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We review the derivation of a phase field crystal (PFC) model from classical
density functional theory (DFT). Through a gradient flow of the Helmholtz
free energy functional and appropriate approximations of the correlation
functions, higher order nonlinear equations are derived for the evolution of
a time averaged density. The equation is solved by finite elements using a
semi-implicit time discretization.

1. Introduction

Classical density functional theory (DFT) is a very successful theory to describe
thermodynamics and equilibrium structures of fluids. It is based upon a minimiza-
tion principle for a free energy density functional and determines the equilibrium
ensemble average one body density profile of a classical fluid. In practice, DFT is
only an approximation because the free energy functional is generally unknown.
However, for many systems rather accurate approximations of the Helmholtz free
energy functional exist. Given the success of DFT, it is very appealing to construct a
dynamical theory from it. To obtain an equation of motion for the one-body density
profile �ðx, tÞ an ensemble average over the possible configurations of the system at
time t, given an ensemble at t¼ 0 is needed. On this basis Marconi and Tarazana
construct a deterministic dynamical density functional theory (DDFT) [1]. It is
assumed that the gradient of the chemical potential r�ðx, tÞ is the thermodynamic
driving force for the particle current jðx, tÞ ¼ ��r�ðx, tÞ, where � is a mobility
function. Thereby the chemical potential � is given by the functional derivative of
the Helmholtz free energy functional with respect to the density profile. Altogether
they give the continuity equation

@t�ðx, tÞ ¼ �r � jðx, tÞ, ð1Þ

and provide the basis for DDFT. Equations of this form have been used in various
fields and their agreement with results from Brownian dynamics simulations have
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generally been very good. We are interested here in the dynamics of freezing, in the
theoretical understanding of nucleation and the subsequent growth of crystals.
In this context the emergence of an ordered phase can be viewed as a transition
to a phase in which �ðx, tÞ is highly non-homogenous and possesses the spatial
symmetries of the crystal, see e.g. [2, 3]. Following [4], we expand the free energy
functional about a density �l, corresponding to a liquid state lying on the liquidus
line of the solid–liquid coexistence phase diagram. The free energy functional
then reads

F

kBT
¼

Z
�ðx, tÞ ln

�ðx, tÞ

�l

� �
� ��ðx, tÞ dx

�
1

2

Z Z
��ðx1, tÞC2ðx1, x2Þ��ðx2, tÞ dx1 dx2 þ � � � ð2Þ

with ��ðx, tÞ ¼ �ðx, tÞ � �l, the two point direct correlation function

C2ðx1,x2Þ ¼
�2�

��ðx1Þ��ðx2Þ
, ð3Þ

and additional higher order terms, where � is the total potential energy of inter-
action between the particles in the material. As the exact form of these higher order
terms is only known for very few systems, various approximations have been derived
which usually truncate the free energy functional after the term with the two point
correlation function. In [1] the two point correlation function is approximated with
the help of equilibrium DFT. A different approach is used by Elder et al. [4], where
the two point correlation function is expanded in a Fourier series, i.e.
Ĉ ¼ Ĉ0 þ k2Ĉ2 þ k4Ĉ4 þ � � � , which is truncated after the fourth order term. Thus
the material is characterized only through the three parameters Ĉ0, Ĉ2 and Ĉ4, which
correspond to the liquid phase thermal compressibility, the bulk modulus of the
crystal and the lattice constant, respectively. Rewriting the free energy functional
in dimensionless units leads to

F ¼

Z
1

2
 ��þ ð�þ 1Þ2
� �

 þ
1

4
 4 dx ð4Þ

with a dimensionless parameter � and a dimensionless density field  . The resulting
evolution equation is the one-mode phase field crystal (PFC) model introduced by
Elder et al. [5]. It should be noted, that at this level of simplification, the model
always predicts a BCC symmetry of the crystal. Other symmetries can be obtained by
higher order approximations of the two point correlation function. In dimensionless
form the free energy functional corresponding to FCC symmetry reads

F ¼

Z
1

2
 
n
��þ ð�þ 1Þ2

��
�þ

4

3

�2
þ R

�o
 þ

1

4
 4 dx, ð5Þ

see Wu [6], which gives a two-mode PFC model and the dynamic law

@t ¼ �
n
��þ ð�þ 1Þ2

��
�þ

4

3

�2
þ R

�
þ  3

o
, ð6Þ
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which is of 10th order. In the limit that R�1 this model reduces to the one-mode
PFC model. We will here concentrate on the one-mode PFC model, for which the
sixth order evolution equation with mobility function � ¼ 1 reads

@t ¼ � ð��þ ð1þ�Þ2Þ þ  3
� �

: ð7Þ

Since the introduction of the PFC model, there have been several extensions and
applications, e.g. [7, 8] to study strain induced phase transformations and [9] to
derive surface energy coefficients.

2. Numerical approach

Discretizations of higher order nonlinear equations, as (7), require some care, as
standard explicit schemes lead to severe time step restrictions which will make
long time simulations extremely demanding. Fully implicit schemes on the other
hand lead to nonlinear equations, which have to be solved in each time step
and are therefore not efficient. Here we use a semi-implicit discretization in time,
which allows for large time steps and only requires the solution of a linear system
in each time step. Thereby we linearize the derivative of the potential
ð nþ1

Þ
3
� 3ð n

Þ
2 nþ1

� 2ð n
Þ
3: The discretization in space is done by linear finite

elements. The discrete form for (7) written as a system of second order equations
with periodic boundary conditions thus read:

Z
�nþ1� dx ¼ �

Z
r nþ1

� r� dx

Z
 nþ1

�  n

�n
� dx ¼ �

Z
runþ1 � r� dx

Z
unþ1� dx ¼

Z
�� nþ1

þ  nþ1
þ 3ð n

Þ
2 nþ1

� 2ð n
Þ
3

� �
� dx

�

Z
r� nþ1

� r� dx� 2

Z
r nþ1

� r� dx,

for all test functions � and time steps �n. The linear system to be solved reads with
mass and stiffness matrices M ¼ ðMijÞ, Mij ¼ ð�i, �jÞ and A ¼ ðAijÞ, Aij ¼ ðr�i,r�jÞ,
respectively, and with F

i
¼ ðF i

ijÞ, F i
ij ¼ ð3ð 

n
Þ
2�i, �jÞ as well as F

e
¼ ðF e

i Þ,
F e

i ¼ ð2ð 
n
Þ
3, �iÞ, where ð�, �Þ denotes the usual L

2-scalar product and �i the standard
piecewise linear nodal basis functions:

A 0 M

1
�n M A 0

2Aþ ð�� 1ÞM� F
i

M A

0
B@

1
CA

�nþ1

Unþ1

Vnþ1

0
B@

1
CA ¼

0
1
�n M�n

�F
e

0
B@

1
CA: ð8Þ

The resulting equation is nonsymmetric and solved by a GMRES-solver.
The problem is implemented in the adaptive finite element toolbox AMDiS [10],
but solved on a uniform grid.
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3. Results

Figure 1 shows on an atomistic resolution the solidification of a BCC crystal from
an undercooled melt. Nucleation and subsequent growth of multiple grains with
different orientations are shown. As the grains come together dislocations form.

We would now like to demonstrate the advantages of our numerical approach
compared to standard explicit schemes. We therefore chose a benchmark simulation
in which we compare our results with [11]. We use the same model parameters and
their time step as a reference solution. Figure 2 shows the deviation of solutions
obtained with larger time steps from the reference solution. The plotted deviation is a
hard measure. It increases with increasing time steps but remains localized, even for
time steps which are four orders of magnitude larger then in the reference solution. If
we compute the relative L1 error we obtain for � ¼ 0:01 an error of 0:04%, for

Figure 1. Time averaged density profile at different time steps. The initial condition is
a randomly perturbed uniform configuration for an undercooled melt. Periodic boundary
conditions are used.
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� ¼ 0:1 an error of 1:4% and for � ¼ 1 an error of 17%. For � ¼ 10 the error is of the
same order as the solution, thus such time steps are too large. An error of 17% also
might seem to be too high, but looking at the solution and not the deviation shows
that qualitatively all main features of the solution are still resolved, see figure 3,
which shows the solution at t ¼ 600 for different �. For � ¼ 10 also the qualitative

τ = 0.0075 τ = 0.01

τ = 0.1 τ = 1

τ = 10

Figure 2. Difference between solution of (8) for � ¼ 0:0075 and � ¼ 0:0075, � ¼ 0:01,
� ¼ 0:1, � ¼ 1, � ¼ 10, for t ¼ 600. No-flux boundary conditions are used.
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Figure 3. Solution of (8) for � ¼ 0:0075, � ¼ 0:01, � ¼ 0:1, � ¼ 1, � ¼ 10, for t ¼ 600.
No-flux boundary conditions are used.
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agreement is lost. Thus the results suggest that time step sizes up to � ¼ 1 will lead to
reasonable results. We would further like to mention that the chosen benchmark is a
hard test, as the structure evolves from an undercooled melt, with randomly
perturbed initial data. We expect even better results if the initial data is already a
crystalline structure.

The next test shows the effect of the implicit treatment of the derivative of the
potential in the algorithm. In analogy to figure 2 we now compare the solution using
an explicit discretization of the derivative of the potential, see figure 4. The
results clearly indicate the advantage of the implicit treatment of the derivative of
the potential, which leads to a gain in at least one order of magnitude larger time
steps.

To conclude, the results indicate that the semi-implicit treatment of the equations
allows us to use at least one order of magnitude larger time steps than an explicit
scheme would require; and, the linearization of the derivative of the potential yields a
further improvement of at least one order of magnitude.

Figure 4. Difference between solution of (8) for � ¼ 0:0075 and � ¼ 0:01, � ¼ 0:1, � ¼ 1
with derivative of potential explicitly treated, for t ¼ 600. No-flux boundary conditions
are used.
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4. Conclusions

To model nucleation and growth several important features must be included:
multiple crystal orientations, interfacial energies, elastic and plastic deformations.
Perhaps the most straightforward method of modelling these is to solve Newton’s
equation of motion for a collection of particles, i.e. molecular dynamics (MD).
Unfortunately the time scale in these simulations is limited by lattice vibrations
(�ps) and the spatial scale by lattice constant (�Å), which makes it unfeasible
even on high performance computers to reach appropriate time and length scales
of practical interest. Another approach is to use classical phase field models (PF).
While this approach can access much larger time and length scales it is very challen-
ging to incorporate all the required features.

The described phase field crystal (PFC) approach might be viewed as an
intermediate model between MD and PF. It includes, by construction, the most
relevant features which are involved in MD, it solves the problem as MD on an
atomic scale, but the time scale is larger and comparable to PF. Thus the PFC model
offers the possibility to reach time scales of practical interest. The computational cost
however is very demanding, as the spatial resolution has to be even higher than in
MD. Each atom requires approximately 102 grid points in 2D. This requires efficient
numerical algorithms. Besides the described approach by finite elements, investiga-
tions towards multigrid methods and parallelization are under way, which will allow
us also to perform simulations in 3D.
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