to 3
2 and 2

3 , respectively. In Fig. 15, we can see, how the solution changes over
time. The meshes at the different timesteps are adapted to the current solution. On
the right part of the figure we see the partitions at the beginning of the correspond-
ing timesteps. One can see that the partitioning follows the mesh changes to obtain

Fig. 15. Solution, resulting mesh and corresponding partitions at different timesteps
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Fig. 16a–b. Evolution of u at two timesteps. The value u = 0 is denoted by opaque volume, u = 1 by
transparent volume. (c) Volume of partition 0, connected through periodic boundary conditions. The

simulations were performed by A. Rätz

a good load balance in each timestep. The speedup compared to the sequential
solution of the same problem was 3.65.

6.6 Higher-order problem in 3D

This is an example of a time dependent three dimensional parallel computation for
a system of PDEs. Here we look at a classical model for spinodal decomposition of a
binary alloy, the Cahn–Hilliard equation. The model is used to describe coarsening
dynamics in phase separation processes, which occur in quenched alloys. For numer-
ical approaches we refer to [10–12]. The Cahn–Hilliard equation is a fourth-order
problem that reads

ut = �
(
−ε�u + ε−1G′(u)

)
, (10)

with G(u) = 18u2(1 − u)2 a double well potential and ε a small parameter. The
values u = 0 and u = 1 are the two stable steady states, representing the two phases.
As initial conditions we use a small zero mean perturbation of u = 0.5. We write
(10) as a system of two second-order equations

ut = �w,
(11)

w = −ε�u + ε−1G′(u),

discretize in space by linear finite elements, linearize the derivative of the double-
well potential, apply a semi-implicit time-discretization and solve the resulting linear
system by an iterative solver.

We solve the problem on � = (−1, 1)3, discretized by a fix mesh consisting of
about 6.3 million tetrahedra, and we apply periodic boundary conditions on ∂�.
This discretization is too fine to be covered by one processor. Here we used 24 pro-
cesses. Figure 16a and b shows the evolution of u at different time steps. The solution
quickly separates � into two regions �0 and �1, where u takes the values of 0 and
1, respectively. The remaining part of � lies on an interface of width O(ε) between
the two regions. At later stages, �0 and �1 change shape so that the surface of the
interface between the two regions decreases while maintaining the volume of �0 and
�1. In Fig. 16c, the volume of partition 0, connected through a periodic boundary,
is visualized.
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7. Conclusion

With the concept of adaptive full domain covering meshes presented in this paper,
sequential codes can be parallelized in an easy way producing little communication
needs. Mesh Structure Codes are used to exchange mesh information in a very effi-
cient way. The parallel speedup can be optimized by varying parallelization param-
eters like local coarse grid level and repartitioning thresholds. If the problem com-
plexity increases together with the number of used processes, a good scalability of
the approach can be observed. Time dependent problems and systems of PDEs can
be treated in a straightforward way. The number of processes used in the examples
are moderate. If the number of processes drastically increases, the need for com-
munication in traditional parallelization concepts becomes an issue. We believe our
concept of adaptive full domain covering meshes to be a useful tool to overcome
this problem as the need for communication is reduced to a minimum.
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