
Comput Mech (2007) 40:383–398
DOI 10.1007/s00466-006-0117-y

ORIGINAL PAPER

Finite element analysis of viscoelastic structures
using Rosenbrock-type methods

Stefan Hartmann · Jörg Wensch

Received: 9 September 2005 / Accepted: 3 August 2006 / Published online: 17 October 2006
© Springer-Verlag 2006

Abstract The consistent application of the space-time
discretisation in the case of quasi-static structural prob-
lems based on constitutive equations of evolutionary
type yields after the spatial discretisation by means of
the finite element method a system of differential-alge-
braic equations. In this case the resulting system of
differential-algebraic equations with the unknown nodal
displacements and the evolution equations at all spatial
quadrature points of the finite element discretisation are
solved by means of a time-adaptive Rosenbrock-type
methods leading to an iteration-less solution scheme in
non-linear finite element analysis. The applicability of
the method will be studied by means of a simple exam-
ple of a viscoelastic structure.

Keywords Finite elements · Integration schemes ·
Differential-algebraic equations · Viscoelasticity ·
Rosenbrock

1 Introduction

Frequently, the implicit version of the finite element
method, which is applied to quasi-static processes and
constitutive equations of evolutionary type, has been
considered as a local problem, namely the integration
of the evolution equations by an implicit integration

S. Hartmann (B)
Institute of Mechanics, University of Kassel,
Mönchebergstrasse 7, 34109 Kassel, Germany
e-mail: hart@ifm.maschinenbau.uni-kassel.de

J. Wensch
Institute of Mathematics, University of Potsdam,
14415 Potsdam, Germany

step, usually called stress algorithm, and a global prob-
lem, the fulfilment of the equilibrium conditions. In the
work of [29] a further notion, namely the consistent tan-
gent operator or the consistent linearisation, has been
introduced in order to achieve a “quadratic” convergent
global iteration scheme.

In a series of works the classical approach of a global
and local problem has been related to algorithms devel-
oped in the field of Numerical Mathematics, because
it is now known that the space-discretisation using
finite elements leads to a system of differential-algebraic
equations (DAE-system), see [4,5,9,10,21,39]. In this
respect, we apply consistently the line-method, where in
a first step the spatial and in a second step the
temporal discretisation are carried out. The spatial dis-
cretisation is associated to the finite element specific
application of introducing elements, particular shape
functions as well as the transformation to local coordi-
nates defined within a reference element and the
numerical (spatial) integration by, for example, the
Gauss quadrature. This step leads to a system of non-lin-
ear algebraic equations (algebraic part of the DAE-sys-
tem) depending on the unknown nodal displacements
and all internal variables at all spatial integration points
(Gauss-points). Additionally, we have evolution equa-
tions, i.e. ordinary differential equations of first order,
defining the evolution of the internal variables, which
represent the material behaviour under consideration
(differential part of the DAE-system). Both the non-
linear algebraic equations and the system of ordinary
differential equations denote a semi-explicit system of
differential-algebraic equations of first order.

This holds in the case of rate-dependent constitu-
tive model types like viscoelasticity and viscoplastici-
ty formulated with ordinary differential equations. In

384 Comput Mech (2007) 40:383–398

the case of rate-independent elastoplasticity based on
a yield function, different cases (elasticity or plasticity,
which depends on the loading condition) define evo-
lution equations as well (if the consistency condition is
exploited). Which one is currently active depends on the
solution itself. Frequently, a DAE-system is formulated
in the case of plastic loading, which defines the evolu-
tion of the internal variables, where the algebraic con-
straint is given by the yield condition and an additional
unknown is introduced , namely the plastic multiplier,
guaranteeing the rate-independence.

In [4] and [10] diagonally implicit Runge–Kutta meth-
ods (DIRK methods) have been applied in order to carry
out the time discretisation. This leads to the consec-
utive computation of s coupled systems of non-linear
equations in each integration step, where s is the num-
ber of stages within a time-step. The unknowns of the
coupled system of non-linear equations are the nodal
displacements and all internal variables at all Gauss-
points. The application of the Multilevel-Newton algo-
rithm (MLNA) of [25] leads to the solution of a system
of non-linear equations on Gauss-point level (for cal-
culating the internal variables for given nodal displace-
ments) and a linear system of equations (for computing
the increment of the nodal displacements) on global
level within a Newton–Raphson step. This method rep-
resents exactly the procedure of local and global iter-
ations (commonly applied in implicit finite elements)
and includes in passing the consistent tangent operator
introduced in a hidden manner in the work of [29]. The
difference of the MLNA to the application of the New-
ton–Raphson method is explained in [12] and a theoret-
ical background in the case of displacement controlled
processes is given in [11]. It has to be emphasised that the
Backward–Euler method, which is frequently applied, is
embedded in the DIRK/MLNA procedure as a particu-
lar case.

With the interpretation of the problems under
considerations as DAE-systems, other algorithms than
the DIRK-methods are applicable, [3,28,36–38]. The
applicability of further time-adaptive methods, see, for
example, [20], are worth being studied in the future.
In this context, it has to be emphasised that the
DAE-approach incorporates an essential by-product,
namely time-adaptivity, which leads both to more accu-
rate results (control of local integration error), and a
stable procedure as well.

In this presentation, we investigate the behaviour of
Rosenbrock-type methods, which offer the possibility of
an iteration-less implicit procedure (see [8, Chap. IV.7],
[31, Chap. 6.5.2] and the literature cited therein). Instead
of solving non-linear systems of equations, one only has
to compute a few systems of linear equations with the

same coefficient matrix in each integration step from
time tn to time tn+1. In order to explain the effects on
the problem under consideration, the article has the fol-
lowing structure: first of all, the simplest constitutive
model of non-linear viscoelasticity is introduced in order
to study the application of Rosenbrock methods (the
extension to models in elastoplasticity and to a finite
strain theory is, in a certain manner, straightforward see
[10]. However, it has to be studied very carefully, for
each new constitutive model) in the future. Then, the
basic DAE-system is briefly derived, and, afterwards,
the Rosenbrock method is recapped. The article con-
cludes with an example.

The notation applied uses geometrical vectors, sec-
ond order tensors A with bold-faced roman letters and
calligraphic letters for fourth-order tensors A. Further-
more, we have two types of matrices, namely global
quantities, in the sense of the finite element method,
using italic, bold-faced sans-serif letters A, and local ele-
ment matrices using bold-faced sans-serif letters A.

2 Basic problem

In the following, the basic equations are briefly summar-
ised. For more details, we refer to [4] and [12]. Here, a
model of small strain viscoelasticity is applied because
it is the simplest constitutive equation of evolutionary-
type representing the structure of a large number of
constitutive models. Afterwards the discretisation of the
initial boundary-value problem is discussed applying the
finite element method.

2.1 Constitutive equations

The generalisation of the three-parameter model of lin-
ear viscoelasticity to a non-linear test example reads as
follows (cf. in view of viscoelasticity, [1] or [13], and
the literature cited therein). First of all, the linearised
Green strain tensor E is decomposed into an elastic part
Ee and a viscous part Ev. Furthermore, the stress state T
is assumed to be additively decomposable into an equi-
librium part Teq and an overstresses part Tov. Both are
defined by elasticity relations, where the overstresses
depend on elastic strains and the equilibrium stress on
the total strains. For the viscous strains an evolution
equation exists, which depends on the process-depen-
dent viscosity η(Tov) leading to a model of non-linear
viscoelasticity:

Strain decomposition: E = Ee + Ev, (1)

Stress decomposition: T = Teq + Tov, (2)

Comput Mech (2007) 40:383–398 385

Equilibrium stress relation: Teq = K(tr E)I

+ 2GED, (3)

Overstress relation: Tov = TD
ov

= 2Ĝ(E − Ev)
D, (4)

Flow rule: Ėv = 2Ĝ
η

(E − Ev)
D, (5)

Non-linear viscosity: η = η0e−s0‖TD
ov‖, η > 0.

(6)

In view of the process-dependent viscosity, see also [14]
and [10]. K and G define the bulk and shear modulus of
the equilibrium stress state and Ĝ the shear modulus of
the overstresses. I symbolises the second order identity
tensor, tr A = ai

i stands for the trace operator and D
denotes the deviator operator, AD = A − (1/3)(tr A)I.
η0 and s0 are further material parameters influencing the
non-linear rate-dependence and the relaxation behav-
iour.

The applied test example of a constitutive model
represents the structure of more general constitutive
equations of the type

T = h(E, q), (7)

q̇ = r(E, q), q(t0) = q0, (8)

where q ∈ R
nq defines a set of internal variables describ-

ing the material behaviour and h(E, q) denotes an elas-
ticity relation. Here, q = {Ev} with nq = 6 holds in the
three-dimensional case.

2.2 Defining the DAE-system

As mentioned in Ellsiepen and Hartmann [4] and Hart-
mann [12], the equilibrium conditions in the small strain
case are defined by

g(t, u(t), q(t)) : =
ne∑

e=1

Z eT
{ nξ∑

j=1

nη∑

k=1

nζ∑

l=1

wjkl

× Be(jkl)T
h
(
Ee(jkl)(t), qe(jkl)(t)

)

× det Je(jkl)
}

− p(t) = 0 (9)

which is the result of the spatial discretisation using
standard finite elements. Here, we have the assemblage
matrix Z e ∈ R

neu×nu , where neu and nu define the num-
ber of element nodal displacements and the number of
unknown nodal displacements of the structure, respec-
tively. This matrix, which is usually not programmed (it
contains only zeros and a few ones), is used to assign
local to global degrees of freedom. wjkl symbolises the
product of the weighting factors which occur in the

Gauss quadrature in a reference element, wjkl = wj ×
wk × wl. The indices j = 1, . . . , nξ , k = 1, . . . , nη, and
l = 1, . . . , nζ , denote the number of the Gauss-point,
where nξ , nη, and nζ are the maximum number of Gauss-
points in the direction concerned.

Ee(jkl)(t) = Be(jkl)ue = Be(jkl)
{
Z eu(t) + Z

e
u(t)

}
(10)

defines the strain vector in element e at Gauss-point
(jkl). u(t)∈ R

nu denotes the vector of unknown nodal
displacements and u(t)∈ R

np the prescribed and known
nodal displacements. np is the number of all prescribed
displacement degrees of freedom. Accordingly, ndof =
nu + np holds and Z

e ∈ R
neu×np relates the known nodal

displacements to the element degrees of freedom.
ue ∈ R

neu contains the element nodal displacements and
Be(jkl) := Be(ξ jkl) symbolises the strain-displacement

matrix at Gauss-point ξ jkl. The matrix Je(jkl) := Je(ξ jkl)

= ∂χe/∂ξ |ξ=ξ jkl
represents the Jacobian of the coor-

dinate transformation between local and global coor-
dinates x = χe(ξ). p(t)∈ R

nu defines the sum of the
given equivalent and concentrated nodal force vector.

Te(jkl) = h
(
Ee(jkl)(t), qe(jkl)(t)

)
denotes the stress state

in element e at Gauss-point ξ jkl, which is defined by
the elasticity relation (7). The stress state depends also
on the internal variables at the integration point under
consideration, which is described in the following.

The internal variables are locally defined by the evo-
lution equations (8),

q̇e(jkl)(t) − r(Ee(jkl)(t), qe(jkl)(t)) = 0. (11)

Formally, all these sets of internal variables and the evo-
lution equations concerned could be assembled into a
large vector q ∈ R

nQ ,

q(t) =
∑

e,j,k,l

Z e(jkl)
q

T
qe(jkl), r(t, u(t), q(t)) =

∑

e,j,k,l

Z e(jkl)
q

T

×r(Ee(jkl)(t), qe(jkl)(t)), (12)

where the coincidence matrices Z e(jkl)
q ∈ R

nq×nQ are
introduced. nq is the number of internal variables at
one integration point and nQ all internal variables in the
complete structure. The coincidence matrices have the
property

Z e(jkl)
q Z ê(îĵk̂) T

q =

⎧
⎪⎨

⎪⎩

Inq if e = ê and i = î

and j = ĵ and k = k̂

0 else

(13)

yielding

qe(jkl)(t) = Z e(jkl)
q q(t), qe(jkl) ∈ R

nq . (14)

386 Comput Mech (2007) 40:383–398

Accordingly, we arrive at the system of ordinary differ-
ential equations

q̇(t) − r(t, u(t), q(t)) = 0, q(t0) = q0. (15)

Both, Eqs. (9) and (15) represent a semi-explicit system
of differential-algebraic equations with

F(t, y(t), ẏ(t)) : =
{

g(t, u(t), q(t))
q̇(t) − r(t, u(t), q(t))

}
= 0,

F ∈ R
nu+nQ , (16)

with

y(t) :=
{

u(t)
q(t)

}
, u ∈ R

nu , q ∈ R
nQ , (17)

and the initial conditions

y(t0) :=
{

u(t0)
q(t0)

}
=
{

u0
q0

}
=: y0. (18)

Due to the fact that the displacements u(t) and the exter-
nal forces p(t) are known functions of the time t, the
DAE-system is non-autonomous.

2.3 Time discretisation using Rosenbrock methods

In the section above as well as in Ellsiepen and Hart-
mann [4] and Hartmann [10] it has been shown that
the line method yields a system of differential-algebraic
equations after the spatial discretisation. In these refer-
ences, the system is solved by means of stiffly accurate
diagonally implicit Runge–Kutta methods in combina-
tion with a Multilevel-Newton method, which yields the
classical expressions of global and local (element) level.
This procedure, which embraces the classical Backward–
Euler scheme as a special case, is expensive because we
have to carry out in each stage of a time step, i.e. load step
from time tn to tn+1, the computation of a coupled sys-
tem of non-linear equations (Multilevel Newton method
in each stage). Thus, we apply Rosenbrock-type meth-
ods which need merely the solution of one system of
linear equations (with constant coefficient matrix dur-
ing the time step) in each stage. Since these methods
are rarely considered in the finite element literature, we
recall some fundamental ideas so that the text becomes
self-explanatory. To this end, we follow the representa-
tions of Hairer and Wanner [8, pp. 102 ff.] and Strehmel
and Weiner [31, pp. 278 ff.].

Normally, one starts from an autonomous system of
ordinary differential equations ẏ = f(y) applying the
integration step

yn+1 = yn + �tn
s∑

i=1

bif(Yni) (19)

in order to advance the approximate solution yn at time
tn to the next approximation yn+1 at time tn+1 = tn+�tn .
The stage quantities Yni (i = 1, . . . , s) are given by

Yni = yn + �tn
i∑

j=1

aijf(Ynj), i = 1, . . . , s. (20)

Rosenbrock methods work with the quantities (stage
derivatives)

Ẏni = f(Yni), i = 1, . . . , s. (21)

If the stage quantities (20) are inserted into the defini-
tion of the stage derivative (21), one arrives at a system
of non-linear equations in each stage

F(Ẏni) = 0, i = 1, . . . , s, (22)

with

F(Ẏni) := Ẏni − f

⎛

⎝yn + �tn
i−1∑

j=1

aijẎnj + �tn aiiẎni

⎞

⎠ .

(23)

The fundamental idea of the Rosenbrock-type meth-
ods is the application of one Newton iteration step on
Eq. (22) using as an initial choice a linear combination

Ẏ
(0)

ni = − 1
aii

i−1∑

j=1

γijẎnj. (24)

for the stage derivative. Here, we have γij = aij −αij and
γii = aii, i.e. new weighting factors must be introduced.
The Newton iteration step of function (23) reads

F
(
Ẏ

(1)

ni

)
= F

(
Ẏ

(0)

ni

)
+ dF

dẎni

∣∣∣∣
Ẏ

(0)

ni

{
Ẏ

(1)

ni − Ẏ
(0)

ni

}
= 0,

(25)

which leads to the more detailed representation
[

I − �tn aii
df

dYni

∣∣∣∣
Y (0)

ni

]{
Ẏ

(1)

ni − Ẏ
(0)

ni

}

= −Ẏ
(0)

ni + f

⎛

⎝yn + �tn
i−1∑

j=1

aijẎnj + �tn aiiẎ
(0)

ni

⎞

⎠ , (26)

i.e. we arrive at the system of linear equations by insert-
ing the initial choice (24),
[

I − �tn aii
df

dYni

∣∣∣∣
Y (0)

ni

]
Ẏ

(1)

ni = �tn
df

dYni

∣∣∣∣
Y (0)

ni

×
⎧
⎨

⎩

i−1∑

j=1

γijẎnj

⎫
⎬

⎭+ f

⎛

⎝yn + �tn
i−1∑

j=1

αijẎnj

⎞

⎠ . (27)

Comput Mech (2007) 40:383–398 387

First of all, we redefine the stage derivative Ẏni := Ẏ
(1)

ni
and exploit only the functional matrix at time tn in order
to minimise the computational cost,

Jn := df
dYni

∣∣∣∣
yn

, (28)

then the linear system reads

[
I − �tn aiiJn

]
Ẏni = �tn Jn

⎧
⎨

⎩

i−1∑

j=1

γijẎnj

⎫
⎬

⎭

+f

⎛

⎝yn + �tn
i−1∑

j=1

αijẎnj

⎞

⎠ . (29)

Note, that a Rosenbrock method is given by the stage
coefficients αij, (1 ≤ j < i ≤ s) and γij, (1 ≤ j ≤ i ≤ s)
and the weights bi, 1 ≤ i ≤ s.

The extension to non-autonomous systems ẏ = f(t, y)

is, in a certain way, straightforward. In this respect one
defines an autonomous system

˙̃y = f̃(ỹ) with ỹ =
{

t
y

}
and

˙̃y =
{

ṫ
ẏ

}
=
{

1
f(t, y)

}
. (30)

Then, Eq. (29) reads after evaluating the second equa-
tion of (30)

[
I − �tn γ Jn

]
Ẏni = �tn di

∂f
∂t

∣∣∣∣
(tn,yn)

+ �tn Jn

⎧
⎨

⎩

i−1∑

j=1

γijẎnj

⎫
⎬

⎭

+ f

⎛

⎝Tni, yn + �tn
i−1∑

j=1

αijẎnj

⎞

⎠ (31)

with di = γ +∑i−1
j=1 γij, Tni = tn+ci�tn and ci = ∑i−1

j=1 αij.
Usually, all coefficients aii, i = 1, . . . , s, are chosen to
have the same value, aii = γ . In order to circumvent the
matrix-vector multiplication on the right-hand side, we
define a new variable

Bni = Ẏni +
⎧
⎨

⎩

i−1∑

j=1

γij

γ
Ẏnj

⎫
⎬

⎭ , (32)

so that, finally, (31) reads

[
I − �tn γ Jn

]
Bni = �tn di

∂f
∂t

∣∣∣∣
(tn,yn)

+
i−1∑

j=1

γij

γ
Ẏnj

+ f

⎛

⎝Tni, yn + �tn
i−1∑

j=1

αijẎnj

⎞

⎠ . (33)

Note, that the system matrix I − �tn γ Jn is the same for
all stages.

The treatment of non-autonomous differential-alge-
braic equations, which results from the spatial discreti-
sation in the finite element application, see Eq. (16),

0 = g(t, u, q), (34)

q̇ = r(t, u, q), (35)

is carried out in two steps using the ε-embedding
method. u are the unknown nodal displacements and
q all internal variables at all spatial integration points.
In the first step, Eq. (34) is modified by a perturbation

εu̇ = g(t, u, q) or u̇ = 1
ε

g(t, u, q), (36)

0 < ε ≪ 1. Then, we define

y :=
{

u
q

}
and ẏ :=

{
u̇
q̇

}
=
{

1
ε g(t, u, q)

r(t, u, q)

}
(37)

and apply the integration formula (31) to Eqs. (36)2 and
(35) leading to a coupled system of linear equations

⎡

⎣I − �tn γ 1
ε

∂g
∂u −�tn γ 1

ε
∂g
∂q

−�tn γ ∂r
∂u I − �tn γ ∂r

∂q

⎤

⎦

zn

{
U̇ni

Q̇ni

}

= �tn di

{
1
ε

∂g
∂t

∂r
∂t

}

zn

+ �tn

⎡

⎣
1
ε

∂g
∂u

1
ε

∂g
∂q

∂r
∂u

∂r
∂q

⎤

⎦

zn

×

⎧
⎪⎨

⎪⎩

∑i−1

j=1
γijU̇nj

∑i−1

j=1
γijQ̇nj

⎫
⎪⎬

⎪⎭
+
{

1
ε g(Tni, S u

ni, S q
ni)

r(Tni, S u
ni, S q

ni)

}
, (38)

where use is made of the abbreviations zn = {tn, un, qn}
as well as

S u
ni = un + �tn

i−1∑

j=1

αijU̇nj and

S q
ni = qn + �tn

i−1∑

j=1

αijQ̇nj. (39)

In the second step one multiplies the first equation of
Eq. (38) with ε and sends ε towards zero, which leads to
the final expression

388 Comput Mech (2007) 40:383–398

⎡

⎣−�tn γ
∂g
∂u −�tn γ

∂g
∂q

−�tn γ ∂r
∂u I − �tn γ ∂r

∂q

⎤

⎦

zn

{
U̇ni

Q̇ni

}

= �tn di

{
∂g
∂t
∂r
∂t

}

zn

+ �tn

⎡

⎣
∂g
∂u

∂g
∂q

∂r
∂u

∂r
∂q

⎤

⎦

zn

×

⎧
⎪⎨

⎪⎩

∑i−1

j=1
γijU̇nj

∑i−1

j=1
γijQ̇nj

⎫
⎪⎬

⎪⎭
+
{

g(Tni, S u
ni, S q

ni)

r(Tni, S u
ni, S q

ni)

}
. (40)

In order to minimise the matrix operations, the tan-
gent operator of the right-hand side is moved to the left
which leads in view of Eq. (33) to
⎡

⎣−�tn γ
∂g
∂u −�tn γ

∂g
∂q

−�tn γ ∂r
∂u I − �tn γ ∂r

∂q

⎤

⎦

zn

{
B u

ni
B q

ni

}

= �tn di

{
∂g
∂t
∂r
∂t

}

zn

+
{

g(Tni, S u
ni, S q

ni)

r(Tni, S u
ni, S q

ni)

}
+

⎧
⎪⎪⎨

⎪⎪⎩

0
i−1∑

j=1

γij

γ
Q̇nj

⎫
⎪⎪⎬

⎪⎪⎭
.

(41)

The solution of this system of linear equations, see
definition (32),

B u
ni = U̇ni +

⎧
⎨

⎩

i−1∑

j=1

γij

γ
U̇nj

⎫
⎬

⎭ ,

B q
ni = Q̇ni +

⎧
⎨

⎩

i−1∑

j=1

γij

γ
Q̇nj

⎫
⎬

⎭ , (42)

defines the stage derivatives

U̇ni = B u
ni −

⎧
⎨

⎩

i−1∑

j=1

γij

γ
U̇nj

⎫
⎬

⎭ ,

Q̇ni = B q
ni −

⎧
⎨

⎩

i−1∑

j=1

γij

γ
Q̇nj

⎫
⎬

⎭ , (43)

which have to be stored in each stage. At the end of the
time step the displacements and internal variables are
computable using vector addition

{
un+1
qn+1

}
=
{

un

qn

}
+

s∑

i=1

bi

{
U̇ni

Q̇ni

}
, (44)

see Eq. (19).
It has to be emphasised that the constraint (34) is

not exactly satisfied any longer. However, this “weak”
equilibrium condition is also in the classical approach
not precisely satisfied, since the internal variables

q result from an integration step. Therefore, the approx-
imation of Eq. (34) is assumed to be justified. Further-
more, one can see the stiffness matrix in Eq. (41), Kn =
−�tn γ ∂g/∂u|zn , and the right-hand side g(Tni, S u

ni, S q
ni),

which are known in current finite element implemen-
tations. However, one additional term arises, namely
�tn di∂g/∂t|zn . Accordingly, one needs not only the
external loads at time tn+1, but its time derivatives
as well.

It must be remarked that the system (41) is completely
solved on “global” level in the investigations which fol-
low. However, it is possible to make use of the element-
wise decoupling (see the discussions in [12]), so that one
would arrive on “local” (element) level at a linear sys-
tem of equations. We omit this discussion since the main
attention is focused on the applicability of the method.

At this point a few remarks on Rosenbrock-type
methods must be made. Formulation (29), where the
exact Jacobian is evaluated for yn and an additional free-
dom by the choice of the coefficients γij is introduced, has
been published in [18,24]. Methods of higher order have
been analysed in [19]. Methods where an inexact Jaco-
bian is used, which satisfy J = f,y(yn)+O (�t), are inves-
tigated in [17]. An additional step leads to W-methods,
where no assumption on the choice of J is made, see
[30]. A compromise between these strategies constitutes
partitioned methods where sub-blocks of the Jacobian
are set to zero and only those blocks being crucial for
stability remain, see [32,33,35].

Rosenbrock-type methods are frequently used for
time-discretisation of partial differential equations. In
[22] Rothes method is applied to systems of parabolic
differential equations where the PDE is discretised in
time by Rosenbrock methods before an adaptive spatial
discretisation is applied to the resulting elliptic system.
A frequently applied technique in numerical weather
prediction is to linearise the non-linear advection terms
resulting in partitioned Rosenbrock methods,
see [2,16,26].

Furthermore, it must be emphasised that, although
the extension of Rosenbrock methods to differential-
algebraic equations using the direct approach is straight-
forward, it is not clear how the order of the method
under consideration behaves. The investigation of the
order splits into two parts: firstly, one has to establish
a relation between the local error (error after one step,
i.e., one step is executed starting on the exact solution)
and the global error (the solution at tn = t0 + n�tn is
computed, where y0 = y(t0)), and, secondly, one has to
investigate the local error. This has been done in [27].
To preserve the order in the case of ODEs, we need
|R(∞)| < 1 (see [7] for the stability function R(z) of a
Rosenbrock method) and additional order conditions.

Comput Mech (2007) 40:383–398 389

Fig. 1 Geometric setting of the beam

There are one, four, or rather five additional order con-
ditions to obtain the order of 2, 3 or rather 4, respectively.
For methods utilising these conditions, see Sect. 3.1.1.

3 Example problem of a beam under various temporal
loading conditions

We consider a beam in the (x, y)-plane under plane
strain conditions, i.e. we assume constrained displace-
ments uz = 0 in z-direction and that all other vari-
ables are independent of z. The computational domain
is a rectangular area in the (x, y)-plane of size 1 × 0.1
mm2. The beam is totally fixed at the left-hand side
ux(0, y, t) = uy(0, y, t) = 0 (cantilever beam). The spatial
discretisation makes use of bilinear shape functions for
the displacements and a spatial one-point integration.
At these points, the internal variables have to be eval-
uated. In this respect, the evolution equations for the
viscous stresses are derived by an averaging procedure
in each element. Here, a regular mesh of 100 elements in
x- and 10 elements in y-direction is used. Figure 1 shows
the geometric setting. Since a fictive material is chosen,
the material parameters are defined as follows: K = 25
MPa, G = 10 MPa, η0 = 100 MPa s, s0 = 1 MPa−1. The
material parameter Ĝ is chosen to be Ĝ = 100 MPa in
the first two examples and later on, in Subsect. 3.3, it is
defined by Ĝ = 10,000 MPa.

In the following, the behaviour of various time inte-
grators in view of computational cost and accuracy are
investigated, see Subsect. 3.1. To this end, the constant
stepsize behaviour and time-adaptive procedures are
studied using a relaxation process, see Fig. 2a. To
increase the non-linear effects of the loading as well
as the material non-linearities, two additional studies
are added. First of all, the non-linearity of the external
load is increased applying an approximated rectangular
load function, Fig. 2b, see Subsect. 3.2. This influences
the right-hand side of the Rosenbrock-type methods.
Afterwards, the material non-linearity is increased by
changing the material parameters, see Subsect. 3.3.

3.1 Relaxation process

In the first example, the displacement uy(1, y, t) is
increased linearly in t ∈ [0, 1s] up to a maximum of

(a) Relaxation process

(b) Approximated rectangular load

Fig. 2 Load functions of the examples

uy(1, y, 1) = 0.01 mm. During the period t ∈ [1, 1,000]
the displacements are kept constant at, uy(1, y, t) = 0.01
mm, 1 ≤ t ≤ 1000 s, see Fig. 2a.

Figure 3 shows the evolution of stress Txx in element
(50,1), i.e. at the lower boundary in the middle of the
beam. In the left picture a logarithmic scale in the time
interval t ∈ [0, 1000] is used, whereas in the right pic-
ture the evolution in the time interval t ∈ [0, 1] is dis-
played using a linear scale. The stress in time behaviour
is moderately curved, which is a fact of a fast increase
of the load. However, a non-linear behaviour could be
seen during the relaxation process t ∈ [1, 1000]. After
this loading process the equilibrium stress state (linear
elastic behaviour) is approximately reached. Here, we
define Ĝ = 100 MPa.

390 Comput Mech (2007) 40:383–398

10
−1

10
0

10
1

10
2

10
3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

T
xx

 in Element 50.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

T
xx

 in Element 50.

Fig. 3 Stress versus time behaviour, (Txx − t) at (x, y) = (50, 1)

3.1.1 Constant stepsize

We start the studies of the Rosenbrock-type methods
using a constant stepsize. In order to compare the pro-
posed procedure with a classical approach, use is made
of the classical Backward–Euler method (implicit Eul-
er-method), usually applied in implicit finite elements. If
s is the number of stages and p the order, the following
procedures are considered:

• implicit Euler method (s = 1, p = 1)
• linearly implicit Euler method (s = 1, p = 1)

(yn+1 = yn + �tn (I − �tn Jn)−1f(tn, yn))
• method ROS2 from [34] (s = 2, p = 2)
• method ROS3P from [23] (s = 3, p = 3)
• method RODAS3 from [34] (s = 4, p = 3)
• method RODAS from [7] (s = 6, p = 4)

The Backward–Euler method requires the solution of
one non-linear system per time-step, whereas the
Rosenbrock-type methods (linearly implicit methods)
with s stages require the solution of s linear systems with
the same coefficient matrix. In the case of the Back-
ward–Euler method, there are several possible strate-

gies for controlling the accuracy of the solution of the
non-linear system. Usually, the tolerance NTOL of the
Newton–Raphson method is coupled to the prescribed
error tolerance of the time-integrator. In our constant
stepsize simulation such a tolerance is not available. To
this end, we relate the tolerance NTOL to the stepsize
via

NTOL = 0.01�tn 2 ‖f0‖L2 (45)

where f0 is the first right-hand side evaluation in each
step. Here, it has to be pointed out that other simulations
with more restrictive tolerances lead to higher compu-
tational cost, although the results are not more accurate.
Thus, the factor 0.01 seems to be sufficient.

In the first numerical experiment using constant
time-steps, we compare the error at t = 1 for differ-
ent stepsizes. In Fig. 4 the L2-norm of the error in the
q-components (internal variables) and in the displace-
ment components u versus the stepsize are depicted.
Figure 5, however, shows the L2-norm of the error in
yT = (uT, qT) and the error of the stress Txx(25, 0, t).
The predicted order of convergence is easily verified for
all methods.

10
−3

10
−2

10
−1

10
0

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

stepsize

er
ro

r
in

 q

rodas
rodas3
ros2
ros3p
LinearImpEuler
EulerImplicit

10
−3

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

stepsize

er
ro

r
in

 u

rodas
rodas3
ros2
ros3p
LinearImpEuler
EulerImplicit

Fig. 4 Error of the components q and u versus the stepsize

Comput Mech (2007) 40:383–398 391

10
−3

10
−2

10
−1

10
010

−10

10
−8

10
−6

10
−4

10
−2

10
0

stepsize

er
ro

r
in

 y

rodas
rodas3
ros2
ros3p
LinearImpEuler
EulerImplicit

10
−3

10
−2

10
−1

10
010

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

stepsize

er
ro

r
in

 T
xx

rodas
rodas3
ros2
ros3p
LinearImpEuler
EulerImplicit

Fig. 5 Error of the components y and Txx(25, 0, t) versus the stepsize

10
−4

10
−3

10
−2

10
−1

10
010

−10

10
−8

10
−6

10
−4

10
−2

10
0

weighted stepsize (no LU)

er
ro

r
in

 y

rodas
rodas3
ros2
ros3p
LinearImpEuler
EulerImplicit

10
−4

10
−3

10
−2

10
−1

10
010

−10

10
−8

10
−6

10
−4

10
−2

10
0

weighted stepsize (with LU)

er
ro

r
in

 y
rodas
rodas3
ros2
ros3p
LinearImpEuler
EulerImplicit

Fig. 6 Error of the components y of different measures for the computational cost

All four figures display similar results: the
Rosenbrock-type methods work very efficiently com-
pared to the implicit Euler method and are equally ro-
bust. There is no difference in accuracy between the
implicit Euler method and the linearly implicit Euler
method. Note that the implicit Euler scheme usually
needs no more than two Newton–Raphson iterations
(three solutions of linear equations) for solving the non-
linear equations owing to the simplicity of the constitu-
tive model and the geometrical linearity.

If the linear equations (41) are solved by some form of
matrix factorisation, the main computational cost lies in
the factorisation of the coefficient matrix. On the other
hand, if the systems are solved by an iterative proce-
dure, then the count for the computational cost has to
be modified. The following three pictures show the L2-
norm for all components (y) versus different measures
for the computational effort. The left picture in Fig. 6
uses the number of steps multiplied by the number of
stages s in order to measure the computational cost. This
is a fair measure if the main cost lies in the solution of
the linear equation or in the evaluation of the right-
hand side. The right-hand side picture of Fig. 6 uses the
number of steps multiplied by the factor s + k, where
k = 4 defines a measure for the computational cost.
This formula is based on the assumption that the linear

equation is solved by some kind of sparse LU decom-
position, where the cost for the LU decomposition is
approximately k times the cost of the backward substi-
tution. Note that k = 4 is a very conservative approach.
In practice, values of k = 10 and more can be expected.
Nevertheless, for that case we can use Fig. 5 which gives
roughly the same picture.

In all the computations use is made of a sparse
LU-solver. The decomposition of a system of 5, 222
equations took approximately 100 ms. In Fig. 7 the per-
formance of the methods with respect to the required
CPU-time can be evaluated. Note that even if we mea-
sure computational cost by the number of evaluated
stages (left picture of Fig. 6), then the higher order
Rosenbrock-type methods are much faster than the im-
plicit Euler method.

The left picture in Fig. 8 displays the error in the
constraint, i.e. the equilibrium conditions which are not
exactly fulfilled in the case of Rosenbrock-type meth-
ods. However, all methods keep the solution of the con-
straints up to the round-off error level. The right picture
in the same experiment illustrates the influence of more
stringent tolerances in the Newton–Raphson iteration.
We have displayed the error for the linearly implicit
Euler method, for the implicit Euler method with inter-
nal tolerances as in (45) and for very stringent tolerances

392 Comput Mech (2007) 40:383–398

10
−1

10
0

10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

cpu time

er
ro

r
in

 y
rodas
rodas3
ros2
ros3p
LinearImpEuler
EulerImplicit

Fig. 7 Error of y(1) versus CPU-time

where the constant 0.01 is replaced by 10−6 in (45). There
is no improvement in the global error, only additional
computational cost is generated if the number of itera-
tions in the Newton–Raphson method is incremented.

3.1.2 Computation with stepsize control

In order to compare all methods, a highly accurate solu-
tion with relative tolerance of 10−9 in the interval
[0, 1000] is computed. At the points t ∈ {0.5, 1, 2, 10,
100, 1000}, the numerical solutions for different meth-
ods with different tolerances are compared.

To control the local integration error we have imple-
mented a standard stepsize control technique based on
a C�t q+1 error model where C has to be estimated from
the last step and q is the known order of the estimated
local error.

The stepsize control includes in detail:

• Estimation of local error via embedded Rosenbrock
methods ROS3P, RODAS3 and RODAS.

• Estimation of local error via Richardson extrapola-
tion for the Backward–Euler method and the linearly
implicit Euler method. The extrapolation step is not
carried out because of the weaker stability proper-
ties of the extrapolated solution. Of course, the more
accurate solution computed by two successive Euler
steps is used as update.

• The error term chosen is a combination of relative
and absolute error. In the computations we prescribe
RTOL = TOL and use ATOL = 0.01 · RTOL. A
step is accepted if ‖err‖1 ≤ ATOL + RTOL‖yn+1‖1.
We remark that a component-wise comparison may
enhance the reliability, but we did not encounter
problems with the applied simple choice.

• If a step with stepsize �tn give a local error estima-
tion err, then the next stepsize �t new (either for the
next step after acceptance or for a repeated step) is
computed via

�t new = 0.85 max

(
0.2, min

(
5,

(
ATOL + RTOL‖yn+1‖1

max(‖err‖1, 1.E − 100)

) 1
q+1
))

�tn .

(46)

• The initial stepsize is chosen via �t 0 = 0.1
√

RTOL.
• The stopping criterion of the Newton iterations in

the implicit Euler method is

‖�yn+1‖ ≤ 0.1(ATOL

+ RTOL max(‖yn‖1, ‖yn+1‖1)). (47)

• No special strategies are applied if repeated rejec-
tions occur.

We remark that there exist several strategies to
improve the behaviour of the stepsize control, especially,

10
−3

10
−2

10
−1

10
0

10
−15.7

10
−15.6

10
−15.5

10
−15.4

stepsize

er
ro

r
in

 th
e

co
ns

tr
ai

nt

rodas
rodas3
ros2
ros3p
LinearImpEuler
EulerImplicit

10
−1

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

cpu time

er
ro

r
in

 y

LinearImpEuler
EulerImplicit
EulerHigh

Fig. 8 Error in constraints g versus the stepsize and the error behaviour versus the CPU-time of the Newton-iteration

Comput Mech (2007) 40:383–398 393

if repeated rejections occur. We mention the PI control-
ler from [6] where estimations on C from the last two
successful steps are used to predict a new stepsize. This
strategy is especially successful when nonstiff codes are
applied to (mildly) stiff equations. However, the PI con-
troller does not suggest itself for our application where
the right-hand side is non-smooth. We ignore the prob-
lems to be expected for the moment.

Figure 9 shows the global error of the solution of
the Rosenbrock method RODAS and the implicit Euler
method. We have chosen tolerances 10−4, 10−6, 10−8 for
the fourth order Rosenbrock method, whereas less strin-
gent tolerances 10−2 and 10−4 for the Euler methods are
chosen. Note that the Rosenbrock method keeps the
global error below the prescribed tolerance. The reason
is that the error estimation by embedding a lower order
method overestimates the local error approximately by
a power of �tn . This effect cancels out because we exe-
cute roughly |tend − t0|h̄−1 steps (for an average stepsize
h̄ ≈ �tn). For the Euler method this is not the case
because Richardson extrapolation “embeds” a method
of the same order.

Figure 10 shows the attained accuracy compared with
the number of steps versus the number of solved lin-
ear systems. The left picture is relevant if the cost for

a (sparse) LU decomposition dominates the computa-
tional cost. The right picture is relevant if the linear
systems are solved iteratively. Clearly, even in this case
the higher order methods are much more effective than
the Euler methods. Only for low tolerances in the mag-
nitude of 0.01 the Euler method is competitive.

Finally, Fig. 11 shows the stepsizes which the
Rosenbrock method RODAS and the Euler method
need for computing the solution in the interval t ∈
[0, 1000]. Both methods increase the stepsize dramati-
cally for t → 1,000, i.e. the adaptive stepsize selection
strategy works well for both methods. For more compli-
cated situations, see the following subsections.

3.2 Rectangular loading process

The right-hand side of the Rosenbrock-type methods
depends on the partial derivative of the “equilibrium
conditions” (9), which results from the prescribed
displacement or equivalent load vectors (Dirichlet or
Neumann boundary conditions). In order to study the
influence of an applied non-linear load, an approxi-
mated rectangular shear load distribution is applied to
the right boundary of the cantilever beam. The load
function is given by py(t, 1, y) = l1(t) with

10
−1

10
0

10
1

10
2

10
3

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

global error for rodas

er
ro

r
in

 y

time

1.E−4
1.E−6
1.E−8

10
−1

10
0

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

global error for EulerImplicitRE

er
ro

r
in

 y

time

1.E−2
1.E−4

Fig. 9 Error behaviour for t ∈ [0, 1000] compared with the prescribed tolerances

10
1

10
2

10
3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of steps

m
ax

im
um

 e
rr

or
 in

 q

rodas
rodas3
ros3p
Euler
L.I.Euler

10
1

10
2

10
3

10
4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of linear systems

m
ax

im
um

 e
rr

or
 in

 q

rodas
rodas3
ros3p
ImplicitEuler
LinearImpEuler

Fig. 10 Efficiency of different methods for stepsize control

394 Comput Mech (2007) 40:383–398

10
−5

10
−4

10
−2

10
0

10
2

10
−6

10
−4

10
−2

10
0

10
2

10
4

stepsizes choosen by rodas

st
ep

si
ze

time

1.E−4
1.E−6
1.E−8

10
−4

10
−2

10
0

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

stepsizes choosen by EulerImplicitRE

st
ep

si
ze

time

1.E−2
1.E−4

Fig. 11 Stepsize chosen for different methods

l1(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 for t ∈ [0, t1 − d)

p1(t) for t ∈ [t1 − d, t1 + d]
1 for t ∈ (t1 + d, t2 − d)

p2(t) for t ∈ [t2 − d, t2 + d]
0 for t ∈ (t2 + d, T]

(48)

The rectangular load function is approximated by the
cubic polynomials p1(t) and p2(t) so that l1 ∈ C1[0, T]
is guaranteed. Here, t1 = 1 s, t2 = 3 s, T = 1000 s and
d = 0.05 s are chosen, see Fig. 2b.

In the following, two studies are carried out. First
of all, the time-adaptive procedures are applied to the
total time interval (no switching points are taken into
account, i.e. the procedure does not have any informa-
tion on the temporal load distribution). In the second
investigation the procedure integrates piecewise in each
interval [defined in (48)], i.e. the switching points are
explicitly considered.

3.2.1 Computation without special treatment
of switching points

Again, computations using a Rosenbrock-type method
are executed where an embedded lower order method
is provided for stepsize control. To make the algorithms
to work harder, no use is made of the information on
the switching points in the load function (48). This can
lead to several stepsize rejections, especially near the
first switching point at t = 1 − d.

We have executed computations with tolerances of
10−k, k = 1, 1.5, 2, 2.5, 3, 4, 6 for the methods with order
p > 2 and with tolerances 10−k, k = 1, 1.5, 2, 2.5, 3 for
the methods of order p = 1. At points t ∈ {0.1, . . . , 3.9, 4,
5, . . . , 10, 15, 20, 50, 100, 500, 1000} we have compared
the numerical solution with a precomputed high accu-
racy solution. In order to compute the solution at the
output points without influencing the stepsize control we

used the following procedure: whenever such an output
point lies within [tn, tn+1], then a solution at the output
point is computed by a fractional step which is discarded
afterwards. We remark that, in practice, an embedded
formula for continuous output or integration up to the
output points are the methods of choice.

In Fig. 12, we compare the efficiency of the methods.
The advantage of stiffly accurate methods is illustrated
in Fig. 12b. RODAS and RODAS3 are stiffly accurate,
i.e. bi = αsi + γsi and cs = 1. This implies for our appli-
cation (DAEs with constraints linear in y, z)

0 =g(tn+1, un+1, qn+1) + �tn
∑

j

γsj
∂g
∂t

(tn + cj�tn).

Therefore, the constraint is exactly satisfied in tn+1 when
g is linear in t. ROS3P is not stiffly accurate and has
stability function R(∞) = 0.73. The result is an accumu-
lation of discretisation errors in the constraint. The line-
arly implicit Euler method is stiffly accurate, but only of
order 1. Nevertheless, the inaccuracy in the constraint
is of magnitudes smaller than the discretisation error
in the dynamic components for both ROS3P and the
linearly implicit Euler method. To our experience this
minor drawback is not essential in most applications. It is
a point worth to be considered only when high accuracy
in the constraints is explicitly required.

Figure 12a displays the maximum of ‖y‖1 (global
error in all components) among the output points versus
the CPU time. Again, the high order methods provide
more accurate results even for moderate and low toler-
ances than the first order method using the same amount
of CPU time. Separate plots of algebraic (u) and differ-
ential (q) components show similar results. For several
low tolerances and several methods the relative global
error is in the magnitude of 1. This is particularly caused
by the failure to detect the switching points – the method
steps completely over the interval [1−d, 3+d] and com-

Comput Mech (2007) 40:383–398 395

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Error in y

CPU time in seconds

ac
cu

ra
cy

rodas
rodas3
ros3p
LIEuler
Euler

10
1

10
2

10
3

10
4

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Error in Constraint

CPU time in seconds

ac
cu

ra
cy

rodas
rodas3
ros3p
LIEuler
Euler

(a) Accuracy vs. computational cost (b) Constraint error vs. computational cost

Fig. 12 Accuracy behaviour without treatment of switching points with Ĝ = 100 MPa

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

Stepsizes for rodas

time t

st
ep

si
ze

10
−4

10
−2

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Stepsizes for rodas

time t

st
ep

si
ze

(a) tol = 10–2 (b) tol = 10–4

Fig. 13 Stepsize behaviour of RODAS without treatment of the switching points

putes a zero solution. The probability of this behaviour
increases when the method uses only nodes ci ∈ {0, 1}.

We restrict ourselves to the application of RODAS as
a high-order method for an illustration of the stepsize
behaviour near the switching points.

Figure 13 shows the behaviour of the time-adaptive
higher order procedure. For t < 1 − d the solution is
constant zero. Therefore, the stepsize is increased by
the maximum allowed factor 5 in each step. Accord-
ingly, too large time-steps are estimated resulting in a
number of rejections at t = 1 − d. Accepted time-steps
(which do not step beyond t = 1 − d) and rejected steps
(which step beyond t = 1 − d) alternate.

In principle, it is advisable to integrate up to the
switching points when these are known in advance, see
[15]. When the location of the discontinuity is not a
priori known then strategies for the detection of switch-
ing points may be applied. However, these investiga-
tions are beyond the scope of the article. Moreover, in
our experiments most methods did not suffer perfor-
mance from these difficulties because the main compu-
tational effort is within the intervals [1 − d, 1 + d] and

[3 − d, 3 + d] where very small time-steps have to be
used due to the strongly non-linear behaviour of the
load function. If the numerical solution has passed the
point t = 1 − d, then the stepsize control works quite
satisfactorily. Nevertheless, here are the switching points
a priori known. Accordingly, we add further numerical
experiments where the information on the discontinu-
ities is exploited.

3.2.2 Computation with special treatment of switching
points

We continue the investigations and take into account
the switching points, i.e. we integrate exactly up to the
switching points t ∈ {1 − d, 1 + d, 3 − d, 3 + d}. The
stepsize selections of RODAS are depicted in Fig. 14.
Obviously, the number of rejected time-steps is reduced
drastically, which implies that a priori known switching
points should be taken into account so that a more effi-
cient procedure is obtained. A similar behaviour can
be seen for the linear implicit and the Backward–Euler

396 Comput Mech (2007) 40:383–398

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

Stepsizes for rodas

time t

st
ep

si
ze

10
−4

10
−2

10
0

10
2

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

Stepsizes for rodas

time t

st
ep

si
ze

(a) tol = 10–2 (b) tol = 10–4

Fig. 14 Stepsize behaviour of RODAS with treatment of the switching points

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Error in y

CPU time in seconds

ac
cu

ra
cy

rodas
rodas3
ros3p
LIEuler
Euler

10
1

10
2

10
3

10
4

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

Error in Constraint

CPU time in seconds

ac
cu

ra
cy

rodas
rodas3
ros3p
LIEuler
Euler

(a) Accuracy vs. computational cost (b) Constraint error vs. computational cost

Fig. 15 Accuracy behaviour with treatment of switching points with Ĝ = 100 MPa.

methods, where Richardson-extrapolation is used as a
stepsize control technique, which is omitted for brevity.

The performance of all methods is compared in
Fig. 15.

By including information on the switching points all
methods work reliable. Note, that the Euler method is
slightly more efficient than its linearly-implicit version.

3.3 Change of material parameters

In order to study the influence of the material properties,
the material parameter Ĝ is changed to Ĝ = 10, 000 MPa
leading to a more drastical change in the shear stress–
shear strain behaviour, see Fig. 16.

This can be shown by applying Eqs. (1)–(6), where
one obtains for the simple shear problem E = γ /2(e1 ⊗
e2 + e2 ⊗ e1) the ordinary differential equation

τ̇ov + 2Ĝ
η(τov)

τov = Ĝγ̇

for γ (t) = γ̇ t with γ̇ = const. and η = η0 exp(−s0|τov|).

Fig. 16 Shear strain – shear stress behaviour in dependence of
Ĝ (γ̇ = 10−3 s−1)

In the following investigations, both the non-linear
load function (48) and the more non-linear material
behaviour are considered simultaneously. Here, the
explicit consideration of the switching points is taken
into account. Figure 17 shows the difference of the stress

Comput Mech (2007) 40:383–398 397

0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
T

xx
 in Element 50.

0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9
T

xx
 in Element 50.

(a) G = 100 MPa (b) G = 1000 MPa

Fig. 17 Stress-time response in element (50/1), 0 ≤ t ≤ 4, for different material parameters

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Error in y

CPU time in seconds

ac
cu

ra
cy

rodas
rodas3
ros3p
LIEuler
Euler

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Error in y

Number of steps

ac
cu

ra
cy

rodas
rodas3
ros3p
LIEuler
Euler

(a) Accuracy vs. computational cost (b) Accuracy of the constraint

Fig. 18 Accuracy behaviour in the (more) non-linear material behaviour example (Ĝ = 10,000 MPa)

response at element (50/1) showing the increasing non-
linearity (Ĝ = 100 vs. Ĝ = 10,000). In Fig. 18a the
accuracy of all unknowns, y, versus the CPU-time of
the time-adaptive procedure is depicted. Obviously, the
higher order methods behave more efficient than the
order one methods. Even for low tolerances they are
much faster due to the application of the Richardson-
extrapolation. The behaviour of the Backward–Euler
and the linearly implicit Euler method is quite similar.
The linearly implicit method needs approximately the
same number of steps (Fig. 18b) as the implicit Eul-
er method and therefore less function evaluations and
CPU time in order to satisfy the prescribed error toler-
ances.

4 Conclusions

In this paper, an iteration-less time integration method
for the solution of coupled systems of differential-alge-
braic equations, which arise in quasi-static solids
mechanics of inelastic structures, is applied. These

Rosenbrock-type methods work efficiently and reliably
for the class of problems under consideration. Since the
algorithms do not have an iterative structure, they are
easy to implement. Only a fixed number of linear sys-
tems has to be solved. In other words, there is neither a
local nor a global iteration to solve the equilibrium state
and the internal variables. Furthermore, an embedded
stepsize control technique is applicable so that only a
tiny additional amount of computing time is necessary
to obtain the local integration error. In comparison to
implicit methods, where a coupling between the error
control of the time discretisation and the error control
of the iterative procedure has to be taken into account,
here, only the time discretisation error has to be con-
trolled. Since the applied constitutive model shows only
moderate non-linearities, the Rosenbrock-type methods
under consideration have to be investigated for the case
of problems with larger non-linearities. However, this
approach of applying an implicit method is an attractive
alternative to currently applied implicit non-linear finite
elements and has to be investigated for more complex
problems in future works.

398 Comput Mech (2007) 40:383–398

References

1. Drozdov A (1998) Viscoelastic structures. Mechanics of
growth and aging. Academic, San Diego

2. Durran DR (1999) Numerical methods for wave equations
in geophysical fluid dynamics. Springer, Berlin Heidelberg
New york

3. Eckert S, Baaser H, Gross D, Scherf O (2004) A BDF2 integra-
tion method with stepsize control for elastoplasticity. Comput
Mech 34(5):377–386

4. Ellsiepen P, Hartmann S (2001) Remarks on the inter-
pretation of current non-linear finite-element-analyses as
differential-algebraic equations. Int J Numer Methods Eng
51:679–707

5. Fritzen P (1997) Numerische Behandlung nichtlinearer Prob-
leme der Elastizitäts- und Plastizitätstheorie. Doctoral Thesis,
Department of Mathematics, University of Darmstadt

6. Gustafsson K, Lundh M, Söderlind G (1988) A pi stepsize con-
trol for the numerical solution of ordinary differential equa-
tions. BIT 28:270–287

7. Hairer E, Wanner G (1991) Solving ordinary differential
equations II. Springer, Berlin Heidelberg New york

8. Hairer E, Wanner G (1996) Solving ordinary differential
equations II, 2nd eds. Springer, Berlin Heidelberg New york

9. Hartmann S (2000) A time adaptive finite-element procedure
applied to creep and relaxation processes. ZAMM Z Angew
Math Mech 80(Suppl. 2):S515–S516

10. Hartmann S (2002) Computation in finite strain viscoelastic-
ity: finite elements based on the interpretation as differen-
tial-algebraic equations. Comput Methods Appl Mech Eng
191(13–14):1439–1470

11. Hartmann S (2002) On displacement control within the
DIRK/MLNA approach in non-linear finite element analysis.
In: Bathe K-J (ed) Computational Fluid and Solid Mechanics
2003, vol 1. Elsevier, Amsterdam, pp 316–319

12. Hartmann S (2005) A remark on the application of the
Newton–Raphson method in non-linear finite element analy-
sis. Comput Mech 36(2):100–116

13. Haupt P (2000) Continuum Mechanics and theory of materi-
als. Springer, Berlin Heidelberg New york

14. Haupt P, Lion A (1995) Experimental identification and math-
ematical modelling of viscoplastic material behavior. J Con-
tinuum Mech Thermodyn 7:73–96

15. Higham DJ (1993) Error control for initial value problems
with discontinuities and delays. Appl Numer Math 12(4):
315–330

16. Hundsdorfer W, Verwer J (2003) Numerical solution of time-
dependent advection-diffusion-reaction equations. Springer
series in computational mathematics, vol 33 In: Springer,
Berlin Heidelberg New york

17. Kaps P, Ostermann A (1989) Rosenbrock methods using few
LU-decompositions. IMA J Numer Anal 9:15–27

18. Kaps P, Rentrop P (1979) Generalized Runge–Kutta methods
of order four with stepsize control for stiff ordinary differen-
tial equations. Numer Math 38:55–68

19. Kaps P, Wanner G (1981) A study of Rosenbrock-type meth-
ods of high order. Numer Math 38:279–298

20. Kavetski D, Binning P, Sloan SW (2004) Truncation error and
stability analysis of iterative and non-iterative Thomas-Gla-
dwell methods for first-order nonlinear differential equations.
Int J Numer Methods Eng 60:2031–2043

21. Kirchner E, Simeon B (1999) A higher-order time integration
method for viscoplasticity. Comput Methods Appl Mech Eng
175:1–18

22. Lang J (2001) Adaptive multilevel solution of nonlinear
parabolic PDE systems: theory, algorithms and applications.
Lecture notes in computational science and engineering,
vol 16 In: Springer, Berlin Heidelberg New york

23. Lang J, Verwer J (2001) Ros3p—an accurate third-order
rosenbrock solver designed for parabolic problems. BIT
41:731–738

24. Nrsett SP, Wolfbrandt A (1979) Order conditiones for Rosen-
brock-type methods. Numer Math 32:1–15

25. Rabbat NBG, Sangiovanni-Vincentelli AL, Hsieh HY (1979)
A multilevel Newton algorithm with macromodeling and
latency for the analysis of large-scale nonlinear circuits in
the time domain. IEEE Trans Circ Syst 26:733–740

26. Reich S (2006) Linearly implicit time stepping methods for
numerical weather prediction. BIT (to appear)

27. Roche M (1988) Rosenbrock methods for differential-alge-
braic systems. Numer Math 52:45–63

28. Scherf O (2000) Numerische Simulation inelastischer
Körper. Fortschritt-Berichte VDI, Reihe 20 (Rechnerunt-
erstützte Verfahren) Nr. 321. VDI-Verlag, Düsseldorf

29. Simo JC, Taylor RL (1985) Consistent tangent operators
for rate-independent elastoplasticity. Comput Methods Appl
Mech Eng 48:101–118

30. Steihaug T, Wolfbrandt A (1979) An attempt to avoid
exact Jacobian and nonlinear equations in the numerical solu-
tion of stiff ordinary differential equations. Math Comput 33:
521–534

31. Strehmel K, Weiner R (1995) Numerik gewöhnlicher Differ-
entialgleichungen. Teubner Verlag, Stuttgart

32. Strehmel K, Weiner R, Dannehl I (1988) A study of B- conver-
gence of linearly implicit Runge–Kutta methods. Computing
40:241–253

33. Strehmel K, Weiner R, Dannehl I (1990) On error behaviour
of partitioned linearly implicit Runge–Kutta methods for stiff
and differential algebraic systems. BIT 30:358–375

34. Verwer JG, Hundsdorfer WH, Blom JG (2001) Numerical
time integration for air pollution models. Surv Math Ind
10(2):107–147

35. Wensch J (1998) An eight stage fourth order partitioned
rosenbrock method for multibody systems in index-3 formu-
lation. Appl Numer Math 27(2):171–183

36. Wensch J (2004) Beiträge zur geometrischen integration und
anwendungen in der numerischen simulation. Habilitation
Thesis, Mensch und Buch Verlag, Berlin

37. Wensch J (2005) Krylov-ROW methods for DAEs of in-
dex 1 with applications to viscoelasticity. Appl Numer Math
53(2–4):527–541

38. Wensch J, Podhaisky H, Hartmann S (2003) Time integra-
tion of index 1 DAEs with Rosenbrock methods using Kry-
lov subspace techniques. PAMM Proc Appl Math Mech
3:573–574

39. Wittekindt J (1991) Die numerische Lösung von Anfangs-
Randwertproblemen zur Beschreibung inelastischen Werkst-
offverhaltens. Doctoral Thesis, Department of Mathematics,
University of Darmstadt

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

