
Comput Visual Sci (2007) 10:57–67
DOI 10.1007/s00791-006-0048-3

REGULAR ARTICLE

AMDiS: adaptive multidimensional simulations

Simon Vey · Axel Voigt

Received: 10 May 2005 / Accepted: 16 May 2006 / Published online: 14 December 2006
© Springer-Verlag 2006

Abstract We describe how modular software design
and well proven object oriented design patterns can help
to implement a flexible software package for the efficient
solution of partial differential equations. Today not only
efficiency in the numerical solution is of utmost impor-
tance for practical use, efficiency in problem setup and
interpretation of numerical results is of importance if
modeling and computing comes closer and closer
together. In order to demonstrate the possibilities of
the software, we apply the tool to several non-standard
problems.

1 Introduction

Scientific computation has become a major tool in
conducting research, playing comparable roles as do
experiment and theory. This success of computational
methods in scientific and engineering research is next to
the enormous improvement of computer hardware to a
large extend due to contributions from applied mathe-
maticians, who have developed algorithms which make
real life applications feasible. Examples are adaptive
methods, high order discretization, fast linear and non-
linear solvers and multi-level methods. The application
of these methods in a large class of problems demands
for suitable and robust tools for a flexible and efficient

Communicated by K. Mikula.

S. Vey · A. Voigt (B)
Crystal Growth group, Research Center caesar,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
e-mail: voigt@caesar.de

S.Vey
e-mail: vey@caesar.de

implementation. Today there exist several different
simulation packages for the numerical solution of par-
tial differential equations by the above mentioned algo-
rithms, which are suitable to solve real world problems.
For an example of an adaptive finite element software
we refer to [25]. In order to play a crucial role in sci-
entific and engineering research, besides efficiency in
the numerical solution, efficiency in problem setup and
interpretation of simulation results is of utmost impor-
tance too. As modeling and computing comes closer
together efficient computational methods need to be
applied to new sets of equations. The problems to be
addressed by simulation methods become more and
more complicated, ranging over different scales, inter-
acting on different dimensions and combining different
physics. Such problems need to be implemented in a
short period of time, solved on complicated domains
and visualized with respect to the demand of the user.
Only a modular abstract simulation environment will
fulfill these requirements and allow to setup, solve and
visualize real-world problems appropriately. We would
like to show, how abstract data structures and mod-
ern software concepts can help to design user-friendly
finite element software which provide large flexibility
in problem definition while on the other hand solve
these problems efficiently. Attempts to modularize finite
element codes have recently intensified, see e.g. [2,6].
The basic principles and advantages of modularization
are commonly known and acknowledged. However a
widely accepted modular design of finite element soft-
ware is not yet developed. In this paper we motivate
and describe the design of AMDiS and demonstrate its
possibilities. AMDiS extends some of the mathemat-
ical concepts of the adaptive finite element C-library
ALBERTA [25] and realizes them in a modular object

58 S. Vey, A. Voigt

oriented design. Besides a much more modern software
design, which allows for a more flexible use of the soft-
ware, the main additional feature is the extension of
several concepts to systems of PDEs and coupling of
problems over different dimensions, which is not possi-
ble in ALBERTA.

In Sect. 2 we show for a linear model problem of sec-
ond order which part of the solution process is problem
specific and what can be handled by general exchange-
able library functions. Section 3 describes implementa-
tion aspects related to this separation. In Sect. 4 features
of AMDiS are explained and in Sect. 5 several non-
standard applications are shown. Finally conclusions are
drawn in Sect. 6.

2 Abstract FEM

We consider the following partial differential equation,
which serves as a model problem and describes a general
second order parabolic equation

ut − ∇ · A∇u + b · ∇u + cu = f in �, for t > 0 (1)

u = g on �D, for t > 0 (2)

n · A∇u = h on �N , for t > 0 (3)

u(·, 0) = u0 in �, (4)

with problem specific parameters A = A(u, ∇u, x, t),
b = b(u, ∇u, x, t) and c = c(u, ∇u, x, t). The right hand
side, Dirichlet and Neumann boundary values are given
by f = f (x, t), g = g(u, ∇u, x, t) and h = h(u, ∇u, x, t).
And the initial condition is given by u0 = u0(x). For all
these functions we assume appropriate regularity. By n
we denote the unit normal on ∂�. With X = H1(�) and
Y = {v ∈ X : v = 0 on �D} the weak form reads

∫

�

utφ +
∫

�

A∇u · ∇φ +
∫

�

b · ∇uφ +
∫

�

cuφ −
∫

�N

hφ

=
∫

�

fφ (5)

for all φ ∈ Y. Now we split the time interval by discrete
time instants 0 = t0 < t1 < · · · and define the time
steps τn = tn+1 − tn. We consider at time instant tn finite
dimensional subspaces Xn

h,i ⊂ X with Nn
i = dim Xn

h,i and
set Yn

h,i = Xn
h,i∩Y with Mn

i = dim Yn
h,i. For simplicity lets

apply an implicit Euler discretization in time. The dis-
crete solution of (5) is then given by: Find un+1

h ∈ Xn+1
h,1

such that un+1
h ∈ gh + Yn+1

h,1 and

∫

�

un+1
h − un

h

τn φh +
∫

�

A∇un+1
h · ∇φh +

∫

�

b · ∇un+1
h φh

+
∫

�

cun+1
h φh −

∫

�N

hhφh =
∫

�

fφh (6)

for all φh ∈ Yh,2, with gh and hh approximation of
g and h, respectively. If we treat all dependencies of
the parameters on u explicitly, the resulting equation
becomes linear. Now choosing basis {φ1, . . . ,φNn

1
} and

{ψ1, . . . ,ψNn
2
} of Xn

h,1 and Xn
h,2, such that {φ1, . . . ,φMn

1
}

and {ψ1, . . . ,ψMn
2
} is a basis of Yn

h,1 and Yn
h,2, respec-

tively. For vn
h ∈ Xn

h1
we denote by Vn = (Vn

1 , . . . , Vn
Nn

1
)

the coefficient vector of vn
h, with respect to the basis

{φ1, . . . ,φNn
1
}, i.e.

vn
h =

Nn
1∑

j=1

Vn
j φj. (7)

Using (6) with test functions ψi, i = 1, . . . , Mn+1
2 , we get

the following equations for the coefficient vector Un+1

of un+1
h

1
τn

Nn+1∑
j=1

Un+1
j

∫

�

φjψi +
Nn+1∑
j=1

Un+1
j

∫

�

A∇φj · ∇ψi

+
Nn+1∑
j=1

Un+1
j

∫

�

b · ∇φjψi +
Nn+1∑
j=1

Un+1
j

∫

�

cφjψi

−
Nn+1∑
j=1

Un+1
j

∫

�N

h̃hφjψi =
∫

�

f̃ψi + 1
τn

Nn∑
j=1

Un
j

∫

�

φjψi

for i = 1, . . . , Mn+1
2 and Un+1

i = Gi, with Gi the coeffi-
cients of gh, for i = Mn+1

2 + 1, . . . , Nn+1
2 . The functions

h̃h and f̃h result from a linearization of hh. The resulting
system has to be assembled, which is done by looping
over all grid elements and using quadrature formulas
for each element to compute the integrals. If T n+1 is a
triangulation of�with elements Tn+1 the integrals read∫

�

φjψi dx =
∑

Tn+1∈T n+1

∫

Tn+1

φjψi dx, . . . (8)

where the sum can be restricted to Tn+1 ⊂ supp φj ∩
supp ψi. Now instead of performing the integration
on the elements Tn+1, a parameterization FT : T̂ →
Tn+1 is used, with T̂ = conv hull {0, e1, . . . , ed} the stan-
dard element in R

d. Furthermore the basis functions are
defined on a reference element T = {(λ0, . . . , λd) ∈ R

d+1;
λk ≥ 0,

∑d
k=0 λk = 1} using barycentric coordinates, see

Fig. 1. These allow to rewrite the integrals as

AMDiS: adaptive multidimensional simulations 59

1

1

y

x

1

z

a0
a

1

a2

x

S

λs(x)= (1/2; 1/3; 1/6)

S

Fig. 1 2d reference simplex S̄ and a point x in barycentric coor-
dinates of an element S

∫

Tn+1

A∇φj · ∇ψi dx=
∫

T̂

Ā∇λφj(λ(x̂)) · ∇λψi(λ(x̂)) dx̂

∫

Tn+1

b · ∇φjψi dx=
∫

T̂

b̄∇λφj(λ(x̂)) · ψi(λ(x̂)) dx̂

∫

Tn+1

cφjψi dx=
∫

T̂

c̄φj(λ(x̂))ψi(λ(x̂)) dx̂

and so on, with Ā =�(FT(x̂))A�t(FT(x̂))| det DFT(x̂)|,
b̄=�(FT(x̂))b| det DFT(x̂)|, c̄=c| det DFT(x̂)| and� the
Jacobian of the barycentric coordinates on Tn+1. Barry-
centric coordinates can be used with simplical elements
only but have the advantage that basis functions have to
be constructed and evaluated only once at the reference
element. In this way we transform all integrations onto
the standard element and have the definition of basis
functions on the reference element at hand. The param-
eterization FT is given by the coordinates of the mesh
elements, thus everything which is needed to assemble
the system is knowledge of the operators on the stan-
dard element, a triangulation and a set of basis functions
on the reference element. The assembled system has then
to be solved and the error of the numerically solution
afterwards estimated. The error estimation can be per-
formed with the data at hand. These procedure deter-
mine the core aspects of the implementation, which will
be described in the next section.

3 Implementation

AMDiS is written as an object oriented library in the
programming language C++, using a modular design and
well proven object oriented design patterns. In Fig. 2
the main AMDiS components with the adaptation loop
as highest abstraction level are shown. In the following
sections these components and their implementation are
explained in more detail.

3.1 Adaptation loop

The adaptation loop builds the highest abstraction level
in the simulation. Here the decisions are made, when
a problem has to assemble its equation system, when
to solve the system, when to estimate the error indica-
tors and when to adapt the underlying mesh. In order
to keep the implementation of these single steps trans-
parent at adaptation loop level, it is delegated to the
problem classes, that implement an abstract problem
interface. The problems are known to the adaptation
loop only by this simple interface. This allows a very
easy and straightforward formulation of the adaptation
loop by using the problem as black box component,
what in turn leads to a high reusability of the adaptation
loop for different problem types. So the adaptation strat-
egy, which can become complicated in time and space
adaptive problems, can be used independently of prob-
lem implementations, and on the other hand problem
implementations can be reused with different adapta-
tion strategies. In AMDiS some adaptation strategies
are implemented already but of course the adaptation
loop can be user defined also. Beside the problem the
current adaptation state, which is stored in an Adapt-
Info object, must be known to the adaptation loop. Here
information about the current simulation time, the cur-
rent timestep size and the current iteration number are
stored and whether the desired tolerances or the maxi-
mal iteration numbers are reached.

To illustrate the interactions between adaptation
loops and problems, in Algorithm 1 we show an adap-
tation loop of a time dependent problem solved with an
explicit time strategy. Before the time loop starts an ini-
tial solution must be calculated for the start time. After
that in each timestep the problem is solved on the mesh
of the last timestep and after that error indicators are
estimated and the mesh will be adapted according to
these indicators. This procedure is not iterated within
one timestep.

Algorithm 1 Explicit time strategy
adaptInfo→time = adaptInfo→startTime;
adaptInitial→adaptationLoop();
problem→estimate(adaptInfo→timestep);
while adaptInfo→time < adaptInfo→endTime do

adaptInfo→time += adaptInfo→timestep;
problem→initTimestep();
problem→setTime(adaptInfo→time);
problem→buildAndAdapt();
problem→solve();
problem→estimate(adaptInfo→timestep);
problem→closeTimestep();

end while

60 S. Vey, A. Voigt

algorithmic classes

data container

dependencies

post−processing

assemble solve estimate

adapt mesh

tol.
reached?

[yes]

[no]

define problem

generate mesh

EstimatorSolver

Marker

Refinement Manager

Coarsening Manager

Operator

Boundary Condition

MacroReader

SMIAdapter

Assembler

Quadrature Preconditioner

processingpre−processing

visualization

SMIAdapter

ValueWriter

MacroWriter

MatVecMultiplier

AdaptStationary

AdaptInfo

Problem

Fig. 2 Adaptation loop for a stationary problem and the needed software components

The problem method buildAndAdapt() is an abbrevi-
ation for a nested assemble and mesh adaptation
strategy, where partial assembling before refinement,
between refinement and coarsening, and after coarsen-
ing is allowed. Note that no assumptions about the prob-
lem implementation are made in the adaptation loop.
The calculation of the initial solution is delegated to
another adaptation loop, whose implementation also is
transparent for the calling adaptation loop. In
Algorithm 2 we show, how two stationary problems can
be coupled at adaptation loop level. Problem two here
needs the solution of problem one for the assemblage
of its equation system. So first problem one must assem-
ble and solve its system, before problem two can start
the assemblage. To simplify matters, we assume that no
mesh adaptation is necessary (even if the name adap-
tation loop then is somehow misleading) and that the
problems do all their assembling in buildAfterCoarsen().

Algorithm 2 Two coupled problems
problem1→buildAfterCoarsen();
problem1→solve();
problem2→buildAfterCoarsen();
problem2→solve();

To keep the adaptation loop independent of prob-
lem implementations, no knowledge about the problem
dependencies is assumed here, but only an order of exe-
cution is defined. Therefore it must be assured outside
the adaptation loop, that problem two can access the
solution of problem one. This is not part of the abstract
problem interface.

3.2 Finite element spaces

While at adaptation loop level no knowledge about the
implementation is assumed, we now descent into deeper
abstraction levels and describe the concrete data struc-
tures and algorithms which fill the single adaptation
steps with life. The first step of a solid object oriented
software design is a clean separation between data and
algorithms. Linking those two too close together will
produce strong algorithmic dependencies and reduce
extensibility and maintainability of the software
extremely. Fortunately finite element software decom-
poses in its components in a very natural way. All needed
algorithms operate on one or more finite element spaces.
Like mentioned in Sect. 2 a finite element space con-
sists of a domain discretization (Sect. 3.2.1), local and
global basis functions (Sect. 3.2.2), and degrees of free-
dom (DOFs) which build the connection between the
local and the global basis functions (Sect. 3.2.3).

3.2.1 The hierarchical mesh

In AMDiS the domain is discretized by a mesh consist-
ing of simplicial elements. The simplex is the simplest
possible polytope in any given space (a line in 1d, a tri-
angle in 2d, a tetrahedron in 3d). Choosing simplices
as mesh elements allows to define local basis functions
on a single reference element in barycentric coordinates
(Sect. 3.2.2) and to implement simple mesh refinement
by bisection (Sect. 3.6). The mesh is stored in a hierarchi-
cal way. In the preprocessing phase an initial triangula-
tion (macro triangulation) consisting of macro elements
is created. In these macro elements all needed topolog-
ical and geometrical information are stored. Addition-
ally to these information the reference to an element

AMDiS: adaptive multidimensional simulations 61

object is stored which builds the root of a binary tree
resulting from consecutive bisections of the element.
Therefore each refined element holds the references to
its two children. To avoid redundancy of element infor-
mation and so to reduce the amount of needed mem-
ory, geometrical and topological data aren’t stored at
each element, but generated from the macro elements
while mesh traversal only for the current element and
stored in an element info object. The hierarchical stor-
age of the mesh allows an easy coarsening and can be
utilized for multi level methods. In order to keep the
mesh implementation independent from the dimension
the prototype design pattern is applied to the mesh (see
[13]). So no knowledge about the elements is assumed
in mesh implementation, but only a reference to an ele-
ment prototype is stored. This prototype can deliver all
needed information at runtime and is able to create a
copy (clone) of itself. Thus new elements can be created
during refinement. Sometimes it is necessary to store
data directly at the elements because they can’t be gen-
erated from macro data while mesh traversal. But not all
elements may need these information and at some ele-
ments more than one information type has to be stored.
Furthermore the data assignment to the elements may
change during runtime. Therefore a flexible decoration
of the elements is needed which is provided by the dec-
orator pattern (see [13]). To decide what to do with the
element data while refinement and coarsening a chain of
responsibility is used, which allows element data specific
implementations that are transparent to the mesh.

3.2.2 Basis functions

Using barycentric coordinates it is easy to construct local
basis functions φi which hold the condition φi(λj) = δij,
i, j ∈ {1, . . . , N} where N is the number of basis func-
tions defined at the element and the jth basis function
is located at barycentric coordinates λj. This condition
ensures that the calculated coefficient of each basis func-
tion is equal to the finite element solution at the coor-
dinates this function is located at. In AMDiS so far
Lagrange elements up to degree four are implemented
in one, two and three space dimensions.

3.2.3 Degrees of freedom

As described in Sect. 3.2.2 the basis functions are defined
locally at the elements of the triangulation. To be able
to assemble and solve the global equation system, each
basis function must be also accessible by a global index.
On each local position where basis functions can be
located, a pointer to an array containing DOF indices
is stored. In Fig. 3 two cubic Lagrange triangles, which

4
6

3

1 4 2

0

3
6

5

5 0

1

2
1

1514

DOFVector

6
7

2

11
10

312
13

8
9

4
5

0

i

i

: local indices

: global indices

Fig. 3 Assignment between local and global DOF indices for
cubic Lagrange elements in 2d

have one basis function located at each vertex and in the
center and two basis functions located at each edge, are
shown. At their common vertices and the common edge
the elements share the same DOFs by pointing to the
same arrays of indices which now can be used for index-
ing DOF indexed objects, which can be DOF vectors or
DOF matrices. When the corresponding mesh is refined
or coarsened, a central DOF administration dynamically
adapts the size of each DOF indexed object and gener-
ates new DOFs or removes DOFs, that are not longer
needed. The removal of DOFs can lead to holes in the
sequence of valid DOF indices, which in turn can lead
to unused entries in DOF vectors and DOF matrices.
Therefore DOF iterators can be configured to iterate
over all used DOFs, all free DOFs or over every DOF
of a DOF indexed object.

3.3 Assembling

Now we describe, how the matrix and the right hand
side vector of the linear equation system is build in the
assembling step. If we consider a single equation the
procedure is already described in Sect. 2, we need only
one mesh and one finite element space. In coupled prob-
lems it may be, that different finite element spaces are
used for the different components and that they might
live on different meshes. So when assembling is done
for a term, that couples two components, this must be
taken into consideration. We describe the contribution
of a second order term, that couples finite element space
Xn

h,1 with finite element space Xn
h,2, to the entry (j, i) of

the element matrix of an element T1 of finite element
space Xn

h,1

∑
T2∈suppT1

∫

T̂

Ā∇λ1φj(λ1(x̂)) · ∇λ2ψi(λ2(x̂))dx̂

with Ā = �T1(FT1(x̂))A�
t
T2
(FT2(x̂))| det DFT1(x̂)|. If

both finite element spaces share the same mesh the sum

62 S. Vey, A. Voigt

disappears and T2 = T1, λ2 = λ1 and�T2 = �T1 . If even
the same basis functions are applied, the finite element
spaces are equivalent and φj = ψj. Note that in this
formulation only the matrix A is problem dependent.
Therefore in AMDiS a separation between operators
and assemblers is done. Each operator consists of opera-
tor terms which can be of different order. A second order
operator term e.g. calculates the term �T1(x)A�T2

t(x).
The fact that not only A but this whole product is defined
by the operator term, allows to consider special proper-
ties and dependencies of A in a more efficient way. The
integral now is computed by an assembler consisting of
up to three sub assemblers for the different order terms
using numerical quadrature. Because the integration is
done at the standard simplex T̂, basis functions often
have to be evaluated at the same coordinates. There-
fore the values of the basis functions are calculated only
once at each quadrature point and stored in fast quad-
rature objects. To keep the shape of element matrices
and vectors transparent to other program components
it is encapsulated in element matrix and element vector
objects.

3.4 Solvers

After the equation system is assembled, the finite
element solution can be calculated by solving this sys-
tem. Therefore different iterative methods with differ-
ent demands on the equation system are available. To
solve the system, a right hand side vector, an initial guess
for the solution and a matrix–vector multiplier must be
given to the solver. The vector types are specified by
a template parameter of the solver class. Thereby the
solver implementations are independent of the vector
type. This is used for the solution of vector valued sys-
tems where a vector consists of multiple DOF vectors
(Sect. 3.7). The matrix is not directly known to the solver,
but it is encapsulated within the matrix–vector multi-
plier, which performs the matrix–vector multiplication
for an arbitrary vector and returns the result vector.
So the multiplication can be specified without chang-
ing the solver code. Furthermore several preconditioners
are provided and for the solution of nonlinear equation
systems several Newton methods are available.

3.5 Estimators

Error estimators build the foundation for mesh adaptiv-
ity. On the one hand a global error indicator determines
whether the actual solution has reached the wanted
accuracy and therefore the adaptation loop can be fin-
ished. On the other hand local indicators are used to
decide, which elements have to be refined and which to

be coarsened. The fact that problem formulations are
encapsulated in operator objects enables a general esti-
mator implementation for arbitrary operators. So esti-
mators can be generated, at least for linear problems,
automatically for given operators. Estimators for vector
valued problems can be derived automatically from cor-
responding scalar estimators. In AMDiS so far residual
based error estimators and recovery estimators [1,30]
are available.

3.6 Mesh adaptation

Mesh adaptation can be divided into three steps: ele-
ment marking, mesh refinement and mesh coarsening.
Following the visitor design pattern (see [13]) each of
these tasks is delegated to specialized components
(marker, refinement manager, coarsening manager),
which are accessible by abstract interfaces. This separa-
tion between data and algorithmic classes increases the
flexibility and maintainability of the software by reduc-
ing algorithmic dependencies. In the marking step the
decision is made, which elements have to be refined
or coarsened depending on the local indicators calcu-
lated in the estimation step. Here several marking strat-
egies are available. Mesh refinement is done by bisection
of the simplicial elements by the refinement manager,
coarsening is done by removing the children of an ele-
ment by the coarsening manager.

3.7 Systems of coupled PDEs

In AMDiS systems of coupled PDEs can be solved in
one equation system. To illustrate this we use model
problem

−
u = f

u − v = 0

To define this problem we formulate a matrix of opera-
tors for the left hand side and a vector of operators for
the right hand side of the equation system which results
in the following equation system after assemblage
(

L−
u 0
Lu L−v

) (
uh
vh

)
=

(
fh
0

)
.

This gives an equation system consisting of a matrix of
DOF matrices and two vectors of DOF vectors. In the
general case of l coupled PDEs we have a matrix of l × l
operators where the entry (i, j) contains the operator
which couples the ith equation of the system with the jth
variable. If equation i and equation j live on the same
finite element space the assemblage can be done in the
standard way described in Sect. 3.3. If the mesh is the

AMDiS: adaptive multidimensional simulations 63

quadrature points

A0

A1

A1

A2

A4

A5

B0

B4

B5

B2

B3

B3

1:

2:

3:

4:

5:

6:

dual traverse

B5

B4

B2

B0

B3

A4

A5

A0

A2

A1

mesh A mesh B

Fig. 4 Dual traverse of two independently refined meshes

same but the basis functions differ, the finite element
space of equation i must be considered as row space and
that of equation j as column space in the assembling rou-
tines (see Sect. 3.3). If even different meshes are used
for the different components, for one element T of the
mesh of component i all elements of the jth components
mesh must be considered, that have an overlap with
element T.

Similar to the method described in [24] in AMDiS
meshes of different components share one initial tri-
angulation but can be adapted independently of each
other. The assemblage then is done within a parallel tra-
verse of the two involved meshes (dual traverse), where
each traverse step returns one element of each mesh. If a
leaf element of one mesh has further refinements in the
other mesh, it is returned in several dual traverse steps,
until all corresponding leaf elements of the other mesh
were traversed as well. The integration now is done over
the smaller element using a parameterized quadrature
for the basis functions of the bigger one. Figure 4 shows
an example of a dual traverse for two triangular meshes.
The resulting linear equation system now is solved by
one of the iterative solvers described in Sect. 3.4, with
system vector (vector of DOF vectors) as vector type and
a specialized matrix–vector multiplication. Error esti-
mation and element marking can be deduced from the
scalar case in a general way.

4 Additional features

4.1 Parametric elements

Parametric elements allow to solve problems on arbi-
trary manifolds and to implement moving meshes. As
mentioned above, geometrical information are not
stored in the elements but generated during mesh tra-
versal and stored in an element info object for the cur-
rent traverse element. To be able to parameterize its
elements a mesh can hold a parametric object which
will get every element info object before it is returned

A

B

C

E

D

A

B

C

E

D λ in

λ out

Fig. 5 Element T, boundary M0, and definition of λ

to the user. This parametric object know parameterizes
the element information by changing its variable state
or it can return a completely new object, derived from
the element information class, which e.g. has the knowl-
edge, how to transform world coordinates in barycen-
tric coordinates and vice versa. This is necessary, if the
parameterization is not affine. In both cases the param-
eterization is transparent for the user, who receives ele-
ment information and doesn’t have to care whether they
are parameterized.

4.2 Composite finite elements

Composite finite elements provide the ability to cir-
cumvent the meshing of complex domains [14]. We use
a signed distance function d(x,y,z) which is negative
inside the region, to describe our domain. The numerical
grid now is always generated from a regular tetrahedral
grid in a larger box containing the domain, which is
adaptively refined according to d(x,y,z). The signed dis-
tance function can be given analytically, be computed
for implicitly given boundaries, or provided in a discrete
form by values on the grid, which is common in level set
applications.

The geometry is adaptively resolved with increasing
refinement, but generally at no level can be represented
by the nodes of the grid. If parameters vary across the
boundary, integrals of the form

∫
T λφ with λ a discontin-

uous function have to be calculated. The method used
is explained in Fig. 5 for 2d
∫

T

λφ ≈
∫

�(DBE)

λinφ +
∫

�(ADEC)

λoutφ

=
∫

�(DBE)

λinφ +
∫

T

λoutφ −
∫

�(DBE)

λoutφ.

64 S. Vey, A. Voigt

To enforce boundary conditions at the domain boundary
a penalty method is used. For Dirichlet boundary con-
dition u = g the penalty term reads

1
ε(h)

∫

∂�

(g − uh)φ dx,

whereas for Neumann boundary conditions n ·A∇u = h

1
ε(h)

∫

∂�

yhn · ∇φ dx,
Syh = n · A∇uh − h on ∂�

is used to ensure the needed regularity.
S is the surface
Laplacian. Following [7] the additional equation on ∂�
can be transformed into an equation on �.

4.3 Shared mesh interface (SMI)

We developed SMI to provide an unified and distrib-
uted management for arbitrary meshes. It can be used to
share one ore more meshes between different programs.
In AMDiS SMI is used to couple the simulation with a
specialized visualization software in the post-processing
step and to allow the integration of external mesh gen-
erators in the pre-processing step. Furthermore SMI can
be used to turn the hierarchical mesh structure of AM-
DiS into a flat representation of the mesh, which allows
a flexible iteration over elements and nodes, what is
useful for some algorithms. On the one hand SMI pro-
vides an abstract interface which can handle any kind
of unstructured meshes consisting of arbitrary and even
mixed element types, on the other hand the client–server
architecture of SMI allows to share meshes between
different application running at even different comput-
ers. Figure 6 illustrates this client–server structure.

5 Applications

Here we do not intend to solve a specific application
problem. For that purpose, especially for problems
related to materials science we refer to [3,16,22]. In
order to demonstrate the possibilities of AMDiS, we
rather work on an artificial problems. Our object of
interest is the Stanford Bunny. This bunny model is most
commonly used in testing computer graphics techniques
and it is complicated enough as a test object for non-
standard numerical simulations. With the techniques
developed in [29] a polygonal mesh with 69.451 triangles
of a bunny surface was created which after some modifi-
cations is here used as a macro triangulation for compu-
tations on parametrically defined domains. Besides this
polygonal mesh the bunny is also described implicitly by

SMI Client

SharedMeshInterface

SMI Client

SharedMeshInterface

SMI calls

Application 1

SMI Server

SMI calls

SMI
connection

TCP.

TCP

Application 2

Fig. 6 Client-server architecture of SMI

a signed distance function and used as a computational
domain to demonstrate the applicability of the level set
techniques.

5.1 Higher order models on polygonal meshes

Applications for higher order partial differential equa-
tions on surfaces are abundant. For some special prob-
lems related to materials science, biology and image
processing we refer to [15,19,20]. Here we will con-
centrate on a classical model for spinodal decomposi-
tion of a binary alloy, the Cahn–Hilliard equation. The
model is applicable to describe coarsening dynamics in
phase separation processes, which occur in quenched
alloys. For numerical approaches we refer to [5,10,18].
We here solve such an equation on a general surface S.
The equation reads

ut =
S

(
−ε
Su + ε−1G′(u)

)
(9)

with
S the surface Laplacian, G(u) = 18u2(1 − u2) a
double well potential and ε a small parameter. u = 0
and u = 1 are the two stable steady states, representing
the two phases. As initial conditions we use a small zero
mean perturbation of u = 0.5. Our numerical approach
is the same as for Euclidean geometries, see [22]. We
write (9) as a system of two second order equations, dis-
cretize in space by linear finite elements, linearize the
derivative of the double-well potential, apply a semi-
implicit time–discretization and solve the resulting

AMDiS: adaptive multidimensional simulations 65

Fig. 7 Coarsening in the Cahn–Hilliard equation. Initial condition u = 0.5 (slightly perturbed), blue denotes u = 0 and red denotes
u = 1. The time steps are t = 0, 0.001, 0.00463, 0.01163. The simulations are performed by A. Rätz

Fig. 8 Surface evolution due to surface diffusion. The time steps are t = 10−7, 10−6, 5 · 10−6, 10−5. Red indicates a normal velocity
inwards and blue outwards. The simulations are performed by F. Haußer

linear system by an iterative solver. The finite element
representation reads

∫

S

un+1
h − un

h

τn φ =
∫

S

∇Swn+1
h · ∇Sφ (10)

∫

S

wn+1
h φ − ε

∫

S

∇Sun+1
h · ∇Sφ − ε−1

∫

S

G′′(un
h)u

n+1
h φ

= ε−1
∫

S

(G′(un
h)− G′′(un

h)u
n
hφ) (11)

with φ test functions from the space of piecewise linear,
globally continuous elements. To solve this problem in
AMDiS an implementation on an Euclidean grid can
be used. Their are no changes in the code needed, only
the parametric mesh has to be provided. Figure 7 shows
the evolution of u at different time steps. The solution
quickly separates the surface S into two regions S0 and
S1, where u takes the values of 0 and 1, respectively.
The remaining part of S lies on an interface of width
O(ε) between the two regions. In later stages S0 and S1
change shape so that the length of the interface between
the two regions decreases while maintaining the area of
S0 and S1.

5.2 Geometric evolution by parametric finite elements

The evolution of surfaces plays a major role in vari-
ous applications, such as fluid dynamics, materials sci-
ence and image processing [11,23], and become even

Fig. 9 Signed distance function and adaptive mesh on cut
through the bunny

more important if smaller and smaller length scales are
reached. Here we will concentrate on surface diffusion,
as an important mass transport mechanism in epitaxial
growth.

v = −
Sκ (12)

with v the normal velocity and κ the curvature. For
numerical approaches we refer to [4] which we closely
follow. We rewrite the forth order equation into a sys-
tem of second order equations, discretize in space by lin-
ear parametric elements and semi-implicitly in time by
treating the nonlinear operators and the surface normal
explicitly but all other quantities implicitly. The result-
ing system for the vector and scalar valued unknowns

66 S. Vey, A. Voigt

Fig. 10 Surface evolution due to mean curvature flow. The time steps are t = 0, 0.006, 0.030, 0.200. The simulations are performed by
C. Stöcker

κ = κn+1
h , κ = κn+1

h , v = vn+1
h and v = vn+1

h reads
∫

Sn

κφ − τn
∫

Sn

∇Sn v · ∇Snφ =
∫

Sn

∇Snxn · ∇Snφ (13)

∫

Sn

κφ =
∫

Sn

κ · nnφ (14)

∫

Sn

vφ =
∫

Sn

∇Snκ · ∇Snφ (15)

∫

Sn

vφ =
∫

Sn

vnnφ (16)

with φ and φ scalar and vector valued piecewise lin-
ear test functions. The first equation results from the
geometric expression κn+1 = −
Sxn+1, with xn+1 =
xn + τnvn+1 the updated position vector. The resulting
linear system is solved by a Schur-complement ansatz.
The main difference to the implementation of (10) and
(11) lies in the fact, that the parameterization of the
surface changes in time, which is accounted for in treat-
ing the position vector xn as an unknown. For further
numerical details and an extension to anisotropic situ-
ations we refer to [17]. Figure 8 shows the evolution of
the surface at different time steps. The normal velocity is
plotted on the surface to visualize the smoothing prop-
erties in detail. The evolution quickly smoothes small
surface features and afterwards evolves towards its equi-
librium shape. The configuration of the bunny however
will lead to a pinch-off off the left ear, which cannot
be handled within the described method. For the dem-
onstrated isotropic situation the surface area decreases,
while keeping the volume constant.

5.3 Implicit description of surfaces

In several applications, today mainly related to volumet-
ric medical imaging, surfaces are not given in parametric
form. They are only defined through implicit functions.
On the other hand due to the success of level set meth-
ods [21,26] in a wide range of applications, including

computer vision, fluid dynamics, optimal design, and
others where the simulation of moving interfaces plays
a key role, an implicit description of domains and the
solution of partial differential equations on such implic-
itly described domains is of importance. In constructing
signed distance functions, as well as in solving prob-
lems by level set methods, efficient numerical methods
of Hamilton-Jacobi equations are necessary. To derive
such methods on unstructured meshes we follow a pro-
posed finite-element discretization of [8]. Here a linear
finite element solution is constructed through a simpli-
fied local equation, which is solved by the Hopf–Lax
formula. The proposed adaptive Gauss–Seidel iteration
for the solution of the nonlinear system is modified and
extended to three dimensional situations in [28] and
used here to construct a signed distance function of
the Stanford bunny from a given implicit representa-
tion. Figure 9 shows on a cut through the bunny, the
computed signed distance function and the adaptively
refined mesh. The computed data is used in the follow-
ing sections as an initial description of the surface.

5.4 Geometric evolution by level sets

Again we are concerned with surface evolution, but
now concentrate on mean curvature flow, important for
example to describe the motion of grain boundaries. For
an isotropic situation the equation has the simple form

v = κ (17)

We solve this equation within a level set context. For
related work we refer to [9,12,27]. Starting from the
L2-gradient flow of the surface energy e(S0) = ∫

S0
1ds

and representing the surface Sc = {x ∈ �|u(x) = c}
through the level set of u with value c, we can define
a global energy E(u) = ∫

IR e(Sc)dc = ∫
�

‖∇u‖dx. Fol-
lowing [9] this can be used to derive a finite element
formulation for isotropic mean curvature flow, which in
a semi-implicit time discretization reads

AMDiS: adaptive multidimensional simulations 67

∫

�

un+1
h − un

h

τn

1
||∇un

h||φ =
∫

�

∇un+1
h

‖∇un
h‖ · ∇φ (18)

with φ test functions from the space of piecewise lin-
ear, globally continuous elements. For further numeri-
cal details and an extension to anisotropic situations we
refer to [9]. Figure 10 shows the evolution of the sur-
face at different time steps. Again the evolution quickly
smoothes small surface features and afterwards evolves
towards its equlibrium shape, while the volume is shrink-
ing. As expected the time scale is different than for the
surface diffusion case in Sect. 5.2.

6 Conclusion

We described the software concepts of the adaptive
finite element toolbox AMDiS and applied the tool-
box to several non-standard problems. AMDiS is freely
available for research and teaching purposes and can be
downloaded at http://www.caesar.de/cg.

Acknowledgments We would like to thank J. Greer and
G. Sapiro for providing an implicit representation of the bunny
and M. Droske and M. Rumpf for helpful discussions.

References

1. Ainsworth, M., Oden, J.: A posteriori error estimation in finite
element analysis. Wiley, New York (2000)

2. Banas, K.: On a modular architecture for finite element sys-
tems. i sequential codes. Comput. Vis. Sci. 8, 35–47 (2005)

3. Bänsch, E., Haußer, F., Lakkis, O., Li, B., Voigt, A.: Finite
element method for epitaxial growth with attachment-etach-
ment kinetics. J. Comput. Phys. 194, 409–434 (2004)

4. Bänsch, E., Morin, P., Nochetto, R.: A finite element
method for surface diffusion: the parametric case. J. Com-
put. Phys. 203, 321–343 (2005)

5. Barrett, J., Blowey, J.: Finite element approximation of the
Cahn-Hilliard equation with concentration dependent mobil-
ity. Math. Comp. 68, 487–517 (1999)

6. Bastian, P., Droske, M., Engwer, C., Klöfkorn, R., Neubauer,
T., Ohlberger, M., Rumpf, M.: Towards a Unified Framework
for Scientific Computing. LNCSE. Springer, Berlin Heidel-
berg New York (2005, Accepted for publication)

7. Bertalmio, M., Cheng, L.T., Osher, S., Sapiro, G.: Variational
problems and partial differential equations on implicit sur-
faces. J. Comput. Phys. 174, 759–780 (2001)

8. Bornemann, F., Rasch, C.: Finite-element discretization of
static Hamilton–Jacobi equations based on a local variational
principle. Comput. Vis. Sci. 9, 57–69 (2006)

9. Clarenz U., Haußer F., Rumpf M., Voigt A., Weickard U.
(2006) On level set formulations for anisotropic mean cur-
vature flow and surface diffusion. In: Multiscale Modeling in
epitaxial growth, ISNM, vol. 149, pp. 227–237. Birkhäuser,
Boston (2005)

10. Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard
equation and approximation for the Hele–Shaw problem.
Interf. Free Bound. 7(1), 1–28 (2005)

11. Fried, E., Gurtin, M.: A unified treatment of evolving inter-
faces accounting for small deformations and atomic transport
with emphasis on grain-boundaries and epitaxy. Adv. Appl.
Mech. 40, 1–177 (2004)

12. Fried, M.: A level set based finite element algorithm for
the simulation of dendritic growth. Comput. Vis. Sci. 7(2),
97–110 (2004)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pat-
terns. Addison-Wesley, Reading (1996)

14. Hackbusch, W., Sauter, S.: Composite finite elements for the
approximation of PDEs on domains with complicated micro-
structures. Numer. Math. 75, 447–472 (1997)

15. Halpern, D., Jensen, O., Grotberg, J.: A theoretical study of
surfactant and liquid delivery into the lung. J. Appl. Physi-
ol. 85, 333–352 (1998)

16. Haußer, F., Voigt, A.: Facet formation and coarsening mod-
eled by a geometric evolution law for epitaxial growth. J.
Cryst. Growth 275, e47–e51 (2005)

17. Haußer, F., Voigt, A.: Anisotropic surface diffusion, a numer-
ical approach by parametric finite elements. J. Sci. Comput.
(2007) DOI 10.1007/s10915-005-9064-6

18. Kim, J., Kang, K., Lowengrub, J.: Conservative mul-
tigrid methods for Cahn–Hilliard fluids. J. Comput.
Phys. 193(2), 511–543 (2004)

19. Memoli, F., Sapiro, G., Thompson, P.: Implicit brain imag-
ing. Human Brain Mapping 23, 179–188 (2004)

20. Myers, T., Charpin, J.: A mathematical model for atmosheric
ice accretion and water flow on a cold surface. Int. J. Heat
Mass Trans. 47(25), 5483–5500 (2004)

21. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic
Implicit Surfaces. Springer, Berlin Heidelberg New York
(2003)

22. Rätz, A., Ribalta, A., Voigt, A.: Surface evolution of elasti-
cally stressed films under deposition. J. Comput. Phys. 214,
187–208 (2006)

23. Sapiro, G.: Geometric partial differential equations and
image analysis. Cambridge University Press, Cambridge
(2001)

24. Schmidt, A.: A multi-mesh finite element method for phase-
field simulations. In: Interface and Transport Dynamics,
LNCSE, vol. 32, pp. 209–217 (2003)

25. Schmidt, A., Siebert, K.: Design of Adaptive Finite Ele-
ment Software, LNCSE, vol. 42. Springer, Berlin Heidelberg
New York (2005)

26. Sethian, J.: Level Set Methods and Fast Marching Methods.
Cambridge University Press, Cambridge (1999)

27. Smereka, P.: A level set based finite element algorithm
for the simulation of dendritic growth. J. Sci. Comput. 19,
439–456 (2003)

28. Stöcker, C., Vey, S., Voigt, A.: AMDiS-adaptive multidimen-
sional simulation: composite finite elements and signed dis-
tance functions. WSEAS Trans. Circ. Syst. 4, 111–116 (2005)

29. Turk, G., Levoy, M.: Zipped polygon meshes from range
images. In: SIGGRAPH’94, pp. 311–318 (1994)

30. Verfürth, R.: A review of a posteriori error estimation
and adaptive mesh refinement techniques. Wiley-Teubner,
Chichester (1996)

	AMDiS: adaptive multidimensional simulations
	Abstract
	Introduction
	Abstract FEM
	Implementation
	Adaptation loop
	Finite element spaces
	The hierarchical mesh
	Basis functions
	Degrees of freedom
	Assembling
	Solvers
	Estimators
	Mesh adaptation
	Systems of coupled PDEs
	Additional features
	Parametric elements
	Composite finite elements
	Shared mesh interface (SMI)
	Applications
	Higher order models on polygonal meshes
	Geometric evolution by parametric finite elements
	Implicit description of surfaces
	Geometric evolution by level sets
	Conclusion

