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Abstract

Modeling and simulation of faceting effects on surfaces are topics of growing importance in modern nanotechnology.
Such effects pose various theoretical and computational challenges, since they are caused by non-convex surface energies,
which lead to ill-posed evolution equations for the surfaces. In order to overcome the ill-posedness, regularization of the
energy by a curvature-dependent term has become a standard approach, which seems to be related to the actual physics,
too. The use of curvature-dependent energies yields higher order partial differential equations for surface variables, whose
numerical solution is a very challenging task.

In this paper, we investigate the numerical simulation of anisotropic growth with curvature-dependent energy by level set
methods, which yield flexible and robust surface representations. We consider the two dominating growth modes, namely
attachment–detachment kinetics and surface diffusion. The level set formulations are given in terms of metric gradient flows,
which are discretized by finite element methods in space and in a semi-implicit way as local variational problems in time.
Finally, the constructed level set methods are applied to the simulation of faceting of embedded surfaces and thin films.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we develop level set methods for the simulation of faceted growth of surfaces. The underlying
models are anisotropic geometric evolution laws either based on attachment–detachment or on surface diffu-
sion mechanisms. Both types of evolutions are driven by the chemical potential, which arises as the variation
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of the surface energy. The form of the latter is a key issue for modeling faceting: In order to obtain faceting
effects, the surface free energy is usually determined as a non-convex function of the normal orientation, which
creates preferred directions in the equilibria (facets).

The non-convexity of the surface energy leads to backward diffusion effects and consequently ill-posedness
of the evolution equations. In order to regularize these problems, higher order expansions of the energies are
carried out, which lead to terms depending on curvature. For the corresponding evolution equations this
yields higher order differential operators and additional nonlinearities, which are difficult to analyze and to
simulate numerically. In this paper, we shall construct stable methods based on level set representations of
the surfaces, spatial discretizations by finite element methods and semi-implicit time discretizations.

The paper is organized as follows: In the remaining parts of the introduction, we provide a motivation for
the problems under investigation, before we discuss equilibrium situations and the type of energy needed to
model faceting. The latter is the key ingredient for the formulation of the geometric evolution laws, which
we also provide in the introduction. In Section 2, we derive level set formulations for the geometric evolution
laws, which are given in terms of metric gradient flows. As a consequence of the latter, local-in-time varia-
tional problems can be derived to approximate the flow, and they are used to construct discrete approxima-
tions (in space and time) in Section 3. Implementation aspects are discussed in Section 4, before we give
various numerical examples in Section 5.

1.1. Thin film growth

To understand or even control the evolution of the surface morphology of a growing crystalline film is a key
ingredient for several applications on a nanometer length scale. Mound formation in epitaxially grown films
for example has been attracting wide attention over the last years due to its role in the self-organized evolution
of quantum dots, where the goal is to produce regular structures of nano-mounds in a bottom-up approach. In
other applications one might be more interested in preventing such mound formation. In a top-down
approach to produce nanostructures for novel electronic devices the goal is to produce a homogeneous almost
flat surface. What in the end determines the surface morphology is a complicated competition between several
effects, including strong anisotropies in the surface free energy [42,28], elastic stress caused by a lattice misfit
between the crystalline film and the substrate [36], kinetic anisotropic surface fluxes resulting from energy bar-
riers [38,39], effects due to intermixing [45] and probably many more. We will concentrate on the effect of fac-
eting (spinodal decomposition) of thermodynamically unstable crystal surfaces caused by strong anisotropic
surface free energy densities and will leave the incorporation of other effects to future investigations. More-
over, we will not consider growth, but rather study annealing of surfaces. To understand the atomistic rear-
rangement upon annealing in the evolution towards the equilibrium, we first summarize results on the
equilibrium crystal shape, which is expected to form the long-time asymptotic of the flows we shall consider
in this paper.

1.2. Equilibrium crystal shape

To determine the shape of a crystal in equilibrium is a classic problem in materials science, dating back to
Herring [26]. Given a surface free energy density c, the equilibrium shape (‘‘Wulff shape’’) is defined as the
shape of minimum surface free energy e½R� ¼

R
R c under the constraint of fixed volume. Usually, c ¼ cðnÞ is

assumed to be a function of the local orientation n of the crystal surface, reflecting the crystal anisotropy.
Moreover, c depends on the temperature. While at zero temperature 0 K the equilibrium shape is perfectly
faceted, above a certain material dependent temperature facets start to be separated by rough, rounded
regions, which was recently demonstrated experimentally (cf. e.g. [44]). Facets may result from cusps in the
surface free energy, which are blunted for increasing temperature making the facets shrink if the temperature
is raised. However, facets may also arise from smooth but non-convex surface free energies as follows: the
non-convexity of the free energy leads to missing orientations, i.e. sharp edges and corners in the Wulff-shape,
since it is energetically favorable to exclude high energy orientations. In the case of closed surfaces, these
edges/corners are connected by smooth surfaces with small curvature while in the case of a crystalline film
the edges/corners are connected by facets.
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To obtain rounded corners and edges, a free energy density ĉ ¼ ĉðn; h; . . .Þ, with higher order terms is
needed, where h is the mean curvature of the surface. An explicit form for ĉ has been introduced first for
two-dimensional crystals by DiCarlo, Gurtin and Podio-Guidugli [17] and later for three-dimensional crystals
by Jabbour and Gurtin [27], see also Rätz and Voigt [34]. Here we will follow [34] and consider a surface free
energy of the form
e½R� ¼
Z

R
cðnÞ þ �

2

2
h2

� �
dr ð1Þ
with � ¼ �ðT Þ introducing the length scale over which the corner/edge is rounded. A physical motivation for
the regularizing term is to assume that regions of very high curvature (sharp corners/edges) have an addi-
tional contribution to the surface free energy. The effect of the higher order term on the Wulff shape can
be understood as follows: An edge or a corner with large mean curvature has a high energy because of
the second term in (1), while an edge or a corner with small mean curvature has a high energy because of
a resulting large area with unprefered orientations in the first term. The amount of the rounding of edges
and corners is thus a compromise between these two competing terms. The resulting equilibrium shapes have
been analyzed in detail by Spencer [41] for two-dimensional crystals and the used asymptotic analysis may in
principle also be applied to the three-dimensional setting. Much less understood is the dynamic behavior of
the crystal shape if the surface free energy is given by (1). Note, that the energy (1) is the sum of the weighted
area and the Willmore energy.

1.3. Geometric evolution equations

A common approach to derive an evolution equation for a crystal surface R is to consider as the driving
force the surface chemical potential l, which is the rate of change of the free energy, when moving the surface.
Taking a variational approach, l can be defined as the first variation of the surface free energy e½R� with
respect to normal variations of R, i.e. l ¼ de

dR, where we assume, that there is no contribution to l from the
bulk phases. In the case of attachment–detachment kinetics, the normal velocity v is taken to be proportional
to l
bv ¼ �l;
with b being a kinetic coefficient. If the dynamics is assumed to be diffusion dominated, the surface flux is de-
fined via the tangential gradient of the chemical potential as mrrl, m being a mobility tensor for diffusion along
the surface, leading to the continuity equation
v ¼ rrðmrrlÞ

see [29,30]. For a detailed physical derivation of these evolution laws as the limit of a diffusion equation
including free adatoms on the surface, we refer to [21].

Computing the chemical potential l ¼ de
dR with the surface energy given in (1) leads to
bv ¼ �hc þ �2 Drhþ h kSk2 � 1

2
h2

� �� �
ð2Þ

v ¼ rr � mrr hc � �2 Drhþ h kSk2 � 1

2
h2

� �� �� �� �
ð3Þ
for the case of attachment–detachment dynamics and surface diffusion, respectively. Here Dr is the surface

Laplacian and S ¼ rrn the shape operator with Frobenius norm kSk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðSSTÞ

q
. Moreover hc denotes

the weighted mean curvature, which is defined through hc ¼ rr � nc, with nc ¼ DcðnÞ being the Cahn–Hoff-
mann vector on R. In the isotropic case, cðnÞ ¼ 1, we obtain hc ¼ h. Obviously, setting � ¼ 0, (2) reduces to
anisotropic mean curvature flow and (3) to anisotropic surface diffusion. However, for non-convex surface free
energies, these equations are ill-posed, i.e. backward parabolic for the missing orientations. Thus the higher
order term introduced in the energy (1) can also be understood as a mathematical regularization of the ill-
posed equations.
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So far, there are no analytical results known for these highly nonlinear evolution laws and numerical
treatments of these equations are also rare. In a two-dimensional setting (2) and (3) are solved by parametric
finite elements in [24] and [23], respectively, and an approach based on complex methods is introduced in
[37]. The latter approach is intrinsically two-dimensional. The methods used in [24,23] are based on the work
of [7], where a discretization of parametric isotropic surface diffusion is introduced also for three dimensional
surfaces. Extending this approach to the anisotropic case, as in [25], and combining it with the proposed
discretization for Willmore flow in [35] may lead to a parametric finite element method also in three dimen-
sions. However, due to the expected faceting of the surface and the appearance of regions with large curva-
ture such a method most likely will result in severe problems for the regularity of the surface grid. Therefore,
for a three-dimensional setting only methods which circumvent a direct triangulation of the evolving surface
are appropriate. Eq. (3) is solved in a graph formulation in [9]. Furthermore several attempts have been
made within a phase-field approximation. A model is proposed in [33], which incorporates a phase-field
approximation for Willmore flow suggested in [19]. A slightly different phase-field model, which only takes
approximations of the Drh term in the regularization into account, was used in [48]. A matched asymptotic
analysis for both models, showing a formal convergence towards (3) is lacking so far. In this paper, we will
consider a level set approach for (2) and (3), which circumvents the above mentioned difficulties and works
for curves and for surfaces.

1.4. Level set methods for anisotropic geometric evolution equations

Level set methods for geometric evolution equations have already been discussed and applied numerically
in the literature. For isotropic mean curvature flow and isotropic surface diffusion we refer for example to
[40,16] and [12,40], respectively. In [13], a level set method for anisotropic mean curvature flow and surface
diffusion has been introduced. However, these methods are restricted to convex surface energies, where no reg-
ularizing term in the surface energy is needed ð� ¼ 0Þ. A level-set treatment for anisotropic geometric evolution
equations with missing orientations has not yet been performed for neither of the equations. A level-set
method for Willmore flow was introduced recently in [18]. In this work, we will derive level set methods
for (2) and (3) in the spirit of [18,13].

2. Level set formulation of the models

In this section, we discuss the level set formulation of the curvature regularized anisotropic motions by
mean curvature and by surface diffusion. Both of them can be formulated as gradient flows for the same
energy, and therefore we discuss the properties and reformulation of the energy before specifying the special
evolution models.

2.1. Level set formulation

We start by fixing the basic notations needed for the level set formulations below, a detailed discussion of
level set methods can be found in [32,31]. Let RðtÞ � X � Rd be an evolving curve or surface, such that
RðtÞ ¼ oHðtÞ n oX:
We assume that the curve or surface either lies in the interior of the domain X or – in the case of periodic
boundary condition – is periodic. Moreover we will be concerned with connected embedded curves or sur-
faces only. However, also disconnected curves/surfaces and topological changes could be treated in the pre-
sented framework. Because in the application of interest topological changes are not of relevance, we do not
consider this situation in detail. The level set approach amounts to choosing a function / : X� R! R such
that
RðtÞ ¼ f/ð:; tÞ ¼ 0g; HðtÞ ¼ f/ð:; tÞ < 0g:

It is straightforward (cf. e.g. [31]) to see that the unit normal vector n (pointing into X nHðtÞ), the normal
velocity v, and the mean curvature h of the evolving surface can be represented as
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n ¼ r/
jr/j ; v ¼ � ot/

jr/j ; h ¼ r � r/
jr/j

� �
; ð4Þ
where we assume that r/ does not vanish. Note that with this sign convention a closed sphere with outer
normal n has positive mean curvature h > 0. For simplicity we assume in the following natural boundary con-
ditions for /. The case of periodic boundary condition may be treated in the same manner.

2.2. Energy and chemical potential

Recall the curvature regularized energy of a surface R given in (1)
e½R� ¼
Z

R
cðnÞ þ �

2

2
h2

� �
dr; ð5Þ
with n and h denoting the normal and mean curvature as above, and c : Rd ! R being a positive one-homo-
geneous anisotropy function. As in [18], in order to obtain a level set formulation we extend the energy to arbi-
trary level sets of / (assuming sufficient regularity and that r/ does not vanish on a set of positive measure)
and then average over the levels, i.e.
E½/� :¼
Z

R

Z
Ra

cðnÞ þ �
2

2
h2

� �
drda;
where Ra :¼ f/ ¼ ag \ X. Using the level set representation of the normal vector, the co-area formula [20,3],
and the homogeneity of c, the averaged energy can be rewritten as
E½/� ¼
Z

X
cðr/Þ þ �

2

2
jr/jH 2

� �
dx; ð6Þ
where H denotes the extension of the mean curvature of the level sets, now interpreted as a function on X. The
definition of the mean curvature can be reformulated in weak form as
Z

X
H#dx ¼ �

Z
X

r/ � r#
jr/j dx ð7Þ
for all sufficiently smooth test functions # 2 H 1
0X.

The driving force of any evolution mode is the difference of the chemical potential l from its equilibrium
value. Since the chemical potential can be computed as the variation of the energy for local surface perturba-
tions in normal direction, it will be our next task to compute energy variations. The variations in normal direc-
tions can be computed easily from the level set representation in a weak form, namely as
Z

X
lgdx ¼ �E0½/�g
for all smooth test functions g (note the negative sign caused by E0½/� � �e0½R� in our sign convention). In
order to simplify this analysis with respect to the mean curvature we use a Lagrangian formulation of the con-
straint (7), i.e. we introduce a dual variable x to obtain
L½/;H ;x� ¼
Z

X
cðr/Þ þ �

2

2
jr/jH 2 þ �2Hxþ �2r/ � rx

jr/j

� �
dx: ð8Þ
As well-known in the context of PDE-constrained optimization problems (see e.g. [22]) one obtains the energy
variation and thus the chemical potential as
�
Z

X
lgdx ¼ o/Lð/;H ;xÞg ð9Þ

¼
Z

X
czðr/Þ � rgþ �

2

2

r/ � rg
jr/j H 2 þ �2rg � ðPrxÞ

jr/j

� �
dx ð10Þ
for H and x satisfying
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0 ¼ oH L½/;H ;x�w ¼ �2

Z
X
ðH jr/jwþ wxÞdx ð11Þ

0 ¼ oxL½/;H ;x�# ¼ �2

Z
X

H#þr/ � r#
jr/j

� �
dx ð12Þ
for all test functions g, w, and #. Here we have used the notation
P :¼ I� r/
jr/j �

r/
jr/j ð13Þ
for the projection matrix P and czðnÞ :¼ DcðnÞ, where Dc is the differential of the one-homogeneous function c.
The relation for the derivative E0 can be simplified by eliminating (11), which yields x ¼ �H jr/j (since the
test function w was arbitrary). This yields the equations
�
Z

X
lgdx ¼

Z
X

czðr/Þ � rgþ �
2

2

r/ � rg

jr/j3
x2 þ �2rg � ðPrxÞ

jr/j

 !
dx ð14ÞZ

X

x#
jr/j dx ¼

Z
X

r/ � r#
jr/j dx: ð15Þ
Note that after elimination of H in favor of x, this corresponds to a saddle-point formulation for the
Lagrangian
K½/;x� :¼ Lð/;Hð/;xÞ;xÞ ¼
Z

X
cðr/Þ � �

2

2

x2

jr/j þ �
2r/ � rx
jr/j

� �
dx; ð16Þ
in particular we have
E½/� ¼ sup
x

Kð/;xÞ:
We finally notice that the dual variable x ¼ �H jr/j equals the curvature concentration used for the weak for-
mulation of Willmore flow (where the energy consists of the curvature term only) in [18] and for the surface
diffusion with graph representations in [9]. Note that opposed to earlier work, the curvature concentration
arises in a natural way as the dual variable in the saddle-point formulation of the energy.

2.3. Gradient flow formulation

In the following, we recall the gradient flow formulation of evolutions, which will be of fundamental impor-
tance for the construction of time discretizations below. For this sake we need a generalization of the classical
gradient flow concept in metric spaces (cf. [2]), restricting ourself to the case of a Riemannian manifold in the
following. If d denotes a metric on a suitable class of shapes, then the metric gradient flow is obtained as the
limit s! 0 of the variational problems
Rðt þ sÞ ¼ arg min
R

1

2s
dðR;RðtÞÞ2 þ e½R�

� �
: ð17Þ
For s small one only expects small changes of the surface and therefore it is natural to expand around the
previous time step in the form
Rv;sðtÞ ¼ fxþ svnjx 2 RðtÞg; ð18Þ

where v is the normal velocity. For such approximations it turns out that the metric and energy can be ex-
panded as
dðRv;sðtÞ;RðtÞÞ2 ¼ s2BRðtÞðv; vÞ þ Oðs3Þ;
with a symmetric positive definite bilinear form BRðtÞ (depending on the last time step RðtÞ and corresponding
to the metric tensor). Minimizing (17) over surfaces of the form Rv;sðtÞ can therefore be approximated to first-
order in s via the minimization
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min
v

s
2

BRðtÞðv; vÞ þ e½Rv;sðtÞ�
n o

: ð19Þ
For attachment–detachment dynamics the metric tensor is a functional of the normal velocities in the form
(the L2-metric)
BRðtÞðv;wÞ ¼
Z

R
bvwdr;
and for surface diffusion in the form (the H�1-metric, cf. [11,1])
BRðtÞðv;wÞ ¼
Z

R
ðmrrwvÞ � rww dr;
where
rr � ðmrrwvÞ ¼ v:
The level set formulation of the flow can now be obtained by averaging the metric tensor (i.e. the bilinear form
BRðtÞ) over level sets Ra of /. Since the normal velocity is proportional to the time derivative of the level set
functions ðot/ ¼ �vjr/jÞ, this yields a bilinear form on time derivatives, which we shall denote by g/. With
the above representation of the normal velocity and the co-area formula, we can average the L2-metric to (with
the functions V ¼ vjr/j and W ¼ wjr/j)
g2
/ðV ;W Þ ¼

Z
R

Z
Ra

bvw drda ¼
Z

X
b

VW

jr/j2
jr/jdx ¼

Z
X

b
VW
jr/j dx: ð20Þ
In a similar way, we can rewrite the H�1-metric (with the projection matrix P as in Eq. (13)) as
g�1
/ ðV ;W Þ ¼

Z
X
ðmPrwV Þ � rwW jr/jdx; ð21Þ
where wV satisfies
r � ðmjr/jPrwV Þ ¼ V :
Since V ¼ s�1ð/ðt þ sÞ � /ðtÞÞ provides a first-order approximation of ot/, the local optimization after aver-
aging becomes
/ðt þ sÞ ¼ arg min
/

1

2s
g/ðtÞð/� /ðtÞ;/� /ðtÞÞ þ E½/� þ OðsÞ

� �
:

The minimizer has variation zero, and hence
1

s
g/ðtÞð/ðt þ sÞ � /ðtÞ; #Þ ¼ �E0½/ðt þ sÞ�#þ OðsÞ:
In the limit s! 0 one obtains the weak formulation of the gradient flow
g/ðot/; #Þ ¼ �E0½/�#; ð22Þ
for all test functions # 2 C10 ðXÞ, which is often rewritten as
ot/ ¼ �gradg/
E½/�:
Below we shall show the coherence of the metric gradient flows with the level set formulation of the curvature
regularized flows and use them to construct semi-implicit time discretizations.

2.4. Curvature regularized anisotropic mean curvature flow

From the above formula (4) of the normal velocity in level set form as well as (14) and (15) we deduce the
level set formulation of the anisotropic mean curvature flow with curvature regularization given in (2):
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Z
X

b
ot/g
jr/j dx ¼ �

Z
X

czðr/Þ � rgþ �
2

2

r/ � rg

jr/j3
x2 þ �2rg � ðPrxÞ

jr/j

 !
dx ð23ÞZ

X

x#
jr/j dx ¼

Z
X

r/ � r#
jr/j dx: ð24Þ
for all test functions g and #.
We mention that with the above definition of the bilinear functional g2

/ and the chemical potential l, the
curvature regularized anisotropic mean curvature flow satisfies
g2
/ðot/; gÞ ¼

Z
X

lgdx ¼ �E0½/�g;
i.e. (23) and (24) are the gradient flow in the L2-metric.

2.5. Curvature regularized anisotropic surface diffusion

It is well-known for scalar mobility m (cf. [5,6,10]) that a divergence form differential operator involving
only tangential derivatives can be rewritten in terms of the full gradient and the projection matrix P defined
in (13) as
rr � ðmrr:Þ ¼
1

jr/j r � ðmjr/jPr:Þ:
After transforming the diffusion equation for l into level set form, we can obtain a standard weak formula-
tion, and with (14), (15) we deduce the level set formulation for curvature regularized anisotropic surface dif-

fusion given in (3):
Z
X

ot/wdx ¼
Z

X
mðPrlÞ � rwjr/jdx ð25ÞZ

X
lgdx ¼ �

Z
X

czðr/Þ � rgþ �
2

2

r/ � rg

jr/j3
x2 þ �2rg � ðPrxÞ

jr/j

 !
dx ð26ÞZ

X

x#
jr/j dx ¼

Z
X

r/ � r#
jr/j dx ð27Þ
for all test functions w, g and #. It is a straight-forward calculation to verify, that
g�1
/ ðot/; gÞ ¼

Z
X

lgdx ¼ �E0½/�g;
i.e. (25)–(27) is the gradient flow in the H�1-metric.

2.6. Local level set approach

It is worth noticing that in the case of E being a functional depending on higher than first derivatives, the
‘‘global’’ level set approach is not well-defined. In this case the resulting evolution equation is a partial differ-
ential equation of higher than second order, and therefore does not satisfy a comparison principle. Conse-
quently, even if a solution to the equation for the level set function / exists, one cannot guarantee that /
is continuous and that its level sets are still the boundary of the sublevel sets (due to possible intersection
and annihilation of level sets). This means that the level set approach can only be interpreted in a local sense
for the regularized geometric flows, i.e., the level set function only satisfies the partial differential equations at
the zero level set. Since one is not really interested in the other level sets of /, one can use an arbitrary exten-
sion such as the signed distance function. In a theoretical approach this means one looks for a solution /,
which satisfies the partial differential equation only on the implicitly defined set f/ ¼ 0g, and is a signed dis-
tance function in the remaining part of X.
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In a computational method, the local level set approach is rather straight-forward to realize. One first com-
putes one (small) time-step of the partial differential equation (i.e., one violates the constraint of being a
signed-distance function) and then performs a re-distancing step (i.e., one computes a suitable projection to
the constraint set of signed-distance functions). To make this approach work one just has to ensure that
the first step does not yield a too large deviation from the constraint set, which yields a restriction of the time
step size. The numerical computation of signed-distance functions, which one has to perform in this approach,
is discussed in [43]. The algorithm used is an extension of the method proposed in [8] to dimension d ¼ 3.

In practice, re-distancing after each time step is not necessary as long as / remains close enough to signed-
distance near the interface. In our implementation we make use of re-distancing when the gradient of / vio-
lates too much the signed-distance condition near the interface, i.e. when the norm of the gradient of / devi-
ates too much from jr/j ¼ 1 (see Section 5).

3. Discretization

In the following, we discuss the discretization of the regularized anisotropic flows introduced above. We
mention again that due to the missing maximum principle these discretizations have to be interpreted in a local
way, i.e., after computing one (sufficiently small) time step of the level set equation we will perform a re-dis-
tancing step.

3.1. Spatial semi-discretization by finite elements

We start with a spatial semi-discretization based on finite element methods. This choice seems natural due
to the dissipative structure of the flows and the available weak formulations (23)–(27). After choosing a finite
element subspace Vh �V one can just look for weak solutions satisfying the variational problems in a prod-
uct of this subspace. Here we shall use V ¼ H 1ðXÞ and the standard piecewise linear elements
Vh ¼ fv 2 CðXÞjvjT is linear polynomial for T 2Tg; ð28Þ

where T is a decomposition of the polygonal domain X into triangles or tetrahedra. In the case of periodic
boundary conditions on part of the boundary Cper � oX, the corresponding periodic subspaces of
V and Vh are used. Moreover we assume natural boundary conditions for all variables on the boundary
oX n Cper.

The finite element semi-discretization of regularized mean curvature flow consists in finding ð/;xÞ such that
for all t, /ðtÞ;xðtÞ 2Vh and ot/ðtÞ 2Vh solve (23), (24).

By analogous reasoning we can restrict the solution ð/; l;xÞ of the regularized anisotropic surface diffusion
flow to the finite element subspace, and obtain the semi-discrete solution via (25)–(27) for all test functions
w; g; # 2Vh.

3.2. Semi-implicit time discretization

The appropriate time discretization of the flows is a very challenging problem due to the strongly nonlinear
and high-order differential operators. It seems obvious that an explicit time discretization is not a good choice
due to severe time step restrictions and in particular due to the instabilities arising from the explicit compu-
tation of high-order derivatives. On the other hand, fully implicit time discretizations yield stability, but
enforce the solution of strongly nonlinear equations in each time step, which is a difficult task and in any case
creates a high computational effort.

Because of the deficiencies of explicit and fully implicit schemes, we try to construct semi-implicit schemes
based on the solution of linear problems in each time step. Semi-implicit schemes seem to be the most common
approach for the numerical treatment of second and higher order geometric flows based on level set and graph
representations (cf. [14–16,18,40]). In all these approaches mentioned before the semi-implicit discretizations
have been derived by ad hoc arguments, taking into account some special structure of equations. For more
complicated surface energies including curvature terms, it is not obvious how to generalize these approaches.
In the case of the Willmore flow (which can be considered as a special case of the regularized anisotropic mean
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curvature flow with c 	 0 and �2 ¼ 1) Droske and Rumpf [18] found two semi-implicit schemes and their prop-
erties still remain rather unclear. Therefore, we shall use a different approach to the time discretization based
on the gradient flow formulations. Such an approach has been proposed for this problem in the graph case in
[9], and allows to obtain a semi-implicit scheme by second-order approximations of the metric tensor and the
energy. For Willmore flow we end up with the same time discretization as the symmetric one in Droske and
Rumpf [18].

We start by constructing an approximation to the energy functional, respectively, the Lagrange functional
K defined in (16). Our aim is to construct a quadratic approximation bK of K such that
bE½/� ¼ sup

x

bKð/;xÞ ¼ sup
x

Kð/;xÞ þ OðsÞ ¼ E½/� þ OðsÞ
and
 bE 0½/� ¼ E0½/� þ OðsÞ:

In order to obtain such a first-order approximation, we perform a Taylor expansion of the Lagrange func-
tional around the previous time step, i.e. we expand (with the notation / ¼ /ðt þ sÞ, x ¼ xðt þ sÞ,
/0 ¼ /ðtÞ, x0 ¼ xðtÞ)
bK½/;x� ¼ K½/0;x0� þ K0½/0;x0�ð/� /0;x� x0Þ þ
1

2
Qð/� /0;x� x0Þ;
where Q is a quadratic functional used for stabilization purposes. A natural choice for the quadratic functional
would be the Hessian of K at the previous time step, i.e.
Qð/� /0;x� x0Þ ¼ K00½/0;x0�ð/� /0;x� x0Þ2:

The first variations of the functional K defined in (16) are given by ðcz :¼ DcÞ
o/K½/0;x0�g ¼
Z

X
czðr/0Þ � rgþ �

2

2

rg � r/0

jr/0j
3

x2
0 þ �2 ðP0rgÞ � rx0

jr/0j

 !
dx

oxK½/0;x0�# ¼
Z

X
��2 x0#

jr/0j
þ �2r/0 � r#

jr/0j

� �
dx;
with P0 ¼ I� r/0

jr/0j
� r/0

jr/0j
, and the second by ðczz :¼ D2cÞ
o//K½/0;x0�ðg; gÞ ¼
Z

X
ðczzðr/0ÞrgÞ � rgdxþ �2R½/0;x0�ðg; gÞdx

oxxK½/0;x0�ð#; #Þ ¼ ��2

Z
X

#2

jr/0j
dx

o/xK½/0;x0�ðg; #Þ ¼ �2

Z
X

x0#r/0 � rg

jr/0j
3

þ P0rg � r#
jr/0j

 !
dx:
Here R denotes the term arising from the variation of
R

X
ðPrgÞ�rx
jr/j dx.

As mentioned before, we need not use the full second derivative as a stabilization functional, but instead use
a quadratic functional Q for stabilization purpose. Ideally, such a quadratic functional should be convex with
respect to / and concave with respect to x, since we later want to minimize, respectively, maximize with
respect to these variables. Therefore, we use the obviously convex and concave parts in the second variations
of K for the construction of the quadratic functional. In addition, we add a mixed term involving rg � r#
since it corresponds to the highest-order differential operator in the original equation. This motivates a choice
of the form
Qðg; #Þ ¼
Z

X
ðczzðr/0ÞrgÞ � rgþ �

2

2

jrgj2

jr/0j
3
x2

0 � �2 #2

jr/0j
þ 2�2rg � r#

jr/0j

 !
dx:
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In order to avoid an anisotropy tensor caused by czzðr/0Þ we use a similar approach as in [14], and approx-
imate it by k

jr/0j2
cðr/0ÞI with k large enough such that (note the equal scaling of both terms due to the one-

homogeneity of c)
k

jr/0j
2
cðr/0ÞI P czzðr/0Þ:
This yields the modified quadratic functional
bQðg; #Þ ¼ Z
X

k

jr/0j
2
cðr/0Þjrgj2 þ �

2

2

jrgj2

jr/0j
3
x2

0 � �2 #2

jr/0j
þ 2�2rg � r#

jr/0j

 !
dx:
Motivated by the above discussion we consider the following quadratic approximation to the Lagrange func-
tional (which is consistent to first-order)
bK½/;x� ¼ K½/0;x0� þ K0½/0;x0�ð/� /0;x� x0Þ þ
1

2
bQð/� /0;x� x0Þ

¼
Z

X
cðr/0Þ þ czðr/0Þ � ðr/�r/0Þ þ kcðr/0Þ

ðr/�r/0Þ
2

2jr/0j
2

 !
dx

þ �2

Z
X
� x2

2jr/0j
þ jr/j2 � jr/0j

2

4jr/0j
3

x2
0

 !
dx

þ �2

Z
X

r/ � rx
jr/0j

� ½ðr/�r/0Þ � r/0�½r/0 � rx0�
jr/0j

3

 !
dx:
For both flows, a time step of size s from /0 :¼ /ðtÞ to / ¼ /ðt þ sÞ is specified by the solution of the vari-
ational problem
inf
/2Vh

sup
x2Vh

1

2s
g/0
ð/� /0;/� /0Þ þ bK½/;x�� �

:

The variations with respect to / and x then yield the fully discrete system for the time step
1

s
g/0
ð/� /0; gÞ þ o/

bK½/;x�g ¼ 0 8g 2Vh ð29Þ

ox
bK½/;x�# ¼ 0 8# 2Vh: ð30Þ
The specific statements of the fully discrete schemes for both anisotropic flows will be given in the following
section.

3.3. Fully discrete schemes

We now provide the detailed forms of the fully discrete schemes derived above by quadratic approxima-
tions of metric and energy. The time grid for the computation is given by 0 ¼ t0 < t1 < . . . tn ¼ T , with
sk :¼ tkþ1 � tk denoting the local time step. The discrete solution at time step tk will be denoted by
/k :¼ /ðtkÞ 2Vh and xk :¼ xðtkÞ 2Vh, respectively.

For the regularized anisotropic mean curvature flow, we can insert the form of g/ given in (20) directly into
(29) and obtain the discrete formulation as computing /kþ1;xkþ1 2Vh satisfying
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Z
X

b
ð/kþ1 � /kÞg

skjr/kj
dxþ

Z
X

�2

2

r/kþ1 � rg

jr/kj3
ðxkÞ2 dx

þ
Z

X
czðr/kÞ � rgþ k

jr/kj
2
cðr/kÞrg � ðr/kþ1 �r/kÞ

 !
dx

þ
Z

X
�2rg � rxkþ1

jr/kj
� �2 ½rg � r/k�½rxk � r/k�

jr/kj3

 !
dx ¼ 0 ð31Þ

Z
X

xkþ1#

jr/kj
dx�

Z
X

r/kþ1 � r#
jr/kj

dx ¼ 0 ð32Þ
for all g; # 2Vh.
In the case of regularized anisotropic surface diffusion using (21) and (29) leads to the following fully-

discrete scheme for curvature regularized anisotropic surface diffusion: Each time step consists in finding
/kþ1; lkþ1;xkþ1 2Vh such that
Z

X

ð/kþ1 � /kÞw
sk

dx�
Z

X
mðPkrlkþ1Þ � rwjr/kjdx ¼ 0 ð33ÞZ

X
lkþ1gdxþ

Z
X

�2

2

r/kþ1 � rg

jr/kj3
ðxkÞ2 dxþ

Z
X

czðr/kÞ � rgþ k

jr/kj
2
cðr/kÞrg � ðr/kþ1 �r/kÞ

 !
dx

þ
Z

X
�2rg � rxkþ1

jr/kj
� �2 ½rg � r/k�½rxk � r/k�

jr/kj3

 !
dx ¼ 0 ð34Þ

Z
X

xkþ1#

jr/kj
dx�

Z
X

r/kþ1 � r#
jr/kj

dx ¼ 0 ð35Þ
for all g; #;w 2Vh.

3.4. Stability

With the above derivation of the time discretization one obtains a straigh-forward possibility to check sta-
bility of the scheme, in particular in terms of the energy dissipation. We shall discuss the general approach in
the following and remark on the application to the specific energies we are dealing with, but do not provide the
tedious detailed calculations.

In order to obtain stability we would like to derive an inequality of the form
c
2s

g/ðtÞð/ðt þ sÞ � /ðtÞ;/ðt þ sÞ � /ðtÞÞ þ E½/ðt þ sÞ� 6 E½/ðtÞ� ð36Þ
for some constant c > 0, which would yield energy dissipation as well as the boundedness of the discrete time
derivative and, as a direct consequence, stability of the scheme. As we shall see, this goal can be achieved by a
Lagrange functional bK satisfying the following two properties (we use the same notation /0 for the previous
time step as in the above sections):


 Minorization at previous time step:
sup
x

bKð/0;xÞ 6 sup
x

Kð/0;xÞ: ð37Þ

 Majorization with dissipation: For all w 2Vh and some constant c 2 ð0; 1Þ
sup
x

bKðw;xÞ þ 1� c
2s

g/0
ðw� /0;w� /0Þ

� �
P sup

x
Kðw;xÞ: ð38Þ
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If (37) and (38) are satisfied, then we have
c
2s

g/0
ð/� /0;/� /0Þ þ E½/� ¼ c

2s
g/0
ð/� /0;/� /0Þ þ sup

x
Kð/;XÞ

6
1

2s
g/0
ð/� /0;/� /0Þ þ sup

x

bKð/;XÞ 6 sup
x

bKð/0;XÞ 6 sup
x

Kð/0;XÞ

¼ E½/0�
and hence, (36) holds.
With our construction of bK, (37) becomes
sup
x

K½/0;x0� þ K0½/0;x0�ð0;x� x0Þ þ
1

2
Qð0;x� x0Þ

� �
6 sup

x
K½/0;x0�;
which can indeed be achieved in our case with the quadratic functional Q being concave in the second variable.
The inequality (38) can at least be obtained for sufficiently small time step s, since the metric term will then
dominate. As a consequence, a conditional stability is obtained, which is on the other hand not too surprising
for a semi-implicit time discretization of a problem with nonconvex energy. In the case of anisotropic mean
curvature flow it turns out that a condition of the form s � h2

grid is sufficient, whereas for surface diffusion one
obtains s � h4

grid, with hgrid the spatial grid size. At a first glance such stability bounds appear to be strong, but
on the other hand we need such small time steps in the level set approach anyway as described below. In prac-
tice, one can always obtain stability by adjusting the time step so that (36) is satisfied, which might also allow
to proceed to larger time steps.

4. Implementation

The derived numerical schemes are implemented in the adaptive finite element toolbox AMDiS [4]. The
toolbox provides a framework for the efficient solution of systems of partial differential equations by adaptive
finite elements. For details on the software we refer to [46,43,47]. Here we only describe the resulting linear
systems for the two problems of curvature regularized anisotropic mean curvature flow and curvature regu-
larized anisotropic surface diffusion.

4.1. Discrete formulation

Introducing the weighted mass and stiffness matrices
M ½f � :¼
Z

X
f uiuj dx

� �
i;j

;

L½f � :¼
Z

X
fruiruj dx

� �
i;j

; L½A� :¼
Z

X
Aruiruj dx

� �
i;j
with functions f : X! R and A : X! Rd�d , and basis functions ui 2Vh, the matrices and right-hand side
vectors in the discrete representation of the two problems are
M1 :¼ M ½jr/kj�1
d �; M2 :¼ M ½1�;

M3 :¼ M ½bjr/kj�1
d �; L1 :¼ L½ðW kÞ2jr/kj�3

d �;
L3 :¼ L½jr/kj�1

d �; L4 :¼ L½ðid � P ½/k�Þjr/kj�1
d �;

L5 :¼ L c
r/k

jr/kjd

 !
jr/kj�1

d

" #
; L6 :¼ L½mP ½/k�jr/kjd�;

G :¼
Z

X
cz
r/k

jr/kjd

 !
ruj dx

 !
j

:
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As the norm jr/kj may become small away from the interface (signed distance property is only maintained

near the interface, see Section 5), we use the regularization jr/kjd ¼ ðd
2 þ jr/kj2Þ1=2, with 0 < d� 1. Note

that this would also be necessary when topological changes occur. The operator P ½/� is defined through

P ½/� ¼ I � r/
jr/jd
� r/
jr/jd

which for d ¼ 0 is the projection to the tangential spaces of the level sets of /. With

these notions the linear systems are as follows.

4.2. Linear system for curvature regularized anisotropic mean curvature flow

We expand /kþ1 and xkþ1 as
/kþ1 ¼
XL

i¼1

Ukþ1
i ui; xkþ1 ¼

XL

i¼1

W kþ1
i ui;
where L is the dimension of Vh. The linear system for the coefficient vectors obtained from (31), (32) reads
M3 þ s �
2

2
L1 þ skL5 s�2L3

�L3 M1

 !
Ukþ1

W kþ1

 !
¼ M3U

k þ skL5U
k þ s�2L4W k � sG

0

 !
:

Using a Schur complement approach, we arrive at the following linear equation for the unknown Ukþ1:
M3 þ s
�2

2
L1 þ skL5 þ s�2L3M�1

1 L3

� �
Ukþ1 ¼ M3U

k þ skL5U
k þ s�2L4W k � sG
with W k ¼ M�1
1 L3U

k. Since the system matrix is symmetric positive definite a CG-solver is used for the linear
systems arising in each times step. The inverse mass matrix M�1

1 is calculated explicitly using mass lumping.

4.3. Linear system for curvature regularized anisotropic surface diffusion

We expand /kþ1, lkþ1 and xkþ1 as
/kþ1 ¼
XL

i¼1

Ukþ1
i ui; lkþ1 ¼

XL

i¼1

U kþ1
i ui xkþ1 ¼

XL

i¼1

W kþ1
i ui:
The linear system obtained from eqs. (33)–(35) then reads
M2 �sL6 0
�2

2
L1 þ kL5 M2 �2L3

�L3 0 M1

0B@
1CA Ukþ1

Ukþ1

W kþ1

0B@
1CA ¼ M2U

k

kL5U
k þ �2L4W k � G

0

0B@
1CA:
Again, a Schur complement approach leads to a linear system for the unknown Ukþ1:
M2 þ sL6M�1
2

�2

2
L1 þ kL5 þ �2L3M�1

1 L3

� �� �
Ukþ1 ¼ M2U

k þ sL6M�1
2 ðkL5U

k þ �2L4W k � GÞ
with W k ¼ M�1
1 L3U

k. The Schur complement system is then solved with the Krylov-subspace method
GMRES. Again, the inverse mass matrices M�1

1 and M�1
2 are calculated with mass lumping.

5. Numerical results

We test the described numerical algorithm on several two- and three-dimensional problems for curvature
regularized anisotropic mean curvature flow (reg. MCF) and curvature regularized anisotropic surface diffu-
sion (reg. SD). In the case of closed curves or surfaces natural boundary conditions are used. In all other
examples, which deal with the evolution of a thin film, periodic boundary conditions on the side walls and
natural boundary conditions at the top and bottom are imposed.
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Throughout the simulations we use the regularized anisotropy
Fig. 2.
anisotr
ĉ ¼ cþ �2 1

2
h2; cðpÞ ¼ jpj þ a

Xd

k¼1

p4
k

jpj ; d ¼ 2; 3;
with h being the mean curvature and pk denoting the k-th spatial component of p 2 Rd . If not stated otherwise,
we choose a ¼ 1:0 (i.e. c is non-convex) and � ¼ 0:1. Furthermore, in order to concentrate on the anisotropy in
the surface free energy, we chose b ¼ m ¼ 1.

The computational grid is adaptively refined at the zero level set, to provide a high resolution at interface
regions without increasing the computational cost away from the interface. Adaptive refinement and coarsen-
ing is done by bisectioning. Fig. 1 shows an example of a two-dimensional grid. In the numerical examples,
hgrid denotes the grid size at the zero level set. Furthermore, we reinitialize the level set function from time
to time to ensure an approximate signed-distance property. The reinitialization algorithm is based on a local
Hopf-Lax formula for the solution of the eikonal equation. We use the explicit formula given by [8] in two
dimensions and [43] in three dimensions. If not stated otherwise, a reinitialization step is performed whenever
the gradient of the level set function does not fulfill 0:5 6 jr/j 6 2:0 at the zero level set.

As already pointed out in the introduction, a non-convex anisotropy function c will lead to the formation of
facets in the evolving interface. The final facet angle for non-closed interfaces is determined by the Wulff
angles, i.e. the boundaries of the range of missing orientations of the Wulff shape. An example of the Wulff
shape Wc for a non-convex anisotropy is depicted in Fig. 2. The Wulff angles may be calculated by determin-
ing the intersection points.
Fig. 1. Grid adaptively refined at zero level set.

-2

-1

0

1

2

-2 -1 0 1 2

The Wulff shape is obtained by omitting the swallow tails (‘‘missing orientations’’) of the parameterized curve S1 3 z 7! DcðzÞ for
opy c with a ¼ 1:0.
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Before presenting our numerical results, we comment on the choice of parameters in the simulations. First
the spatial grid size hgrid is connected to the regularization parameter � as hgrid � � since � is the length scale on
which the rounding of the corners in the Wulff shape happens. Moreover the parameter d regularizing the
norm of the gradient of / is chosen as d � hgrid. The time step s is chosen as
Fig. 3.
left to

Fig. 4.
every 5
s �
h4

grid

�2
� h2

grid mean curvature

s �
h6

grid

�2
� h4

grid surface diffusion:
The parameter k does depend on the strength of the anisotropy c, it is chosen to achieve the majorization prop-
erty discussed in Section 3.4. In all our examples we have chosen k ¼ 1:0.

5.1. Regularized mean curvature flow

5.1.1. Circle

We start with a closed curve and demonstrate the evolution of a circle towards the Wulff shape. Fig. 3
shows the evolution of a circle towards the Wulff shape. For the unstable orientations at h ¼ 0; p=2; p; 3p=2
oscillations can be observed, which lead to a local hill-valley struture, which subsequently coarsens and forms
the final rounded corner. The shape at t ¼ 0:035 is not a steady state. The evolution law is not area conserving
and the curve continues to shrink in time. However, the shape does not change after t ¼ 0:035.

5.1.2. Sphere

As a second example, we have a look at the three-dimensional counterpart, a sphere, and its development
towards the Wulff shape. Fig. 4 first shows the evolution of the sphere towards the Wulff shape and then the
shrinking of the closed surface.

5.1.3. Omega shape

Next, we deal with an interface, whose shape is not a graph at t ¼ 0. Fig. 5 shows the evolution at several
time instants. Oscillations can be observed on the flat parts with orientation h ¼ 0. The remaining parts
Evolution of closed curve to Wulff shape under reg. MCF. ½0; 4� � ½0; 4�-grid, hgrid ¼ 0:015625, a ¼ 3:0, � ¼ 0:05, s ¼ 10�5. From
right: zero level set at time t ¼ 0:0, 0.01, 0.025, 0.035.

Evolution of closed surface to Wulff shape under reg. MCF. ½0; 4� � ½0; 4� � ½0; 4�-grid, hgrid ¼ 0:0625, s ¼ 10�4, reinitialization
0th time step. From left to right: zero level set at time t ¼ 0:0, 0.04, 0.16.



Fig. 5. Faceting of zero level set under reg. MCF. ½0; 4� � ½0; 4�-grid, hgrid ¼ 0:03125, s ¼ 10�5, reinitialization every 10th time step. From
top left to bottom right: zero level set at time t ¼ 0:0, 0.001, 0.01, 0.03, 0.08, 0.1, 0.2, 1.0.
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develop towards a shape with rounded corners connected by nearly straight segments (‘‘facets’’) (top row of
Fig. 5). Due to the periodic boundary conditions, this is not the energy minimizing shape. The surface energy
can further be reduced by decreasing the number of rounded corners and the overall curve length, which leads
to the final steady state (bottom row of Fig. 5). The numerically measured facet angle at t ¼ 1:0 is 26.6�, while
the predicted facet angle is 28.8�.

5.1.4. Hill-valley structure in two dimensions

We now deal with a setting, which is close to the described application of thermal annealing and the for-
mation of a hill-valley structure. For these simulations it is useful to consider a linear stability analysis for the
orientation h ¼ 0, see e.g. [17]. Provided the stiffness ~cð0Þ ¼ cð0Þ þ c00ð0Þ is negative, the orientation h ¼ 0 is
unstable with most unstable wavelength kmax given by
0 4
-0.25

0.25

0 4
-0.25

0.25

0 4
-0.25

0.25

0 4
-0.25

0.25
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-0.25

0.25

0 4
-0.25

0.25

Fig. 6. Faceting and coarsening of zero level set under reg. MCF. ½0; 4� � ½0; 2�-grid, hgrid ¼ 0:03125, s ¼ 10�6. From top left to bottom
right: zero level set at time t ¼ 0:0, 0.035, 0.09, 0.16, 0.2, 0.3.
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kmax ¼
2p

ffiffiffi
2
p

�ffiffiffiffiffiffiffiffiffiffiffi
j~cð0Þj

p with j~cð0Þj ¼ j1� 3aj:
Perturbed straight line. Choosing � ¼ 0:1, a ¼ 1:0 yields kmax � 0:63. As depicted in Fig. 6, a randomly per-
turbed horizontal line ðh ¼ 0Þ develops a hill-valley pattern with wavelength k ¼ 4=6 � kmax. After this initial
stage, faceting and subsequent coarsening takes place. The numerically obtained facet angle at t ¼ 0:3 is 26.1�,
measured at the highest kink, which is close to the predicted facet angle (28.2�).
Superposed sine. The initial curve is a superposition of sine functions. Fig. 7 shows its evolution. The numer-
ically measured facet angle of the final shape at t ¼ 0:9 is 23.4� and agrees very well with the predicted facet
angle of 24.1�.

5.1.5. Hill-valley structure in three dimensions

We now turn to a three-dimensional setting and simulate the spinodal decomposition of a randomly per-
turbed initially flat surface into a hill-valley structure and its subsequent coarsening. Fig. 8 shows the evolution
of the zero level set at various times. At a first stage a hill-valley structure emerges (spinodal decomposition).
After the formation of facets and rounded corners and edges, coarsening starts to take place. A more detailed
investigation of the coarsening dynamics will be subject of future research.

5.2. Regularized surface diffusion

5.2.1. Circle

We again start with a closed curve. Fig. 9 shows the evolution of a circle towards the Wulff shape. The area
is conserved. In contrast to the curvature regularized anisotropic mean curvature flow problem, oscillations do
not occur for the chosen parameter, since the most unstable wavelength is too large.
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Faceting of zero level set under reg. MCF. ½0; 4� � ½0; 2�-grid, hgrid ¼ 0:03125, a ¼ 2
3
, s ¼ 10�6. From top left to bottom right: zero

et at time t ¼ 0:0, 0.003, 0.05, 0.9.

Faceting and coarsening of zero level set under reg. MCF. ½0; 4� � ½0; 4� � ½0; 1�-grid, hgrid ¼ 0:0625, s ¼ 10�5. From top left to
right: zero level set at time t ¼ 0:001, 0.004, 0.02, 0.04, 0.08, 0.12.



Fig. 9. Evolution of closed curve to Wulff shape under reg. SD. ½0; 4� � ½0; 4�-grid, hgrid ¼ 0:0625, s ¼ 10�6, � ¼ 0:2, reinitialization every
50th time step. From left to right: zero level set at time t ¼ 0:0, 0.001, 0.003, 0.01.

Fig. 10. Evolution of closed surface to Wulff shape under reg. SD. ½0; 4� � ½0; 4� � ½0; 4�-grid, hgrid ¼ 0:0625, s ¼ 10�6, reinitialization every
50th timestep. From left to right: zero level set at time t ¼ 0:0, 0.001, 0.007.
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5.2.2. Sphere

The evolution of the sphere to the Wulff shape is depicted in Fig. 10. In difference to curvature regularized
anisotropic mean curvature flow, we see here the volume conserving behavior.

5.2.3. Omega shape

Fig. 11 shows the evolution at various time steps. The oscillations on the flat parts are much more pro-
nounced than in the case of curvature regularized anistropic mean curvature flow. As expected for the higher
Fig. 11. Faceting of zero level set under reg. SD. ½0; 4� � ½0; 4�-grid, hgrid ¼ 0:03125, s ¼ 5� 10�8, reinitialization every 100th timestep.
From top left to bottom right: zero level set at time t ¼ 0:0, 0.0001, 0.0005, 0.003, 0.01, 0.02, 0.03, 0.058.
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order equation the time scale at which these ocillations occur and form a local hill-valley structure is much
smaller than in Section 5.1.3. However, the formation of the predicted facet angle of the final steady state
needs much more time as compared to curvature regularized anisotropic mean curvature flow.

5.2.4. Hill-valley structure in two dimensions

Again we first compute the most unstable wavelength kmax from a linear stability analysis for h ¼ 0.
Fig. 12
time st

Fig. 13
t ¼ 2�
2� 10
kmax ¼ 2p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2j~cð0Þj

s
with j~cð0Þj ¼ j1� 3aj:
Perturbed straight line. Choosing � ¼ 0:1, a ¼ 1:0 yields kmax � 0:544. As for the regularized mean curvature
flow we observe the spinodal decomposition of a randomly perturbed horizontal line into a hill-valley pattern
with wavelength k ¼ 4=7 � kmax and subsequent faceting and coarsening, see Fig. 12.
Superposed sine. Fig. 13 shows the evolution of a superposition of sine functions. The damping of the high
frequencies is much faster if compared with curvature regularized anisotropic mean curvature flow.

5.2.5. Hill-valley structure in three dimensions

We now turn to a three-dimensional setting and simulate the spinodal decomposition of a randomly per-
turbed initially flat surface into a hill-valley structure and its subsequent coarsening. Fig. 14 shows the evolu-
tion of the zero level set at various times. The formation of facets and the rounded corners and edges can
clearly be observed. After the evolution of the right facet angles, coarsening starts. Again this is qualitatively
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. Faceting and coarsening of zero level set under reg. SD. ½0; 4� � ½0; 2�-grid, hgrid ¼ 0:03125, s ¼ 10�7, reinitialization every 50th
ep. From top left to bottom right: zero level set at time t ¼ 0:0, 0.0004, 0.0017, 0.002, 0.016, 0.018.
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. Faceting of zero level set under reg. SD. ½0; 4� � ½0; 2�-grid, hgrid ¼ 0:03125, a ¼ 2
3
, � ¼ 0:2, s ¼ 10�8 until t ¼ 10�5, s ¼ 10�7 until

10�5, then s ¼ 10�6, reinitialization every 50th timestep. From top left to bottom right: zero level set at time t ¼ 0:0, 5� 10�6,
�5, 0.081.



Fig. 14. Faceting and coarsening of zero level set under reg. SD. ½0; 4� � ½0; 4� � ½0; 1�-grid, hgrid ¼ 0:0625, s ¼ 5� 10�6. From top left to
bottom right: zero level set at time t ¼ 0:0001, 0.002, 0.006, 0.012, 0.016, 0.035.
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Fig. 15. Area conservation (left) and energy decrease (right) for regularized surface diffusion in example Omega shape, see Fig. 11.
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similar to the case of curvature regularized anisotropic mean curvature flow but happens on a smaller time
scale. A detailed study of the coarsening dynamics and a quantitative comparison of the two different mass
transport mechanisms will be subject of future research.

5.2.6. Volume/area conservation and energy decrease

We recall two fundamental properties of motion by curvature regularized anisotropic surface diffusion: It is
volume preserving which follows from
d

dt
VolumeðtÞ ¼

Z
RðtÞ

vðtÞdr ¼
Z

RðtÞ
rr � mrr hc � � Drhþ h kSk2 � 1

2
h2

� �� �� �� �
dr

¼ �
Z

RðtÞ
mrr hc � � Drhþ h kSk2 � 1

2
h2

� �� �� �
� rr1dr ¼ 0
and energy decreasing, which follows from the construction as the H�1-gradient flow.
Fig. 15 shows the two properties for the computation in Section 5.2.3. The volume is preserved within a

tolerance of 4%.
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