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A Discrete Scheme for Parametric Anisotropic Surface
Diffusion
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In this note we present, how anisotropic surface energies may be incorporated
into the finite element method for parametric surface diffusion given by Bänsch
et al. [2004. J. Comput. Phys. 203, 321–343]. We present the adapted variational
formulation, and the resulting semi-implicit discretization. Finally several sim-
ulations with strong (convex) anisotropies are shown, where the corresponding
Wulff shapes are approached as the steady state.
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1. INTRODUCTION

A surface �(t) is evolving according to anisotropic surface diffusion if the
normal velocity v satisfies the 4th order parabolic equation

v=∆�κγ on �(t), (1)

where ∆� denotes the Laplace–Beltrami operator on �(t) and κγ its aniso-
tropic mean curvature, which may be derived formally as the first varia-
tion of the anisotropic surface energy. The notion of surface diffusion goes
back to Mullins [8] appearing in the context of material science. Consider
a crystal surface, whose dynamic is diffusion dominated, i.e., the mor-
phological evolution does not happen via attachment and detachment of
atoms but rather by atoms moving along the surface. Then, the atomic
flux J� on the surface is assumed to be proportional to the surface gradi-
ent of the chemical potential κγ , and the continuity equation v=−�∇�JΛ,
� denoting the atomic volume, takes the form (1).
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In this paper, we discuss the incorporation of anisotropy into the
finite element method for isotropic surface diffusion of parametric surfaces
by Bänsch et al. [1]. Here the starting point is a second order splitting of
(1), where the vector valued mean curvature �κ :=κ �n, appearing as an addi-
tional unknown, is expressed as the Laplace–Beltrami of the position vec-
tor [7]. A semi-implicit time discretization and integration by parts leads
to a weak formulation of the second order system, which is discretized in
space using linear finite elements. We will incorporate anisotropy into this
scheme by using an appropriate weak formulation for the vector valued
anisotropic mean curvature κγ �n, see e.g. [4, 5].

2. MODEL AND NOTATIONS

In this section we fix our notation and present some basic differential
geometric results. For more details and references to the subject see [5, 10].
Let �⊂R

3 denote a smooth closed hypersurface with normal vector field
�n. In the following we assume all functions and vector fields to be defined
in a neighborhood of �. The tangential gradient ∇�f of a function f and
the tangential divergence ∇� · �v of a vector field �v are given by

∇�f =∇f − (�n ·∇f )�n, ∂if := (∇�f
)
i
= ∂if − (�n ·∇f )ni,

∇� · �v = tr(∇��v)=
∑

i

∂ivi,

where tr denotes the trace in R
3. The Laplace–Beltrami operator on �

may then be expressed as

∆�f =∇� ·∇�f =
∑

i

∂i∂if.

The mean curvature κ is the trace of the shape operator S = ∇��n, or,
equivalently the tangential divergence of the surface normal:

κ= tr(S)=∇� · �n. (2)

Also we recall the formula

∆��x=−κ �n, (3)

which is obtained from (2) using the identity ∂jxk = δjk − njnk for the
coordinate functions xk. Equation (3) is the starting point of a finite ele-
ment discretization of mean curvature flow of parametric surfaces in [7],
since by integration by parts it implies
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∫

�

κ �n · �φ dA=
∫

�

∇��x ·∇�
�φ dA. (4)

Alternatively, the curvature κ may be obtained as the first variation
of the surface energy E[�] :=∫

�
1 dA with respect to normal variations. In

terms of a physical interpretation, E[�] is the surface free energy and κ is
the (local) chemical potential µ, describing the rate of change of the free
energy when moving the surface in normal direction.

The notion of anisotropic mean curvature is most naturally obtained
by introducing an anisotropic surface energy density γ depending on the
orientation of the surface �. Thus, γ is a smooth function S2→R

+, which
may be assumed to be given as a function on R

3 − {0}, being positively
homogeneous of degree 1. In particular this implies for the second deriva-
tive (where we use the symbol D for differentiating with respect to z∈R

3

not to be confused with a point in space)

D2γ (z) · z=0,

and therefore D2γ can be interpreted as an endomorphism on the tangent
space of �. The first variation of the surface energy Eγ [�]

Eγ [�]=
∫

�

γ (�n) dA,

will be called the anisotropic mean curvature κγ and is given by

κγ := tr(D2γ ◦S)=∇� ·Dγ.

Note that in the above definition, γ and Dγ are evaluated at z= �n(�x).
Dγ (�n) is called the Cahn–Hoffman vector. To ensure, that the surface
energy Eγ is a convex functional – which ensures a well defined gradi-
ent flow with respect to this functional – we make the following convexity
assumption on γ (for some γ0 >0)

D2γ (p)q ·q �γ0q ·q; for all p,q ∈R
3, |p|=1, p ·q=0.

Associated with an anisotropy γ is the Wulff shape Wγ , defined as

Wγ ={z∈R
3|z ·q �γ (z) for allq ∈R

3}.

If γ is convex, Wγ is convex and the boundary of Wγ may be param-
etrized over S2 using the Cahn–Hoffmann vector, i.e., S2 → ∂Wγ ⊂
R

3, �n �→Dγ (�n) [3].



226 Haußer and Voigt

For a fixed volume, the boundary of the (rescaled) Wulff shape is the
unique minimizer of the surface energy (2) [12]. Moreover, the anisotropic
mean curvature is constant on the boundary of the Wulff shape [9].

An analog of Eq. (4) for the anisotropic case reads (cf. [4, 5])

∫

�

κγ �n · �φ dA=
∫

�

γ (�n)∇��x ·∇�
�φ dA−

3∑

k,l=1

∫

�

γzk
(�n)nl∇�xk ·∇�φl dA,

(5)

where we have used the notation γzk
:=Dkγ . In particular note, that no

second derivative of γ is involved in this weak form. Again this identity
is the starting point of a finite element discretization of anisotropic mean
curvature flow of parametric surfaces, see [4, 5], and will be used in the
next section.

A surface �(t) is evolving according to anisotropic surface diffusion if
the normal velocity v satisfies the following 4th order parabolic equation

v=∆�κγ on �(t).

We note that this evolution has the following geometric properties: if �(t)

is a closed surface, then the volume of the bounded domain is preserved
and the total energy Eγ decreases. In particular, the boundary of the
Wulff shape is a stable steady state. Except for the isotropic case, there are
no existence or uniqueness results for this highly nonlinear equation.

3. VARIATIONAL FORMULATION AND FINITE ELEMENT
DISCRETIZATION

In view of the identity (5), we start as in the isotropic case [1, 7] by
rewriting Eq. (1) as a system of 2nd order equations. Using the position
vector �x, the curvature vector �κγ = κγ �n, and the velocity vector �v= v�n, (1)
becomes equivalent to the following system of equations for �κγ , κγ , v, and �v

(�κγ )i = −∇� ·γ (�n)∇�xi +
3∑

k=1

∇� ·
(
γzk

ni∇�xk

)
, i=1,2,3 (6)

κγ = �κγ · �n, (7)

v = ∆�κγ , (8)

�v = v�n. (9)
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Let �(t) denote the interface at time t . Now split the time interval by dis-
crete time instants 0= t0 < t1 < · · · and define time steps τm := tm+1 − tm.
We represent the next interface �m+1=�(tm+1) in terms of �m=�(tm) by
updating the position vector

�xm+1←�xm+ τm�v. (10)

In the time discretization, all geometric quantities such as �n and ∇� are
evaluated on the current interface �m, i.e., they are treated explicitly and
we end up with a linear system of equations. In contrast to the geometric
quantities, the unknowns �κγ , κγ , v, and �v may be treated implicitly. In Eq.
(6), the first term on the right hand side will be treated implicitly, whereas
we treat the second term explicitly. Thus, in view of (10), when evaluating
�κm+1
γ in Eq. (6), the first term is evaluated at �xm+1= �xm+τm�vm+1, whereas

the second term is evaluated at �xm.
To derive a weak formulation, we proceed as in [1, 7]: multiply (6),

(7), (8) and (9) by test functions �ψ ∈ �H 1(�) and ψ ∈H 1(�), and use inte-
gration by parts for the tangential divergence ∇�. For simplicity, we have
hereafter dropped the superscript m+1 for the unknowns �κm+1

γ , etc. Fur-
thermore, using the notation 〈·, ·〉 for the L2 inner product over the cur-
rent interface �m, we arrive at the following set of semi-implicit equations:

Problem 1. For m = 1,2, . . . find �κγ ∈ �H 1(�m), κγ ∈ H 1(�m), v ∈
H 1(�m), and �v∈ �H 1(�m) such that ∀ψ ∈H 1(�m) and ∀ �ψ ∈ �H 1(�m)

〈�κγ , �ψ〉− τm〈γ (�n)∇��v,∇�
�ψ〉 = 〈γ (�n)∇��xm,∇�

�ψ〉

−
3∑

k,l=1

〈γzk
(�n)nl∇�xm

k ,∇�ψl〉

〈κγ ,ψ〉−〈�κγ · �n,ψ〉 = 0,

〈v,ψ〉+〈∇�κγ ,∇�ψ〉 = 0,

〈�v, �ψ〉−〈v�n, �ψ〉 = 0.

As compared to the isotropic case, the anisotropy function γ (�n) intro-
duces an additional non-linearity, which is treated in an explicit way (note
that the normal �n is evaluated at the surface �m of the last time step
and that the term containing the first derivative γz does appear only on
the right hand side). Thus the system may no longer be expected to be
unconditionally stable in contrast to the isotropic case, where this has been
shown in [1]. Therefore, similar as in [6], we add a stabilizing term to the
left hand side of the first equation in Problem 1. From numerical experi-
ments it turned out, that the following term is a good candidate:
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−τmλ



〈γ (�n)∇�(�v− �vm),∇�
�ψ〉+

3∑

k,l=1

〈γzk
(�n)nl∇�(vk−vm

k ),∇�ψl〉


.

(11)

Now the discretization in space is straightforward: Consider a triangu-
lated polyhedral surface �m

h approximating �m. The triangles are thought of
as finite elements. Also for the polyhedral surface, we denote by �n the outer
unit normal to �m

h , which may be discontinuous across inter-element bound-
aries. Denote by W

m
h ⊆H 1(�m

h ) the finite element space of globally contin-
uous, piecewise linear functions with corresponding nodal basis functions
(ψl)

L
l=1, where L is the number of degrees of freedom. By �Wm

h ⊆ �H 1(�m
h ) we

denote the finite element space of vector valued functions with nodal basis
functions ( �ψq

l )
q=1,2,3
l=1,... ,L

, where �ψq
l =ψl�eq with ψl the scalar basis function

defined above and (�e1, �e2, �e3) the standard basis in R
3. Problem 1 is discret-

ized by expanding the functions �κγ , κγ , v, �v in terms of the basis functions
and testing against all discrete test functions, i.e. solving Problem 1 in the
finite dimensional spaces W

m
h , �Wm

h .
To arrive at an algorithm in matrix form, expand the unknowns

�κγ =
L∑

l=1

�Klψl, κγ =
L∑

l=1

Klψl, �v=
L∑

l=1

�Vlψl, v=
L∑

l=1

Vlψl

for some

�K = ( �K1, . . . , �KL)t ∈R
3×L, K= (K1, . . . ,KL)t ∈R

L

�V = ( �V1, . . . , �VL)t ∈R
3×L, V = (V1, . . . , VL)t ∈R

L

and define the mass, stiffness, and normal matrices M, A, B, C, N with
matrix entries

Mkl =〈ψk,ψl〉, �Mkl= (M
qr
kl )= (δqrMkl),

Akl =〈∇�ψk,∇�ψl〉,
Bkl =〈γ (�n)∇�ψk,∇�ψl〉, �Bkl= (B

qr
kl )= (δqrBkl),

C
qr
kl =〈γzr (�n)nq∇�ψk,∇�ψl〉, �Cqr

kl = (C
qr
kl ),

�Nkl = (N
q
kl)=〈ψk,ψlnq〉.

where the index ranges are 1 � k, l �L and 1 � q, r � 3, δqr = �eq · �er is the
Kronecker symbol, and nq = �n · �eq is the q-th spatial component of the
normal.

The following algorithm is the matrix form of the discretized Problem 1:
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Algorithm 1. Find �K, �V ∈R
3×L, K,V ∈R

L such that





�M 0 0 − �N
0 M − �N t

0
−τm

( �B+λ( �B+ �C)
)

0 �M 0
0 A 0 M











�V
K
�K
V




=






0
0

( �B− �C) �Xm−λτm( �B+ �C) �V m

0






A Schur complement equation for �K,V reads

S

( �K
V

)
=
(

( �B− �C) �Xm−λτm( �B+ �C) �V m

0

)
,

where

S =
( �M 0

0 M

)
−
(−τm

( �B+λ( �B+ �C)
)

0
0 A

)( �M 0
0 M

)−1
(

0 − �N
− �N t

0

)

=
(

�M −τm

( �B+λ( �B+ �C)
) �M−1 �N

AM−1 �N t
M

)

.

The above formulation in turn gives rise to the final Schur complement
equation for the single unknown V :

(
τmAM−1 �N t �M−1( �B+λ( �B+ �C)

) �M−1 �N +M
)
V

=AM−1 �N t �M−1(
( �C− �B) �Xm+λτm( �B+ �C) �V m

)
. (12)

We note that for λ= 0, the same arguments as in the isotropic case [2]
show that the linear system (12) is uniquely solvable: Introduce the sym-
metric non-negative matrix L and denote the matrix in the left-hand side
of (12) by T

L= �N t �M−1 �B �M−1 �N , T = τmAM−1L+M.

It is enough to show, that if T V = 0 then V must be 0. Now, assuming
T V =0 implies V tLM−1T V =0. Thus, we obtain

0= τmV tLM−1AM−1LV +V tLV �0,

by symmetry and non-negativity of the involved matrices. It follows that
V tLV =0, implying LV =0. Thus, we obtain MV =T V . Since M is invert-
ible we finally conclude that T V =0 implies V =0.

Once the scalar velocity V is obtained by solving (12), the unknown �V is
easily computed by solving �M �V = �NV , and then �X is updated through

�X← �X+ τm
�V .
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4. IMPLEMENTATION AND RESULTS

In this section, we present some numerical results. To test the pro-
posed method, we chose the following two strong (convex) anisotropies

γ (z) =
3∑

k=1

(ε|z|2+ z2
k)

1
2 , ε=0.01 (regularized l1-anisotropy), (13)

γ (z) = (αz2
1+ z2

3+ z2
3)

1
2 , α=0.1 (disk anisotropy). (14)

The corresponding Wulff shapes Wγ are depicted in Fig. 1. We investigate
the evolution of a sphere with volume V =1.0 to the corresponding Wulff
shape as the steady state solution of Eq. (1). In all simulations, the stabil-
ization parameter λ=1. The numerical method is implemented in AMDiS
[11]. In each time step, the non symmetric system (12) is solved using a
GMRES-Solver. We use a local mesh regularization and angle width con-
trol to prevent mesh distortion as well as time step control and adaptivity
in space along the lines as described by Bänsch et al. in [1], which will be
shortly reviewed below.

As a first example, we present a simulation without using space/time
adaptivity in Fig. 2. The time evolution of a sphere using the regularized
l1-anisotropy given in (13) approaches a steady state at t≈10−3. Compar-
ing with Fig. 1, it reveals that the rounded corners of the Wulff shape are
not resolved properly.

Therefore we use adaptivity in space to resolve the zones of high cur-
vature appropriately. However, decreasing the local mesh size considerably,
we are forced to use smaller time steps when the evolution of the surface is
fast. Thus, to increase the computational accuracy we use a time step control
enforcing small time steps whenever the dynamics is fast and/or the normal
velocity exhibits large variations and allow large time steps otherwise. The

Fig. 1. Wulff shape Wγ for regularized l1-anisotropy and disk anisotropy.
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Fig. 2. Evolution of a sphere with volume V = 1.0 towards its steady state with anisotropy
(13). No space/time adaptivity: 1538 grid points and time step τ =10−5. The surface is shown
at times t=0, t=2×10−4, t=5×10−4, t=10−3. Note that the rounded corners of the Wulff
shape in Fig. 1 are not properly resolved in the steady state (t = 10−3) since the spatial dis-
cretization is not fine enough.

dynamics is measured by the position change of a node given by τv. In
view of Eq. (10) the relative position change of two nodes in an element
with mesh size h tangential to � is bounded by Cτh|∇��v|, with C being a
mesh independent constant. Thus, to ensure that the position change of a
node in tangential and in normal direction does not exceed a fraction of the
local mesh size h, we chose two parameters αt , βt and require

τ <αt

(
max(|∇��v|)

)−1+βt

(
max(|v/h|))−1

.

Moreover, a minimal and a maximal time step is fixed. In all simulations
with time step control, we use αt = βt = 0.01, τmin = 10−8, τmax = 10−5.
Note, that in the isotropic case in [1] the choice was βt = 0 and αt = 0.1.
In general, a suitable choice of αt , βt and the minimal and maximal time
step depends on the strength of the anisotropy γ . To ensure stability, we
have monitored the surface energy in all simulations and checked that it
decreases during the entire evolution, see also Fig. 6.

Space adaptivity is based on a geometric criterion, as proposed by
[1]: here the idea is to assume that the (local) accuracy of the mesh
in representing � is proportional to h2|∇��n|, where h is the local mesh
size and ∇��n is the shape operator. Considering two adjacent elements
with corresponding normals �n1,�n2, |∇��n| at the common edge S may be
approximated as

h|∇��n|≈ |�n1− �n2|=: es.

Thus, for each triangle T , define the local error indicator

ET :=
∑

S⊂T

esh.
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Choosing an element tolerance εs and refinement and coarsening parame-
ters 0 <γr, γc, one does proceed as follows: If max(ET )>εs , all elements
with ET >γr are refined. In any case all elements with ET <γc are coars-
ened. For details see [1].

Setting γc = 0.3, γr = 0.7, the resulting meshes, for two different val-
ues of εs are depicted in Fig. 3. As shown in Fig. 4, the rounded corners
of the Wulff shape are resolved if the mesh is refined appropriately in the
regions of high curvature.

Fig. 3. Evolution of a sphere with volume V = 1.0 towards its steady state with anisotropy
(13). Refinement in regions of high curvature and coarsening in nearly flat regions (the num-
ber of grid points is given between parentheses). (Top row) element tolerance εs = 0.1, (bot-
tom row) εs =0.05.

Fig. 4. Evolution of a sphere with volume V = 1.0 towards its steady state with anisotropy
(13). Solution at t=2×10−3: (from left to right) element tolerance εs =0.1, 0.05, 0.02. Note
that the number of grid points (given between parentheses) in the steady state is roughly pro-
portional to 1/εs .
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Fig. 5. Evolution of a sphere with volume V = 1.0 towards its steady state with anisot-
ropy (13). (left) Volume versus relative time t/Tfinal (Tfinal = 2 × 10−3): the volume is con-
served within less then 1% in all simulations. (right) Relative area A/AWulff versus relative
time, where AWulff is the area of the Wulff shape with volume V (Tfinal); (for V =1, AWulff ≈
5.3097). The area of the steady state approaches AWulff for small εs very accurately.

Fig. 6. Evolution of a sphere with volume V = 1.0 towards its steady state with anisot-
ropy (13). Surface energy E−EWulff , versus relative time, where EWulff is the surface energy
of the Wulff shape with volume V (Tfinal); (for V = 1, EWulff ≈ 6.8922). The surface energy
decays exponentially and the energy of the steady state approaches EWulff with decreasing
tolerance εs .
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Fig. 7. Evolution of a sphere towards its steady state with anisotropy (14) and element tol-
erance εs = 0.02. The number of grid points is given between parentheses. The color-coding
indicates the normal velocity (rescaled), ranging from red (maximal outwards) over yellow to
blue (maximal inwards).

In lack of an analytical solution for anisotropic surface diffusion of
parametric surfaces, we investigate the accuracy and (experimental) con-
vergence of our numerical method as follows: As shown in Fig. 5 (left),
the volume is conserved within less then 1%. The decay of the sur-
face energy is roughly exponential, and the energy of the steady state
approaches the energy of the Wulff shape (with the same volume as the
numerical steady state), when increasing the spatial resolution, see Fig. 6.
Moreover, also the area of the numerical steady state converges to the area
of the Wulff shape as shown in Fig. 5 (right).

As a final example we present the evolution of a sphere to the steady
state using the disk anisotropy (14). Note that in this case it is even more
important to resolve the high curvature zones appropriately, see Fig. 7.
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