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Abstract.  Using direct numerical simulations, it is established that under
realistic conditions, the turbulent transport in magnetized fusion plasmas tends
to be in a regime for which the cross-field dynamics of tracers can be described
neither by Eulerian nor by random walk approaches. Instead, the concept of
Lagrangian coherent structures turns out to be a useful tool for studying such
systems. Here, networks of repelling and attracting material lines—acting as
barriers for transport—become important. The latter are analogues of the stable
and unstable manifolds in the static case. This opens up new possibilities for
interpreting and analyzing turbulent transport in magnetized plasmas.
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1. Introduction

Magnetized plasmas play an important role in astrophysics as well as in magnetic confinement
fusion and in many other natural or technological systems. The dynamics of the plasma patrticles
(usually electrons and one or more ion species) in such systems is highly anisotropic. While
the motion along magnetic field lines is practically free (up to magnetic mirror and parallel
acceleration effects), the motion perpendicular to a strong background magnetic field may be
described as a superposition of a fast gyromotion and a relatively slow4rift {he magnetic

field is sufficiently homogeneous, i.e. drift effects due to magnetic curvature and gradients
of B may be neglected, the so-calléix B drift will tend to dominate the perpendicular
dynamics []. The underlying spatiotemporal fluctuations of the electrostatic potential are
usually caused by the plasma itself. Spatial inhomogeneities in the plasma densifies and
temperatures will drive small-scale waves unstable, and the latter will then saturate nonlinearly,
leading to a (statistically) quasistationary turbulent state involving many degrees of freedom. In
order to distinguish the resulting transport processes from collisional ones (which are generally
subdominant), they are termed ‘turbulent’ or ‘anomalous’.

If the concentration of a given particle species is sufficiently low, the back-reaction on the
turbulence may be neglected and a ‘passive tracer’ description is justified. This approximation
makes the complex problem of turbulent transport somewhat more accessible and shall be the
basis of the present study. An investigation of the relationship between test particle transport and
the particlgheat transport of active species (like the electrons or the bulk ions) can be found, e.g.
in [2, 3]. Our goal is to consider thE x B advection of trace ions in prescribed turbulent fields
for a given perpendicular plane (see, e4j.gnd references therein), not addressing questions
related to parallel dynamicd]and finite gyroradius effects (see, e §].&nd references therein).
Interestingly, this problem is more or less isomorphic to the motion (with constant velocity)
of charged plasmas particles along perturbed magnetic field lines—a situation which is of
significant interest to both astrophysical and fusion research. Thus, while we will always speak
aboutE x B drift-induced transport, it should be kept in mind that all of our considerations also

New Journal of Physics 9 (2007) 400 (http://www.njp.org/)


http://www.njp.org/

3 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

carry over to magnetic transport, with the parallel component of the vector potential playing the
role of the electrostatic potentiad]|

The turbulent fluctuations inducing the perpendicular transport may be characterized by
the so-called Kubo numbek which is given by the mean advection velocity normalized
with respect to the ratio of the correlation length and tiréle It turns out that this is a key
dimensionless parameter in the context of tracer transport. Here, the following two limiting
cases are of particular interest: very large value& atorrespond to quasistatic situations in
which the particles more or less follow the equipotential lines of their streamfunction, given by
the electrostatic potential, and small valueofepresent situations in which the particles are
kicked frequently and randomly, leading to Gaussian diffusion. Now, as has been noted recently,
fusion plasmas tend to exhibit Kubo numbers in the intermediate range of dhitjhjs implies
that neither limiting case applies, making the turbulent transport problem especially challenging
and interesting. Also, Eulerian techniques trying to connect some basic properties of the
potential structures with the transport coefficients will fail in #he~ 1 regime. This motivated
us to explore the recently developed conceptagrangian coherent structurgdCS) (see,

e.g. B]-[11]). These structures can be seen as time-dependent analogues to invariant manifolds
in dynamical systems theory and as such they naturally form a skeleton of the dynamics and
particle transport. LCS can be detected and approximated using finite-time Lyapunov exponents
(FTLE) or relative dispersion and related techniques. As will become clear in the course of this
work, these novel concepts are very well suited to analyzing turbulent transport in magnetized
plasmas.

The remainder of this paper is organized as follows. In se@jone present the basic
dynamical equations for the problem under investigation together with the ways the advection
fields are computed. Moreover, the Kubo number—which is a key quantity characterizing the
randonyturbulent fields—is introduced. In secti@ some classical concepts from dynamical
systems theory are reviewed first to motivate the recently developed approaches for time-
dependent systems. In particular, the approximation of invariant manifolds and LCS via FTLE or
related techniques is illustrated by a simple example. In sedfitrese techniques are applied
to the velocity fields introduced in sectidh More specifically, we describe and discuss the
computational results for different self-created potentials as well as for realistic turbulent plasma
simulations. We close this work with a brief summary and an outlook in seBtion

2. Magnetized plasmas: random and turbulent fields

Throughout this paper, we consider tkex B advection of ions as passive tracers in a plane
perpendicular to the background magnetic field, where the corresponding spatial coordinates
will be denoted ax = (X, y). The fluctuating electrostatic potentials(x, t) will either be

taken from simulations with the plasma turbulence cGdsEe [12, 13]—solving the nonlinear
gyrokinetic equations in three spatial and two velocity space dimensions—or they will be self-
created by superposing a sufficiently large number of harmonic waves,

N
‘I’(X,t)=ZAi sin(ki - x+wit+¢;), (1)
i=1
where the amplitudegy, wave vector;, frequencies»; and phaseg; are chosen randomly
from certain (physically motivated) distribution functiorig.[
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The motion of the gyrocenter of a passive particle is then described by the (normalized)
E x B drift velocity according to the differential equations

X——aw(x t) '—aqj(x t) (2)
9y A y=3x % ¥Y

We note that finite gyroradius effects are neglected here for simplicity, but could be included in
a straightforward fashiord]. It is both interesting and useful to realize that—in the language of
classical mechanics—the variableandy in equation ) are canonically conjugated, spanning

the phase space. This means that the electrostatic potérikal, t) may also be interpreted as

the Hamiltonian of a time-dependent system with one degree of freedom. Consequently, in the
special case of a static potential, the problem is completely integrable. However, the introduction
of a time dependence of the potential leads to chaos, which makes it necessary to use numerical
methods to study the particle motion. On the other hand, one can also intérprey, t) as

the streamfunction for the particle motion in the spirit of two-dimensional (2D) hydrodynamics.
This is obvious from the relatiorn- V¥ = 0 which states that the particles (gyrocenters) move
tangential tol = const lines at any instant in time. Due¥o x = 0, the flow is incompressible.

We note in passing that incompressibility does not hold exactly any more in a tokamak, since
the magnetic field is not homogeneous. In e~k simulations, compressibility effects are
included, affecting the character of the turbulent potential and thus indirectly also the tracer
dynamics.

The equations of motion are solved numerically via a standard fourth-order Runge—
Kutta method 14]. For the self-generated potentials, the values of the potential and those of
the required derivatives are given analytically for each point in space and time, whereas for
the realistic, gyrokinetic potentials they are given as 3D arndlys;, y;, tc). In the latter case,
the values at intermediate space-time positions are obtained by means of a suitable interpolation
scheme (for details see the appendix).

A key quantity characterizing the potential fluctuations is the Kubo nunthés5]

K=Yl _ T (3)

Ae T

Here, . and A, denote, respectively, the autocorrelation time and length of the electrostatic
potential,V is the mean drift velocity, and,; is the mean time of flight for a distance of one
correlation length. The limit — oo and K — 0 correspond to static and fast fluctuations,
respectively. Sometimes, the regime Kf< 1 is labeled ‘weak turbulence’ or ‘quasilinear,
while the K > 1 regime is called ‘strong turbulence’ or ‘nonlinear. The Kubo number can
be regarded as a measure for the ability of the particles to explore the structure of their
streamfunction. Whereas this is possible for> 1 (z. > 14), in the case oK « 1 (7. < ),
the potential structures do not persist long enough. From this point of view, it is clear that these
two regimes are fundamentally different.

The scaling of the particle diffusion coefficiebt with the Kubo numbeK has been the
subject of various previous studies (see, €l§H[19]). In the limit of small Kubo numbers,

K <1, the diffusion coefficient is known to scale like o AV K = 7.V?, since it corresponds
to a random walk with step lengthV and time step.. In the limit of large Kubo numbers,
K =1, one has

D oA VKY I =227 VY /g l77, (4)
with y < 1 (due to trapping effects)1B, 19]. In [16] (see also the review articlel]]), a
consideration based on percolation theory suggests).7 for isotropic turbulence—a result
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which has been confirmed by direct numerical simulatidr@ 19]. Since this consideration is
based on weakly time-dependent potentials, it is valid only for large Kubo numbers. We note
in passing that the small Kubo number result can also be expressed in the form of egdation (
settingy = 2.

As has been already noted in the introduction, gyrokinetic simulations show that turbulent
magnetized fusion plasmas tend to exhibit Kubo numbers in the range of unity, i.e. in the
transitional regime. This makes the analysis particularly interesting but also challenging. As
it will turn out, a helpful tool in this context is the notion of LCS which will be introduced and
discussed next.

3. Invariant manifolds and Lagrangian coherent structures

The particle motion analyzed in the present work is described by a nonautonomous differential
equation

x = f(x,1), 5)

wherex € R? denotes the position of the particle. More specifically, we consider incompressible
flows which obey equatior?]. For this set-up, the respective system admits a streamfunction
(or electrostatic potentialy (x, y, t).

In case this potential does not explicitly depend on time, the motion of passive tracers
is completely determined by level sets @f. Moreover, the stable and unstable manifolds
of hyperbolic equilibria form separatrices between invariant sets and thus serve as natural
barriers to particle transport. Time-dependent analogues to these invariant manifolds continue to
govern transport in nonautonomous systems. Here, statistical concepts such as FTLE or relative
dispersion are used to pinpoint the geometric structures of interest.

The application of such dynamical systems ideas to study the flow geometry and hence,
the mechanism to passive particle transport in nonautonomous systems has been studied in a
variety of settings, see, e.g8Jf[11], [20]-[23]. Different applications of these concepts and
techniques, in particular for the analysis of fluid flows, can be found, e.g4r{]30].

In the remainder of this section, a simple example is used to illustrate the geometrical
concept of invariant manifolds and their counterparts in the time-dependent case, LCS, and
relate it to the statistical concept of FTLE. The section closes with a short description of the
numerical methods used for the approximation of barriers to transport.

3.1. Invariant manifolds

As a simple example we consider the streamfunction

WX, y,t) = 1x2—Ix*— I y2—excogt), (6)
and obtain the time-periodic ordinary differential equation

x=y, y=x-—x3—gcoqt). (7)

This system corresponds to the periodically forced Duffing oscillator without friction
(i.e. the conservative Duffing system; see, e3j] ffor a detailed discussion of this model).
We first consider the case= 0, which is the autonomous (time-independent) situation. The
system admits three equilibria—an unstable fixed point at the origin and two (marginally)
stable stationary solutions &t, y) = (+1, 0). Since the origin is a hyperbolic saddle point,
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Figure 1. Equilibria (black), global stable (blue) and unstable (red) manifold of
the origin in the conservative Duffing oscillator.

the existence of stable and unstable manifolds is guaranteed (i.e. the sets of those initial
conditions that evolve asymptotically towards the equilibrium in forward and in backward
time, respectively). See, e.]] for a thorough introduction to these classical concepts from
dynamical systems theory.

The global stable and unstable manifolds of the origin look like shown in figurefact,
in this case these two manifolds coincide and form so-called homoclinic orbits. These two orbits
separate phase space into three invariant sets (i.e. sets which a trajectory of the system cannot
leave in forward or in backward time): the two sets surrounding the two equiiitadia0) (green
in figure1, left), as well as the set outside the two ‘homaoclinic loops’ (white in fighréviore
generally, if the unstable manifold of some equilibrium coincides with the stable manifold of a
different one, one speaks of a heteroclinic orbit. Again, depending on the particular geometry
of the equilibria and their invariant manifolds, different heteroclinic orbits may partition phase
space into invariant sets. As we will see in sectipnertain transport phenomena in a turbulent
plasma can be explained by the formation (and persistence) of invariant or nearly invariant sets
bounded by homoclinic or heteroclinic structures.

Stable and unstable manifolds often can also be characterized from a variational point of
view: consider the flow map{*T : x(t) — x(t + T) which maps fluid particles from an initial
positionx € R? at timet to their location at timeé + T. The FTLE with respect tg andt andT
is then defined as

t+T 1 det"T (%)
oy (X)= T Iog‘ vl B (8)
where|| - | denotes the spectral norm. This quantity measures the maximum exponential growth
of infinitesimal perturbations in the initial conditionunder the (linearized) flow. It is thus a
measure for how much (at most) two points in a small neighborhood gdt separated by
the flow over the time spart,[t + T]. The FTLE field (i.e. with respect to initial conditions
on a grid) computed in forward time in our example system takes particularly high values
on the stable manifold of the origin, see figut@). This is due to the fact that two points
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Figure 2. Regions with large values of FTLE approximate parts of the stable
(blue) and unstable (red) manifold of the origin in the conservative, periodically
perturbed Duffing oscillator for different choices of parameters in equatins (
and @). (a) Autonomous Duffing oscillators(=0 and T = +27x). (b) Small
periodic forcing ¢ = 0.02,t =0T = 44x). (c) Increasing the forcing (= 0.05,
t=0 and T = +4x). (d) Doubling the integration timeT(= +8x), larger
portions of the manifolds are picked up-£ 0.05 andt = 0).

straddling the manifold typically separate exponentially fast when approaching the fixed point.
Such divergent behavior distinguishes them from other arbitrary particle pairs; likewise for
the unstable manifold when the system is considered under time reversal. For a more detailed
discussion see, e.q23].

Let us now consider the case of a small but finiten our example. This yields a time-
periodic system of periods2 If one reduces the analysis to the time-8ow map, the origin
is a hyperbolic fixed point of the resulting time-discrete system (and hence part of a hyperbolic
periodic orbit for the full system). However, now the homoclinic connection is broken with the
invariant manifolds intersecting transversally and allowing for horseshoe dynamics. Using the
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same arguments as above, the stable and unstable manifolds can be pinpointed using FTLE;
see figure2 for different choices ot andT. The interior of the homoclinic loops is no longer
invariant but transport is possible via the homoclinic tangles. This mechanism is called lobe
dynamics; see, e.g3f] for details.

3.2. Lagrangian coherent structures

Analytical conditions for the existence of finite-time hyperbolic manifolds in aperiodic flows
have been derived, e.g. iB]f[10], [21]. These time-dependent structures play an analogous
role to the invariant manifolds that we have illustrated above and they are referred to as LCS. As
has been noted in these publications, the derived analytical criteria have a strong correspondence
to extrema of the FTLE fields. This notion has been analyzed i wWhere LCS are defined as

ridges in the scalar FTLE field. There, an analytical formula for the flux across these structures is
derived and shown to be close to zero. In this sense, LCS can indeed be seen as time-dependent
analogues of stable and unstable manifolds in autonomous systems.

Therefore, the concepts described above carry over to the setting of aperiodic time
dependencies: local maxima or ridges in the FTLE field correspon@gelling material
lines(i.e. finite-time stable manifolds), and using the FTLE field of the time-reversed system,
attracting material lineqi.e. finite-time unstable manifolds) can be obtained. These structures
define natural barriers to transport, and the transport mechanism between the regions obtained
can be again explained in terms of lobe dynamics via the transversal intersection of these
material lines.

3.3. Numerical computation of FTLE

In principle, FTLE can be obtained by solving equati@ for initial particles on a grid. As

in most cases of practical interest, an analytical description of the total derivative of the right-
hand side of the underlying differential equations is not available (typically, the velocity field
is only given in the form of discrete data), forcing us to use a finite approximation of this
infinitesimal quantity. For our computations, we consider a fine-meshed regutam-grid
(wherem typically equals 256 or 512) and seed initial particles on this grid. We integrate the
Lagrangian dynamics of each tracer, as well as the particles on the eight neighboring grid points.
After time T, we calculate the relative maximum square distance of the central particle to the
satellite particles:

l t+T 4T .
5T (x) = — log (m_ax”gat X) — ¢ (nJ(X))H) ’ ©)
IT| j X = n; Xl
wherex denotes the central particle angx), j =1, ..., 8 the neighboring grid points. This

idea is very much in spirit of the relative dispersion approaches (as discussed, €%.38 [
34]) which use finite initial perturbations for an approximation of FTLE. Since almost all initial
perturbations will align along the direction of maximum growth, the qua#tity(x) will be a
reasonable approximation of T (x) for fine enough grids. See28] for a detailed discussion
of this approach as well as related ones.

We note that our techniques are used to numerically study LCS and understand the
mechanism of particle transport in realistic turbulent plasma simulations. Additional criteria
for the extraction of these finite-time objects can be found e.d.inZ31, 30].
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4. Lagrangian and Eulerian structures in turbulent plasmas

As pointed out above, the study of LCS is expected to provide new insight into the mechanisms
of turbulent transport at intermediate Kubo numbes~ 1) like they are found in first-
principles simulations of plasma turbulencd.[This is because in that transitional regime,
neither a pure random walk approadt & 1) nor a Eulerian perturbation approad¢h & 1) is
valid. The latter assumes that the time variations are relatively slow such that the particles still
more or less follow the equipotential line® & const). However, foK ~ 1, the autocorrelation
time of the potential is roughly the same as the time required for the particles to cross a typical
structure size. Thus, while the particles ‘feel’ the turbulent structures, they change so rapidly that
the web of equipotential lines is no longer a good indicator for the characteristics of the particle
motion. In the present section, we will show and discuss a series of movies which will illustrate
these points, first using self-created random potentials, then employing realistic simulation data
obtained from first-principles plasma turbulence simulations.

All results are obtained via approximating the quantits (x) in equation 9) for
different initial timest and initial particles on a dense grid. The computational set-up for these
simulations is described in the appendix.

4.1. Lagrangian and Eulerian structures in random fields

Let us first address the case of self-created random potentials—a mock-up of real turbulence
data. The main advantage of using such an approach is that several complications (as discussed,
e.g. in [7]) occurring in more realistic situations are absent, and that the key parameters (first
and foremost, the Kubo number) are easier to control. Figg#8slisplay the chaotic motion
of sets of test particles as induced by tBe< B drift velocity in such random potentials. It
is instructive to view each of these movies several times, concentrating on different particles
and trying to identify interesting modes of motion. For comparison, the equipotential lines of
W (white structures) and the LCS (red and blue lines as previously explained) are plotted as
well—the former representing the Eulerian, the latter the Lagrangian description.

Figure 3 shows the extreme case of a static streamfunctiqx, y), corresponding
to K =00. As can be seen in the animation, the particles simply move deterministically
along the equipotential lines of the streamfunction as required by the equations of motion,
equation ). The stable and unstable manifolds tend to lie near the lines describ&db§,
separating the potential hills from the valleys, and therefore the invariant sets from each other.
The crossing points of the homoclinic loops formed by parts of the LCS coincide with the
hyperbolic saddle points of the potential landscape. Typically, particles approaching a saddle
point first follow the stable manifold (blue) which is repulsive and are then attracted by an
unstable manifold (red). This case may serve as a reference point for the cases with time
dependence, i.e. finite Kubo number.

In a first step, we reduce the Kubo number dowrkie= 5. The corresponding results
are shown in figurel. In this animation, we observe that the particles still largely follow the
equipotential lines. Moreover, the latter more or less coincide with the LCS. However, it can
already be seen that the LCS are able to predict the motion of the particles for a longer time.
For example, the Lagrangian analogues to hyperbolic fixed points (i.e. hyperbolic trajectories at
the crossings of attracting and repelling LCS) occur long before an instantaneous saddle point
in the Eulerian potential field is created. In that sense, the study of the LCS leads to a better
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Figure 3. Simulation results for self-created static potentlal<£ oo). Here, the
equipotential lines (white) coincide with the LCS obtained via the integration
of particle trajectories. In addition, the repelling (blue) and attracting material
lines (red) correspond to stable and unstable manifolds of hyperbolic fixed
points. (a) The animatiorns{atpot.avj 2.7 MB) shows how the motion of test
particles is determined by these objects. In particular, particles are attracted
towards hyperbolic fixed points along stable manifolds and then repelled along
the different parts of the unstable manifolds. (b) Zoom on a set of particles that

have aligned along the unstable manifold (i.e. attracting LCS) of a hyperbolic
fixed point.

description of the particle motion than the study of the streamfunction. The differences become
even more apparent as the Kubo number is lowered further.

A representative example fd = 1.25 is displayed in figuré. One notes significant
differences with respect to the previous case. The LCS are now practically independent of the
equilines of the streamfunction, and, in general, the particles do not follow the latter any more.
On the other hand, the notion of repelling and attracting material lines acting as transport barriers
becomes important (see secti®)nanalogously to the stable and unstable manifolds in the static
case. As was said before, a Kubo number in the range of unity means that the correlation time
7. Of the potential structures is comparable to the average time of #ljgbit a particle across
such structures. This means that the structures (the Eulerian ones, as well as the Lagrangian
ones) do not exist long enough for the particles to really explore them. In the Eulerian picture,
this means that predictions about the particle motion are not possible any more by studying
the potential structure, since, as can be observed in the animation, equipotential lines may
move rapidly without affecting the particles. In contrast, the LCS act as transport barriers.
Although their time variation seems to be slower than the variation of the streamfunction
(which is due to the fact that they are calculated based on the particle motion), they take the
particles with them as long as they persist. So the particle motion is restricted—and to a large
degree even governed—nby the motion of the LCS and the dynamic regions enclosed by those
material lines.

New Journal of Physics 9 (2007) 400 (http://www.njp.org/)
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Figure 4. Simulation results for self-created random potential, Kubo number
K =5. (a) In the animationkubo5.avj 1.6 MB) one observes how the motion

of particles is determined by the repelling (blue) and attracting LCS (red).
Hyperbolic trajectories continue to play the role of their steady counterparts.
Here, a line of particles is repelled from the hyperbolic trajectory along different
parts of the attracting LCS. (b) Same animation as in (a) but with equipotential
lines superimposedk@bo5pot.ayi 2.6 MB). The Lagrangian structures can
predict the particle motion more accurately than the Eulerian, although—because
of the slow fluctuation—the two notions are still very much related.

4.2. Lagrangian and Eulerian structures in realistic turbulent fields

Of course, the self-created random potentials used so far can only be viewed as a proxy for more
realistic plasma turbulence data. In the fusion community, it is widely accepted that ab initio
simulations of turbulence in the core of fusion experiments are to be based on the nonlinear
gyrokinetic equations as first derived in the 19885f[37]. Here, the fast gyromotion can

be removed (decoupled) from the basic equations analytically, leading to a system of partial
integro-differential equations for the distribution functions of the particles in 5D phase space
(three spatial coordinates—describing the position of the gyrocenters—and two velocity space
coordinates) plus time. These equations are then solved numerically on massively parallel
computers. In the present case, we used the gyrokinetic turbulenc&esdd 12, 13] which

is one of the state-of-the-art tools in the field.

It should also be pointed out that it is not possible to obtain a universal description of
plasma turbulence since its character largely depends on the microinstabilities that @®}e it [
Density andor temperature gradients in the plasma destabilize small-scale waves, and the latter
will then saturate nonlinearly, leading to a (statistically) quasistationary turbulent state involving
many degrees of freedom. In that nonlinear state which is far from thermodynamic equilibrium,
various linear features can persist, however, as is observed in the gyrokinetic simulations
[12, 13]. For our present study, we f