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Set Oriented Approximation of Invariant Manifolds: Review
of Concepts for Astrodynamical Problems

Michael Dellnitz, Kathrin Padberg, Marcus Post and Bianca Thiere

Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn,
33095 Paderborn, Germany

Abstract. During the last decade set oriented methods have been developed for the approximation and analysis of complicated
dynamical behavior. These techniques do not only allow the computation of invariant sets such as attractors or invariant
manifolds. Also statistical quantities of the dynamics such as invariant measures, transition probabilities, or (finite-time)
Lyapunov exponents, can be efficiently approximated. All these techniques have natural applications in the numerical
treatment of problems in astrodynamics. In this contribution we will give an overview of the set oriented numerical methods
and how they are successfully used for the solution of astrodynamical tasks. For the demonstration of our results we consider
the (planar) circular restricted three body problem. In particular, we approximate invariant manifolds of periodic orbits about
the Ly and Ly equilibrium points and show an extension to the application of a continuous control force. Moreover, we
demonstrate that expansion rates (finite-time Lyapunov exponents), which so far have mainly been applied in fluid dynamics,
can provide useful information on the qualitative behavior of trajectories in the context of astrodynamics. The set oriented
numerical methods and their application to astrodynamical problems discussed in this contribution serve as further important
steps towards understanding the pathways of comets or asteroids and the design of energy-efficient trajectories for spacecraft.

Keywords: space mission design, Hamiltonian systems, three body problem, set oriented numerics, invariant manifolds, finite-time Lyapunov
exponents, reachable sets
PACS: 02.60.-x; 05.10.-a; 05.45.-a; 95.10.Ce

INTRODUCTION

In the last few years dynamical system techniques have been developed for the design of energy-efficient trajectories
for space missions. These approaches are typically based on the (planar) circular restricted three body problem and
exploit the structure of certain invariant sets such as periodic orbits and their associated invariant manifolds. Pioneers
in using mathematical concepts in the context of trajectory design in celestial mechanics were already Poincaré [31],
McGehee [28] and Conley [7]. Later their ideas were enhanced for direct applications to space missions, for instance
by Belbruno and Miller [4] for the Hiten Mission and by Lo et al. [25] for the Genesis Discovery Mission. This led to
the work of Koon, Lo, Marsden, and Ross [20, 22, 19, 21, 23, 27] with fundamental practical and theoretical results.

In this contribution we present numerical methods that enable an implementation of the dynamical system approach
for the design of energy-efficient flight paths for spacecraft. In particular, we review the set oriented numerical
techniques for the approximation of invariant manifolds in the three body problem and apply them to several relevant
tasks in astrodynamics. The set oriented approach was introduced by Dellnitz and Hohmann [9, 10], the treatment of
the special case of Hamiltonian systems is described in [18].

The present article is organized as follows: we begin by recalling the circular restricted three body problem (CRTBP)
and the related planar system (PCRTBP) followed by a description of the set oriented numerical methods for the
approximation of invariant manifolds. Here we focus on the special case of the computation of stable and unstable
manifolds to periodic orbits [9, 10, 18]. We apply this approach to two relevant problems: first, we analyze the flight
path of the comet Oterma. Secondly, we show how to obtain an initial guess for an energy-efficient trajectory in
the Sun-Earth-spacecraft three body problem such as used for the Genesis Discovery Mission [12]. These ideas are
extended for the problem of designing a low thrust trajectory for a mission to Venus. This includes the combination of
several PCRTBPs as well as the application of continuous control forces [13]. Finally, we demonstrate how expansion
rates (finite-time Lyapunov exponents), which, so far, have mainly been used in fluid dynamics (e.g. [17, 33, 36, 30]),
can be applied in the context of astrodynamics. Such estimation of certain substructures on the manifolds can, for
instance, be useful for the design of trajectories for spacecraft flying in a formation. We close this contribution with a
short conclusion.
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FIGURE 1. (a) Five equilibrium points of the circular restricted three body problem in the xpx;-plane. (b) Projection of an
energy surface onto position space (schematic) for a value of the Jacobi integral for which the spacecraft is able to transit between
the exterior and the interior region. (c) Sketch of the “patched 3-body approach’ (cf. [21, 23]). The idea is to travel within certain
invariant manifold "tubes’ possibly including an impulsive maneuver at the intersection plane.

CIRCULAR RESTRICTED THREE BODY PROBLEM

We begin by recalling the equations of motion for the CRTBP, for more details see for instance [15, 16, 2, 34]. Here
the Sun (denoted by S) and a Planet (denoted by ) are the two primaries with total mass normalized to one. The mass
parameter t is given by p ﬁf? where mp is the mass of the Planet and mg the mass of the Sun. respectively. These
two bodies rofate in the plane counterclockwise about their common center of mass with angular velocity normalized
to one. The third body - either a spacecraft, a comet or an asteroid — is free to move in the three-dimensional space
and its motion is assumed to not affect the primaries.

We choose a rotating coordinate system so that the origin is at the center of mass and the Sun and the Planet are
fixed on the x-axis at (—p,0,0) and (1 — p£,0,0), respectively. We denote by (x;.x2,x3) the position of the spacecraft
in the rotating framec. The cquations of motion of the third body can be written in sccond order form as

F -2 =y, H+20H=CQ,, =0, (1)
where

q+x  1-p K ()

Q(xy,x7,53) = |
(x1,%2,x3) 2 5 i 3

r1=\/(.\'1|,u)21x%}-x§. J"'_;=\/(X1 1+ )2 +23 +x3

and Q. . Q,, and Q,, are the partial derivatives of Q with respect to the variables x;, x; and x3. These are the equations
of the CRTBP, see [1. 26, 34] for a more detailed description.
The system (1) has a first integral (also called Jacobi integral) which is given by

Cx1,%0,%3,%1,%,%3) = —( +23 +83) +2Q(x; ,%2,33). 2)

In Figure 1 (a) the five equilibrium points of the system (1) in the xjx2-plane are shown. These equilibrium points are
critical points of the function Q. The level surfaces of the Jacobi integral. which are also energy surfaces, are invariant
5-dimensional manifolds. The projection of this surface onto position space is called Hill's region and its boundary
is the zero velocity curve. The movement of the third body is confined to this region. The structure of Hill’s region
changes with energy. In this paper we restrict ourselves to the case shown in Figure 1(b).

For suitable values of the Jacobi integral (2) there exist periodic solutions (¢f. Figure 1(b)). of (1) in the vicinity
of the equilibrium points L; and L, that are unstable in both directions of time. Their unstable and stable manifolds
IWH resp. WW* are (topologically) cylinders (also called "rubes™) that locally partition the energy surface into two sets:
1. transit orbits that pass between the interior region and the planet region in the case of an | -periodic orbit or between
the exterior region and the planet region in the case of L,. and 2. non-transit orbits that stay cither in the exterior or
the interior region [16, 28, 20].
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In several applications it is sufficient to consider the PCRTBP because the orbital planes of the considered planets
as well as their orbital eccentricities are very small. The equations of motion for this model are derived from (1) by
simply setting x3 = X3 = %3 = 0. In this case the corresponding periodic orbits are called Lyapunov orbits.

Coupling Planar 3-Body Problems

A straightforward approach to construct a trajectory between several planets is to combine difterent PCRTBPs. By
patching two PCRTBPs parts of the unstable manifold of a periodic orbit in one system may come close to the stable
manifold of a Lyapunov orbit in the other system (where, for a moment, it may help to imagine that the two systems do
not move relative to each other), cf. Figure 1(c). It may thus be possible for a spacecraft to bridge the gap’ between
two pieces of trajectories in the vicinity of these manifolds by exerting an impulsive maneuver [21, 23].

Close approaches of two such invariant manifolds can be detected by reducing the dimension of the problem: one
computes the intersection of the two manifolds with a suitable intersection plane (cf. Figure 1(c)) and determines points
of close approach in this surface — for example by inspecting projections onto suitable two-dimensional surfaces. This
technique has in fact been used for a systematic construction of trajectories that follow prescribed itineraries around
and between the Jovian moons [23].

SET ORIENTED APPROXIMATION OF INVARIANT MANIFOLDS

In this section we briefly outline the continuation method for the set oriented approximation of stable/unstable
manifolds by [9, 10]. Our description focusses on a method for flows which is appropriate for the computation of
invariant manifolds for periodic orbits in Hamiltonian systems. For a more detailed exposition we refer to [9, 10, 18].
Let @ : RY — R? be the flow, i.e. the solution operator for the equations of motion. Let O < R be a compact set
containing the periodic orbit p. We can parametrize this orbit p(s) by time with 0 < s < 7 where T is the period of the
orbit.
A partition & of Q consists of finitely many subsets of QO such that

|JB=Q and BnB' =0 forallB,B' <P B+B.
Be#

Let %, ¢ € N, be a nested sequence of successively finer partitions of O, requiring that for all B € &, there exist
By,...,Bym € Py such that B = J; B; and diam(B;) < @ diam(B) for some 0 < 6 < 1.

Let %y C %, denote a subset of the partition elements containing the orbit p and which defines a neighborhood C
of the orbit. For some £ € N let %’(()k) C P44 be a set oriented approximation of I} (p) NC as for instance obtained

by an application of the subdivision algorithm from [9]. We call %’(()k) a covering of Wi (p)NC.
The continuation algorithm for an approximation of the global unstable manifold W*(p) within Q now works as
follows:

Continuation algorithm for flows [9, 18]: Consider a covering %’(()k) C Py of Wi (p) NC and choose m < £+,
m € N. For T > 0 we define the new collection

2" = (Be 2,|Bn¢!(B) 0 for some B %’(()k) and some 0 <7 < 7} 3)

Convergence results for the subdivision and for the continuation algorithms can be found in [9, 10, 18].

In this paper we obtain initial conditions (e.g. a starting set for the continuation algorithm) by choosing a fine
approximation p(n-h), h=7T/n, n € N, of the periodic orbit and by moving these points slightly within the unstable
eigenspace of the periodic orbit. The unstable directions are obtained by propagating the respective eigenvector of the
monodromy matrix for one period along the orbit [29].

In the continuation step it is sufficient to consider the boxes that are hit by the respective orbits, a complete covering
of the global unstable manifold is ensured by interpolation schemes. The stable manifold is obtained by considering
the flow under time reversal. The set oriented algorithms are implemented in the software package GAIO [8].

92



unstable
manifolds (s) N manifolds (u)

Oterma’s
trajectory

FIGURE 2. Invariant manifolds of periodic orbits around [, and around [, computed by using the continuation algorithm
and visualized by GRAPE [32]. For better visibility only slices of the manifolds are shown. The solid line represents part of
Oterma’s trajectory as observed in the 1930s. In the vicinity of Jupiter the Oterma’s trajectory lies inside the invariant manifold
tubes confirming the results in [22, 19].

Invariant Manifolds and Oterma’s Trajectory

In order to illustrate our methods we first consider the CRTBP with the Sun and Jupiter as primaries. i.e. U
9.5368 % 10, Figure 2 shows the result of using the continuation algorithm described above for the computation
of invariant manifolds of periodic orbits around 7, and L. We choose values of the Jacobi integral of C'; = 3.020
and (% = 3.025. The solid line depicts part of Oterma’s trajectory crossing Jupiter's region in the 1930s. The comet
Oterma belongs to a family of comets which make a rapid transition from heliocentric orbits outside the orbit of Jupiter
to orbits inside that of Jupiter and vice versa. During this transition the orbit passes close to the equilibrium points 7,
and Lo.

Belbruno and B. Marsden [3] (see also [2]) considered comet transitions using the “weak stability boundary”
concept. Lo and Ross [24] as well as Koon et al. [22. 19] used the PCRTBP as the underlyving model to explain
resonance (ransition and related the transition to invariant manifolds. Results of McGehee [28] and Koon et al. [20]
showed that the comet closely follows the invariant manifolds of the corresponding periodic orbits. That means for
a transition from the exterior to the interior region a comet’s trajectory like Oterma’s uses a "celestial highway ™ built
from a concatenation of parts of the stable and unstable manifolds of periodic orbits in the vicinity of L; and L,.

We picked up this concept and used the set oriented continuation algorithm to compute stable and unstable invariant
manifolds of the periodic orbits around L and /. in the CRTBP. During Oterma’s transition from the external to
the internal region the comet changed its energy which influenced the value of the Jacobi integral. For this reason
we computed the invariant manifolds for two different Jacobi constants C'; — 3.020 and (% = 3.025, which are
representative for Oterma’s orbit in the vicinity of Jupiter Figure 2 shows an xx,x:-projection of slices of the
manifolds visualized by GRAPE [32]. In the neighborhood of Jupiter the trajectory of the comet lies inside the invariant
manifold tubes which confirms the results of Koon et al. |22, 19].

Application to the Genesis Mission

In the last few years the design of energy-efficient trajectories has received considerable interest, in particular in
view of long interplanetary missions. A problem that often arises in this context is to find initial guesses for such
fuel-efficient trajectories.

In order to attack this problem we have developed efficient methods to search for trajectories which connect given
start and end points based on a box covering of the invariant manifolds [11. 12, 13]. For instance. in the Genesis
mission [25] a trajectory from a periodic orbit around Z; to the Earth under certain landing constraints was sought,
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FIGURE 3. Trajectories in the Sun-Earth-spacecraft three body problem projected onto the xjxy-plane. (a) A possible return
trajectory for the Genesis spacecraft with loop (without markers) and a sequence of three patched trajectories corresponding to one
pseudo-orbit computed by a modified continuation algorithm. The two discontinuitics are marked by boxes. (b) Pseudo-orbit as in
(a) (shown in dark) and resulting trajectory after local optimization by LTool.

In Figure 3(a) the trajectory without markers depicts a possible Genesis return trajectory. To remove the undesired
loop (and thus reduce the flight time by several months) Dellnitz et al. [12] used a modified version of the continuation
algorithm for the computation of pseudo-trajectories. A pseudo-trajectory or pseudo-orbit is, roughly speaking, a finite
sequence of short trajectories which connect a given initial point to a given end point while allowing discontinuities
between the individual trajectories. Such pseudo-trajectories might serve as suitable initial guesses for the solution of
more complex optimal control problems.

More precisely, in the Genesis mission the CRTBP with Sun and Earth as primaries was used. i.e. g = 3.04042 x
107°. In Figure 3(a) the loop-free trajectory is a possible pseudo-orbit with two jumps (marked by boxes) which was
computed using the modified continuation algorithm mentioned above. This pseudo-orbit provides a good initial guess
for a local solver to obtain the final trajectory in the full model. Figure 3(b) shows the optimized trajectory (light line
without markers) which was computed using JPL's LTool [25].

PATCHED THREE BODY PROBLEMS WITH CONTROL

In current mission concepts, like for the ESA interplanetary mission BepiColombe to Mercury, ion propulsion systems
are being investigated that continuously exert a small force on the spacecraft (low-thrust propulsion’). Thus, it is
necessary to include a low thrust control into the PCRTBP. The idea of intersecting manifolds of periodic orbits as
mentioned earlier will therefore be enhanced in order to compute suitable reachable sets [6]. As an example we present
some numerical results for an Earth-Venus transfer. A more detailed description of the method and this special example
can be found in [13].

A Controlled Planar Three Body Problem

To model ion propulsion systems that continuously exert a small force on the spacecrall (low-thrust propulsion”™)
the PCRTBP needs to be enhanced by a suitably defined control term. Here we will restrict our considerations to the
special case of a control force whose direction is defined by the spacecraft’s velocity. This is motivated by the fact that
the acceleration and velocity vectors are parallel for the force in order to have a maximum instantaneous impact onto
the kinetic energy of the spacecraft (see [14]). Therefore, the control term which is to be included into the model is
parametrized by a single real value x. determining the magnitude of the control acceleration. This heuristic approach
aims at reducing the number of control functions under consideration. It is not globally optimal (see [35]) but here the
focus is on computing trajectories as initial guesses for optimal control algorithms.
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The velocity vector of the spacecraft has to be viewed with respect to the inertial instead of the rotating coordinate
system. This leads to the following control system, modeling the motion of the spacecraft under the influence of its
low thrust propulsion system in rotating coordinates:

%+ oxt

2 =VOE) e ——— .
AR P

4
Here, u = (1) € [tmin, hmax) C R denotes the magnitude of the control force, x = (x1,x2), x* = (—x2,%) and @ is the
common angular velocity of the primaries.

Coupling Controlled 3-Body Problems

Obviously, every solution of the uncontrolled PCRTBP is also a solution of (4) for the control function # = 0. We
are going to exploit this fact in order to generalize the patched 3-body approach as described in the beginning to the
case of controlled 3-body problems. We are still going to use the ;- and 7,-Lyapunov orbits as *gateways’ for the
transition between the interior, the planet and the exterior regions. However, instead of computing the relevant invariant
manifolds of these periodic orbits, we compute certain reachable sets (see e.g. [6]), i.e. sets in phase space that can be
accessed by the spacecraft when employing a certain set of control functions.

Reachable sets. We denote by ¢(¢,z,4) the solution of the control system (4) for a given initial point z = (x,%)
in phase space at #p = 0 and a given admissible control function # € % = {u: R — [tmn, Umax), # admissible}. Here
Umin, Umax € R are predetermined bounds on the magnitude of the control force, and the attribute "admissible’ alludes
to the fact that only a certain subset of functions is allowed. Both the bounds and the set of admissible control functions
will be determined by the design of the thrusters.

For a set S in phase space Z and a given function 7:S X % — R, we call

Q(S,T) = {¢(T(z,u),z,u) ‘ ue @,ZGS}

the set which is (t-)reachable from S. We choose T(x,u) in such a way that the reachable sets are contained in the
intersection plane.

Patched controlled 3-body systems. The idea is, roughly speaking, to mimic the patched 3-body approach while
replacing the invariant manifolds of the Lyapunov orbits by certain reachable sets. We describe the approach by
considering a mission from an outer planet (e.g. Earth) to an inner planet (e.g. Venus).

For two suitable sets ¢ and &, (in the vicinity of an .} -Lyapunov orbit of Earth and an 7,-Lyapunov orbit of Venus,
respectively) one computes associated reachable sets Z(0),7) C Z; and %(0,,T) C X, within suitably chosen
intersection planes X1 and X in each system, respectively. After a transformation of one of these reachable sets into
the other rotating system (e.g. transforming Z( &1, 71 ) into Z( 01, 71) C %), the intersection %(01, 1) NZ (02, T) is
determined. Set oriented methods allow to efficiently compute an outer covering of this intersection. By construction,
for each point in this intersection there exists a controlled trajectory that provides a transit from ¢} ( Earth) to &,
(Venus).

Application to a Mission to Venus

We applied the method to a mission to Venus and got the following results (for more details see [13]): We choose
a trajectory with control force #; = —651mN for the transfer from Earth’s gateway set &7 to the intersection plane,
up = —96mN for the trajectory from that plane to the gateway set &, of Venus. Linking also the gateway sets to a
closer neighborhood of the planets, we finally end up with a flight time of roughly 1.8 years and a corresponding AJ
of slightly less than 4000 m/s for the complete journey from Earth to Venus. Again, note that these are rough estimates
and that the trajectory that we constructed should be viewed as an initial guess for an appropriate software that uses a
more detailed model of the solar system.

95



05
04} R(h,71)
03t

0.2

ey fdt

01t

01¢

g.SS o7 075 08 » 085 08 085 1
|

FIGURE 4. [Intersection .7 > (light grey. 9387 boxes) of two reachable sets in a common intersection plane. &'(¢, 1) (dark
grey. 121075 boxes): reachable set of the gateway set of Earth, 2#( 2, 72) (black. 171579 boxes): reachable set of the gateway set
of Venus. The figure shows a projection of the covering in 3-space onto the (x.% )-plane (normalized units). The compulation of
these sets took 2.8h on a 3.2 GHz Xcon processor.

EXPANSION RATES ON INVARIANT MANIFOLDS

As demonstrated above invariant manifolds serve as an appropriate basis for the design of energy-efficient trajectories
for space missions. In this section we will investigate these geometrical structures in more detail and analyze the
qualitative behavior of orbits on the manifolds with respect to small perturbations in the initial states. For such
an analysis we use finite-time Lyapunov exponents, a concept which has been successfully used in the analysis of
geophysical fluid flows, see e.g. [17, 33, 36, 30]. Finite-time Lyapunov exponents measure the exponential growth of
infinitesimal perturbations in the initial conditions. Ridges in the finite-time Lyapunov fields correspond to repelling
objects, which under some further assumptions, are related to stable manifolds of hyperbolic trajectories. Analogous
results hold for unstable manifolds when the system is considered under time reversal,

However, unlike the usual finite-time Lyapunov exponent approaches where the maximum expansion with respect
to all possible directions is measured here we are only interested in the exponential growth rates for perturbations
within the stable and unstable manifolds of periodic orbits. Hence, in our computational method we will only allow
for perturbations tangential to the manifolds. For this we propose the following approach. We consider a box covering
of the unstable manifold of a periodic orbit as discussed above. In each box we only take the center point to get an
approximate tangential expansion rate as follows:

Tiey— ol (n:le:
3(1,B,) -~ log (max;—ho ) -9 {"’("m)‘
i1 [n(ei) —cil

where ¢; denotes the center point of the box By, n;(c;) the center point of the j-th neighboring box of B;, ¢ the flow and
T € R the final time of the trajectory integration. This idea is very much in spirit of the relative dispersion approaches as
discussed e.g. in [5, 37] which use finite initial perturbations for an approximation of finite-time Lyapunov exponents.
So each box gets a value which measures the relative growth rate of initial perturbations on the basis of all neighboring
boxes. This approach ensures that - at least approximately - only perturbations with respect to the manifold are
considered,

In our context it is interesting to analyze the distribution of expansion rates for two main reasons: first, the knowledge
of substructures of the manifold that behave qualitatively like stable manifolds of hyperbolic objects may help to design
efficient control laws for the control of single spacecraft. Secondly, regions that are characterized by almost vanishing
expansion may be useful for the design of trajectories for several spacecraft flying in a formation. In this case the
natural dynamics is particularly favorable for the stability of the formation,
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Application to the PCRTBP

We consider the PCRTBP with Sun and Jupiter as primaries. Using the method described above we compute a set
oriented approximation of parts of the stable manifold of a Lyapunov orbit about L; as well as the unstable manifold
of a periodic orbit around the equilibrium point L. corresponding to a choice of the Jacobi integral of C = 3.03. The
resulting box covering consists of 680046 boxes of diameters d, = 0.0004, &, = 0.0002 and d; = dy = 0.0027. For the
unstable manifold we estimate the expansion rates as described above using a integration time of 7 = 3, for the stable
manifold we compute the expansion rates in backward time, hence choosing " = —3.

In Figure 5(a) the result of this computation projected onto the xxa2-plane is shown. Light colored regions are
characterized by low expansion and hence, in these areas the natural dynamics may support. for instance, keeping a
formation of spacecraft. Dark regions correspond to expansive behavior, i.e. small perturbations in the initial conditions
will grow considerably under the flow. This is particularly true for orbits that pass in the vicinity of Jupiter where the
dynamics behaves very sensitive to small perturbations. Therefore, large parts of the manifolds are characterized by
considerable expansiveness. To visualize these regions we only show the center points of boxes with a particularly
large expansion rate (> 2.5), see Figure 5(b). Apart from the large connected regions related to Jupiter orbits a
one-dimensional structure is picked up. see also Figure 5(c) for a projection into the xjx2%)-space. We were able
to numerically verify that the stable and unstable manifolds have a nonempty intersection in the intersection plane
defined by x; = | — u exactly where the two parts of the one-dimensional structure meet. Hence, we have numerically
detected a heteroclinic connection between the two Lyapunov orbits as described in [20].

[ T T R T R R

@) (b) ©

FIGURE 5. (a) Expansion rates for parts of the stable manifold of the periodic orbit near L (left) and of the unstable manifold of
the Lyapunov orbit near Lz (right); projection onto the xjx;-plane. Light colored regions are characterized by low expansion, dark
regions by large expansion. (b) Center points of boxes with large expansion rates projected onto xjx;-plane. (¢) Center points of
boxes with large expansion rates projected into xx,x% -space.

CONCLUSION

Set oriented numerical methods provide a robust framework for the approximation of invariant manifolds in complex
systems such as the three body problem and enable a reliable detection of energy-efficient trajectories. The methods
are not only applicable to the numerical analysis of the dynamics induced by gravitational forces but also when a
continuous control force is considered such as realized in low thrust propulsion systems. The strength of the numerical
techniques discussed in this article is that they provide reliable initial guesses for energy-efficient trajectories for
space missions which then can be improved by optimal control algorithms. Moreover, the set oriented approach allows
further investigation of the dynamics on the approximated manifolds, for instance the sensitivity of trajectories with
respect to small perturbations in the initial condition.

Future work will include the investigation of further interplanetary missions with much longer flight times and with
several spacecraft flying in a formation. This will probably necessitate the development and application of efficient
methods for the solution of related multiobjective optimization and optimal control problems.
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