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Abstract

We present theoretical investigations of meandering dynamics on vicinal surfaces during MBE growth. Our results are based on the

numerical simulation of a step flow model, which accounts for asymmetric attachment/detachment kinetics at the steps. In the long wave

regime, where the meander wavelength is large compared to the terrace width, our simulations of the full model confirm the results of

Pierre-Louis et al. [Phys. Rev. Lett. 80 (1998) 4221; Phys. Rev. E 68 (2003) 020601; J. Crystal Growth 275 (2005) 56], based on a local

amplitude equation: we observe meandering with a wavelength being determined by the linear instability in the early stage, and endless

growth of the amplitude; in the presence of anisotropic edge energy, interrupted coarsening does take place. When passing to shorter

wavelengths we reveal two other types of nonlinear dynamics: (a) mushroom formation and subsequent pinch-off leading to a vacancy

island, and (b) emerging of a stationary step profile with fixed amplitude.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Epitaxial growth is an important technological process
to produce high quality crystalline films. The engineering
of small structure, e.g. for modern electronic devices
demands control over such films down to a thickness of
only some atomic layers. It is well known, that the
morphology of such films grown by various epitaxial
growth techniques is subject to instabilities. An under-
standing of these instabilities in realistic growth scenarios is
therefore of utmost importance if films with prescribed
properties have to be produced.

There are essentially three types of instabilities which
influence the film morphology during growth: step bunch-
ing, step meandering and mound formation, see, e.g. [1,2].
Here we will concentrate on step meandering, as a result of
a terrace Ehrlich–Schwoebel (ES) barrier [3]. A funda-
mental result of the linear stability analysis of Ref. [4] is the
prediction for the meander wavelength in the initial stage
e front matter r 2006 Elsevier B.V. All rights reserved.
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of the instability. For practical purposes, however, the
nonlinear regime of the instability is of much more
importance, because meandering patterns observed during
growth show large amplitudes.
In this work the nonlinear regime will be investigated by

solving the mesoscopic step flow model [5] numerically for
a periodic sequence of steps. If the meander wavelength is
large compared to the terrace width, we observe mean-
dering with a wavelength being determined by the linear
instability in the early stage, and endless growth of the
amplitude as

ffiffi
t
p

. In the presence of anisotropic edge
energies this is no longer true and the wavelength might
change during growth. Coarsening does take place in an
intermediate stage, whereas in the late stage the coarsening
stops. These findings compare very well with the results
obtained by Refs. [6–8], where a local amplitude equation
for the step profile has been derived and used to investigate
the nonlinear meander evolution.
Our main result concerns the regime, in which the local

amplitude equation is not valid anymore: passing to
shorter meander wavelength being of similar size as the
terrace width, the step profile starts to develop overhangs,
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which eventually lead to a self-crossing of the steps and
thus to the formation of a closed loop, i.e. a vacancy
island—a void of the depths of one atomic height. If the
steps become even more isolated, i.e. if the meander
wavelength is considerably smaller than the terrace
width, we observe stationary step profiles with a fixed
amplitude.

We note, that the formation of vacancy islands has also
been observed in kinetic Monte-Carlo simulations of a
standard SOS model on a square lattice in Ref. [9]. In this
work, however, a parameter regime, where the Kink–ES
effect is the main reason for the meander instability, has
been investigated.

The paper is organized as follows: in Section 2, we
describe the model, in Section 3, we present and discuss our
results in the linear and nonlinear regime, and in Section 4
we draw conclusions.
2. Step flow model

We recall the classical Burton–Cabrera–Frank (BCF)
model. The adatom density c on the terraces obeys the
following diffusion equation:

qtcþ r �~j ¼ F ; ~j ¼ �Drc, (1)

where D is the diffusion constant and F is the deposition
flux rate. Desorption of adatoms has been neglected, which
is valid in typical MBE experiments [10,11]. The fluxes of
adatoms to a step are given by

j�:¼� ~j� �~n� c�v, (2)

where subscripts þ;� denote quantities at the upper and
lower terrace, respectively, ~n denotes the normal pointing
from upper to lower terrace and v is the normal velocity of
the step. Assuming first order kinetics for the attachment/
detachment of adatoms at the steps, the adatom density
satisfies the following kinetic boundary conditions at a
step:

j� ¼ k�ðc� � ceqÞ. (3)

With this notation, asymmetric attachment rates 0o
kþok� model the (terrace) ES effect. The equilibrium
density ceq is given by the linearized Gibbs–Thomson
relation

ceq ¼ c�ð1þ GkÞ; G ¼ Oðgþ g00Þ=ðkBTÞ,

where O ¼ a2 is the atomic area, a being the lattice spacing.
Finally, the normal velocity of a step is given by

v ¼ Oðjþ þ j�Þ þ aqsjs; js ¼ �DstqsðGkÞ, (4)

where qs denotes the tangential derivative along the step
and Dst is the diffusion constant of atoms along the step.
The second term in the velocity law (4) represents edge
diffusion of edge atoms along the step, whereas the first
term ensures mass conservation.
3. Results

The results below were obtained using numerical
simulations of the full free boundary problem as defined
by Eqs. (1)–(4). A front tracking method based on linear
adaptive finite elements is used, see Ref. [12].
The parameters are given in dimensionless units and

have to be rescaled to obtain the physical units. For the
parameters used in the examples below, one should use a
spatial unit x̄�10a� 100a and a temporal unit t̄�10�2 s�
10�4 s to obtain reasonable physical parameters. All results
will be stated in terms of the time unit ML (monolayer) and
the space unit defined by the most unstable wavelength lm

of the linear instability.

3.1. Linear instability

Since the seminal work of Bales and Zangwill [4] it is well
known, that the (terrace) ES barrier ðkþok�Þ does lead to
a linear instability of a step meander. Here, the in-phase
mode is most prominent and the growth rate oðkÞ of a step
train depending on the wave number k has been given
explicitly in Ref. [4]. For the in-phase mode and if the
meander wavelength is much larger than the interterrace
distance l, i.e. kl51, it reads

oðkÞ ¼ 1
2
OFl2f ESk2

� Gðc�ODl þ aDstÞk
4, (5)

where (denoting d� ¼ D=k�)

f ES ¼
dþ � d�

dþ þ d� þ l
(6)

does measure the strength of the ES effect. In this
approximation, the most unstable wavelength lm is
explicitly given by

lm ¼ 4p
Gðc�ODl þ aDstÞ

OFl2f ES

 !1=2

.

In the general case, i.e. not assuming kl51, the dispersion
relation (5) becomes more complicated [4] and there is no
explicit formula for the most unstable wavelength.
We first use the linear instability to validate the

numerical scheme. To this end we consider a periodic step
train modeled as two down steps with terrace width l ¼ 10
on a periodic domain of size 100� 20. Using the
parameters D ¼ 102, c� ¼ 10�3, kþ ¼ 1, k� ¼ 10, G ¼ 10,
Dst ¼ 0 and F ¼ 2� 10�3, the predicted most unstable
wavelength is lm � 100. In the numerical simulations, the
randomly perturbed steps synchronize very fast and then
develop the predicted meander with a growth rate
coinciding very well with the theoretical dispersion rela-
tion, see Fig. 1. We also note, that in all numerical tests
with a larger number of equally spaced steps, the step
meander synchronized at an early stage of the evolution.
Thus, it is sufficient to simulate the evolution of two steps
on a periodic domain to investigate the meandering
instability in the nonlinear regime.
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Fig. 1. Time evolution of two equidistant, initially straight steps with small-amplitude random perturbation on a periodic domain. (Left) Profile of one of

the two steps at different times shows the emergence of a meander instability with a wavelength corresponding to the most unstable wavelength of the

linear instability. (Right) The predicted growth rate oðlmÞ ¼ 0:0516ðMLÞ�1 compares very well with the numerically obtained value o ¼ 0:0512ðMLÞ�1.

-4

-3

-2

-1

0

1

0 0.25 0.5 0.75 1

y
 [

λ m
] 
(m

o
v
in

g
 f
ra

m
e
)

x [λm]

1e-04

0.001

0.01

0.1

1

10

1 10 100 1000

a
m

p
lit

u
d
e
 [

λ m
]

time t [ML]

m = 0.57

Fig. 2. Evolution of a step meander in the long wavelength regime l=lm ¼ 0:1. (Left) Profile of a step (moving upwards) at different times depicted in a co-

moving frame. One observes endless growth of the amplitude, a symmetry breaking between the forward and the backward meander in the nonlinear

regime and the emerging of plateaus. (Right) The meander amplitude grows approximately as
ffiffi
t
p

in the late stage.
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3.2. Long wavelength regime

Having validated the numerical method with the linear
instability, we next turn to the nonlinear evolution.
Assuming that the meander wavelength lm is much larger
than the interterrace distance l, an expansion in the small
parameter �:¼ðl=lmÞ

2 leads to a (highly nonlinear) local
evolution equation for the amplitude x ¼ xðx; tÞ of a single
step meander (step profile) in a periodic, synchronized step
train, see Refs. [6–8]. However, it is not clear from the
beginning, whether and to what extend the local evolution
equation is also valid, when the amplitudes of the meander
become large. Therefore, we compare with the simulations
of the full model.

In Fig. 2 the meandering of a step using the full model
is shown. Here the parameters have been chosen such that
l=lm ¼ 0:1. One observes endless growth of the ampli-
tude, a symmetry breaking between the forward and the
backward meander in the nonlinear regime and the emerg-
ing of plateaus. Moreover, the increase of the meander
amplitude approaches �

ffiffi
t
p

in the late stage. These findings
confirm the predictions made in Refs. [6,13,8], based on
the local amplitude equation. We also confirm for the
full model, that no coarsening appears for isotropic edge
energies, whereas for anisotropic edge energies interrupted
coarsening can be observed, see Fig. 3, in agreement
with [7].
Summarizing, the numerical simulations of the full

model confirm, that the local evolution equation [6–8]
captures the main properties of the step flow model in the
long wavelength regime.

3.3. Crossover to short wavelength regime

When passing to the regime where the meander
wavelength lm and the terrace width l become comparable
in size, the local amplitude equation is not valid anymore.
Thus, one might expect a rather different behavior of the
evolution of a step meander in the nonlinear regime.
Indeed our numerical simulations reveal, that the nonlinear
dynamics changes drastically, see Fig. 4: when passing to
shorter wavelengths, the step profile starts to develop
overhangs (‘‘mushroom formation’’), which still allow for
endless growth of the amplitudes (of the periodic step
train), see Fig. 4(a,b). Further decreasing the meander
wavelength (while keeping the terrace width fixed) leads to
a pinch-off, i.e. the formation of a vacancy island as shown
in Fig. 4(c). As soon as the self-intersection of the step
profile occurs, the simulation based on a front-tracking
method does stop. Finally, we observe the appearance of a
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Fig. 3. Meandering on a larger domain of size 10lm, lm being the most unstable wavelength in the isotropic case. (Left) Isotropic edge energy: the

wavelength is fixed in the initial stage followed by endless growth of the amplitude. (Right) Anisotropic edge energy leads to

GðyÞ ¼ G0ð1þ 0:9 cosð4ðy� p=4ÞÞÞ: after selection of the most unstable wavelength (being smaller as in the isotropic case, since Gðy ¼ 0ÞoG0), one

observes coarsening in the intermediate stage. In the late stage, the coarsening stops.
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Fig. 4. Evolution of a step meander; crossover to large l=lm. For intermediate l=lm � 1 the step profile starts to develop overhangs, but we still observe

endless growth of the amplitude, see (a),(b). Further increase of l=lm leads to a pinch-off, i.e. the formation of a vacancy island as shown in (c). For even

larger l=lm the step profile evolves to a steady state with a finite amplitude, see (d). The following parameters have been used in the simulations: kþ ¼ 1,

k� ¼ 100, F ¼ 10�3, D ¼ 102, c� ¼ 10�3, Dst ¼ 0, l ¼ 10. The most unstable wavelength lm (and therefore the ratio l=lm) is varied by changing the

stiffness G from G ¼ 1:4 to 10�3.
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steady state step profile, if the wavelength is even further
decreased.

4. Conclusion

Using numerical simulations of the full step flow model
consisting of the adatom diffusion equation on the terraces,
asymmetric attachment kinetics at the steps and a velocity
law for the movement of the steps we have investigated the
morphological instability caused by the ES effect. In the
long wave regime, where the meander wavelength is large
compared to the terrace width, our results confirm that the
essential features of the nonlinear behavior may be
captured by the local amplitude equation as obtained in
Refs. [6,7]. Passing to regimes, where the meander
wavelength and the terrace width are comparable in size
we find a crossover from endless growth to mushroom
formation with subsequent pinch-off resulting in vacancy
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islands. Even more interestingly, upon further decreasing
the meander wavelength, we find steady state meander with
a fixed amplitude. We note that passing from large to small
meander wavelength (while keeping the terrace width fixed)
causes the steps to be more isolated, which may be an
explanation, why mushroom formation becomes possible.
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