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Surface Phase Separation and Flow in a Simple Model of Multicomponent
Drops and Vesicles

J.S. Lowengrub 1, J-J. Xu 2 and A. Voigt3

(Communicated by Mark Sussman)

Abstract: We introduce and investigate nu-
merically a thermodynamically consistent simple
model of a drop or vesicle in which the interfa-
cial surface contains multiple constitutive compo-
nents (e.g. amphiphilic molecules). The model
describes the nonlinear coupling among the flow,
drop/vesicle morphology and the evolution of the
surface phases. We consider a highly simplified
version of the Helfrich model for fluid-like vesi-
cle membranes in which we neglect the effects
of bending forces and spontaneous curvature but
keep the effects of inhomogeneous surface ten-
sion forces. Thus, this model may also describe
liquid drops. To solve the highly nonlinear, cou-
pled system a new numerical method is devel-
oped. This method combines the immersed inter-
face method to solve the flow equations, and the
Laplace-Young jump conditions, with the level-
set method to represent and evolve the interface
and a non-stiff Eulerian algorithm to update the
mass concentration on the drop interface. Re-
sults are presented for drops/vesicles in an applied
shear flow where an initially unstable mixture of
the surface mass separates into distinct phases.

1 Introduction

In this paper, we introduce and investigate nu-
merically a thermodynamically consistent simple
model of a drop or vesicle in which the interfa-
cial surface contains multiple constitutive compo-
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nents (e.g. amphiphilic molecules). The model
describes the nonlinear coupling among the flow,
drop/vesicle morphology and the evolution of the
surface phases.

We consider a highly simplified version of the
Helfrich model (e.g. see Zhong-can and Helfrich
(1989)) for fluid-like vesicle membranes in which
we neglect the effects of bending forces and spon-
taneous curvature but keep the effects of inhomo-
geneous surface tension forces. Thus, this model
may also describe liquid drops. We view this
work as preparatory for a more complete study of
multicomponent vesicles.

Here, the surface energy of the drop/vesicle is as-
sumed to depend upon the concentration of the
surface components (e.g. phase-field). An ad-
ditional energy is introduced that describes the
chemical energy of the surface phases which is
taken to be of Cahn-Hilliard type. Together, these
result in generalized surface tension forces im-
parted to the flow. The surface phases evolve
according to a high-order, advection-reaction-
diffusion equation of Cahn-Hilliard type (e.g.
phase-field equation) on the surface. Thermody-
namically consistent constitutive relations for the
generalized surface tension and the chemical dif-
fusion flux are derived.

Membranes consisting of amphiphilic molecules
(i.e. molecules that contain both hydrophilic
and hydrophobic groups) are fundamental com-
ponents of many soft-matter systems (e.g., see
Lipowsky and Sackman (1995)). Surfactants and
lipid bilayers are common examples. In gen-
eral, however, biomembranes are very complex
structures that play an active and critical role in
cell functions and contain lipids, proteins, choles-
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terol, ions, etc. (e.g., see Lipowsky and Sackman
(1995); Lipowsky (1991); Alberts, Bray, Lewis,
Raff, Roberts, and Watson (1994)). The morphol-
ogy and structure of membranes play an impor-
tant role in their biological function (e.g., McMa-
hon and Gallop (2005)). Further, these effects
are often coupled. For example, it is increas-
ingly recognized that structural rearrangements in
membranes, such as changes in local lipid and/or
protein compositions, can lead to the generation
of curvature, shape deformation and topologi-
cal changes that have important biological con-
sequences and locomotion (e.g., Mukherjee and
Maxfield (2004); McMahon and Gallop (2005);
Lavrenteva, Tsemakh, and Nir (2005)).

There have been many experimental and theoret-
ical studies of lipid bilayer biomembranes and
vesicles, which while important in their own right,
serve as important models for more complex
cell-membranes. Like more complex biomem-
branes, lipid bilayer biomembranes are flexi-
ble, liquid-like and may be inhomogeneous due
to the presence several lipid components. Re-
cent experiments of giant unilamellar vesicles
(GUVs) have shown that membranes contain-
ing ternary mixtures of lipid components and
cholesterol may phase separate into binary com-
ponents (e.g. ordered/disordered liquid phases)
leading to coexistence of distinct fluid bilayer
domains in the membrane. See, for example,
Veatch and Keller (2003); Baumgart, Hess, and
Webb (2003); Baumgart, Das, Webb, and Jenk-
ins (2005). Spinodal decomposition, coarsening,
viscous fingering, vesicle budding and fission are
observed. These phenomena are accompanied by
shape changes in the membrane. While there
have been many theoretical and numerical stud-
ies of homogeneous lipid bilayer biomembranes
(e.g. see the reviews Nelson, Piran, and Weinberg
(2004); Lipowsky (1991); Lipowsky and Sack-
man (1995); Pozrikidis (2001, 1992), the recent
papers Du, Liu, and Wang (2004, 2006); Campelo
and Hernandez-Machado (2006); Biben and Mis-
bah (2003); Biben, Kassner, and Misbah (2005)
and the references therein), there are far fewer
studies of inhomogeneous systems.

A theory of equilibrium shapes of two-component

vesicles was first developed by Julicher &
Lipowsky Julicher and Lipowsky (1996) and was
later used successfully Baumgart, Hess, and Webb
(2003); Baumgart, Das, Webb, and Jenkins (2005)
to compare with experimental results on GUVs.
In Taniguchi (1996), a dynamical approach was
developed that coupled interface dynamics with
a surface phase-field equation. This is anal-
ogous to the approach taken here except that
in Taniguchi (1996) the effect of flow was not
considered. Reduced models (e.g. long-wave
type approximations) were considered in Uchida
(2002); Ramaswamy, Toner, and Prost (2000);
Reigada, Buceta, and Lindenberg (2005b,a) and
discrete methods (e.g. Monte-Carlo, dissipative
particle dynamics, etc) have been developed to
evolve the coupled phase-field/membrane system
(e.g. Kumar and Rao (1998); Kumar, Gompper,
and Lipowsky (2001); Laradji and Kumar (2004);
Ayton, McWhirter, and Voth (2005); Shi and Voth
(1993)). The effects of flow were considered only
in Ramaswamy, Toner, and Prost (2000) via a re-
duced model.

Here, we investigate the nonlinear coupling
among the flow, drop/vesicle morphology and the
evolution of the surface phases using the sim-
plified approach described above. We focus on
two-dimensions although our approach extends
straightforwardly to three-dimensions. To solve
the highly nonlinear, coupled system a new nu-
merical method is developed that builds upon
methods we previously developed for interfacial
flows with surfactant Xu, Li, Lowengrub, and
Zhao (2006). This method combines the im-
mersed interface method to solve the flow equa-
tions, and the Laplace-Young jump conditions,
with the level-set method to represent and evolve
the interface and a non-stiff Eulerian algorithm to
update the mass concentration on the drop inter-
face. Results are presented for drops/vesicles in
an applied shear flow where an initially unstable
mixture of the surface mass separates into distinct
phases. As the drop deforms due to the applied
shear, phase separation occurs where the surface
phase component with smaller surface tension
appears at the drop tips where the curvature is
largest. When the surface tensions of the phases
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are nearly matched, the surface phase is dynamic
and the evolution apparently becomes periodic.
When the surface tensions of the phases are quite
different, on the other hand, the evolution tends
toward a steady state with the low surface tension
phase occupying the region around the drop tips.

The outline of the paper is as follows. In sec-
tion 2, the governing equations are derived and
nondimensionalized. In section 3, the numerical
algorithms are described. In section 4, prelimi-
nary numerical results are presented. In section
5, conclusions are drawn and future work is dis-
cussed.

2 Formulation

2.1 Governing Equations

Consider a vesicle (or drop) containing one vis-
cous fluid that is surrounded by another viscous
(matrix) fluid. Let Σ denote the interface sepa-
rating the fluids. We assume that the fluids are
highly viscous so that the Stokes equations gov-
ern the flow:

∇ ·Ti = 0 and ∇ ·ui = 0 in Ωi, (1)

where i = d,m denotes the drop and matrix fluid
regions respectively, Ti = −piI + ηi(∇ui + ∇uT

i )
is the stress tensor, and pi is the pressure.

Across the interface Σ, the velocity is continuous

0 = [u]Σ ≡ (u|Σ,m −u|Σ,d) , (2)

and the Laplace-Young jump condition holds

[Tn]Σ = σκn−∇sσ , (3)

where σ is the surface tension, n is the normal
vector to Γ directed towards the matrix fluid, κ =
∇ · n is the curvature of Γ (positive for spheri-
cal/circular interface) and ∇s is the surface gra-
dient. The constitutive law for the surface tension
will be derived below (see Eq. (18)). In the far-
field, we may apply a flow and so we take the con-
dition

u = u∞ on ∂Ω, (4)

where Ω = Ω1 ∪Ω2. Finally, the interface Σ(t) =
{xΣ(t)} moves with the fluid so that

dxΣ

dt
= u. (5)

Let us suppose for simplicity that there are at most
two surface phases (e.g. lipid components, block-
copolymer) and let f denote the mass concentra-
tion of one of the surface phases; the concentra-
tion of the other phase is f − f , where f is the
total concentration of the surface phases. We as-
sume that no reactions occur and that the phases
are confined to the interface. Therefore, the mass
of the surface-phase is constant in time:

M(t) =
∫

Σ(t)
f dΣ = M(0), (6)

where we have implicitly assumed, for simplicity,
that the surface density of each phase is equal to
one (e.g. we have absorbed the density into M).
To conserve total mass, we also have

∫
Σ(t) f dΣ =∫

Σ(0) f dΣ. Assuming, for simplicity, that f =
Ftot(t), we obtain

Ftot(t) = Ftot(0)
|Σ(0)|
|Σ(t)| (7)

where |Σ(t)| =
∫

Σ(t) dΣ denotes the interfacial
length in 2D (or area in 3D). We note that we
could have alternatively enforced a local condi-
tion on f to account for local interface stretching
(this would make f time and space dependent).
This is currently under investigation.

Accordingly, the surface concentration f evolves
via a convection-reaction-diffusion equation,
which written in Eulerian coordinates, is

ft +u ·∇ f −n ·∇u ·n f = ∇s ·Js (8)

where Js is the surface flux. Below, we will derive
the constitutive law for this flux (see Eq. (17)).
Note that for incompressible velocities, the term
−n ·∇u · n describes the local rate of change of
the interface area and thus this term in Eq. (8)
describes the change in f due to interface stretch-
ing. Note that −n ·∇u ·n = ∇s ·us +κu ·n where
us is the tangential velocity on Σ. See Bache-
lor (1967); James and Lowengrub (2004); Xu, Li,
Lowengrub, and Zhao (2006) for example.
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Constitutive relations. To complete the formu-
lation, we need to obtain constitutive relations for
the surface tension σ and the diffusion flux Js.
This is done via an energetic variational approach
so that the resulting system is consistent with the
second law of thermodynamics and fully couples
the surface phase separation with the fluid me-
chanics. To satisfy the second law of thermody-
namics, it is sufficient to obtain a non-increasing
free energy functional since this is equivalent to a
non-decreasing entropy (e.g., the Helmholtz free
energy H = e−T s where e is the internal energy,
T is the temperature and s is the entropy, e.g. see
Landau (1984)). Let us consider the free energy
of the system to be

E = Es +E f , (9)

where,

Es =
∫

Σ(t)
γ( f , f ) dΣ,

and

E f =
∫

Σ(t)

(
g( f , f )+

ε2

2
|∇s f |2

)
dΣ,

where Es is the surface energy and E f is a general-
ized chemical free energy associated with the sur-
face phase which, under appropriate scaling con-
ditions, is the line-energy separating the surface
domains. The function γ( f , f ) is the surface en-
ergy density (of the surface phase components),
g( f , f ) is the chemical free energy (e.g. double-
well potential) and ε is a parameter (taken to be
constant for simplicity) that measures the excess
energy due to surface gradients.

Next, we take the time derivative of Eq. (9).
This is equivalent to varying both the interface
Σ and the function f simultaneously (and inde-
pendently). A calculation in Eulerian coordinates
shows that

Ės =
∫

Σ(t)

(
∂γ
∂ f

ḟ +
∂γ
∂ f

ḟ − γn ·∇u ·n
)

dΣ, (10)

where ḟ = ∂ f/∂ t + u ·∇ f and ḟ is defined anal-
ogously. Note that in defining ḟ , we have implic-
itly assumed that f is extended off the interface

such that ∇ f ·n = 0 in a neighborhood of Σ; thus
∇ f = ∇s f (likewise for ḟ if f is space dependent).
An similar calculation shows that

Ė f =∫
Σ(t)

(
ḟ

∂g

∂ f
+ ḟ

(
∂g
∂ f

−ε2Δs f

)

− ε2∇s f ·∇u ·∇s f

)
dΣ

+
∫

Σ(t)

(
g( f )+

ε2

2
|∇s f |2

)
(I−nn) : ∇u dΣ,

(11)

where Δs = ∇s ·∇s is the Laplace-Beltrami oper-
ator (e.g. surface Laplacian) and we have inte-
grated by parts and used the incompressibility of
u. The notation a : b = ∑i j ai jbi j denotes the ten-
sor product. For simplicity, let us focus on two-
dimensions; the 3D problem will be considered in
a future work. In 2D, ∇s f ·∇u ·∇s f = |∇s f |2(I−
nn) : ∇u. Putting this together with Eqs. (8), (10)
and (11), and assuming that f = Ftot(t) such that

ḟ = − f
|Σ(t)|

∫
Σ(t)

(I−nn) : ∇u dΣ, (12)

and integrating by parts we get,

Ė =
∫

Σ(t)
(∇s ·Js)μ dΣ

+
∫

Σ(t)
u · (−∇sξ +κξn) dΣ (13)

where μ is the chemical potential defined by

μ =
∂g
∂ f

−ε2Δs f +
∂γ
∂ f

, (14)

and ξ is given by

ξ ( f ) = g( f , f )− f
∂g
∂ f

− f
|Σ(t)|

∫
Σ(t)

∂g

∂ f
dΣ

− ε2

2
|∇s f |2 +ε2 f Δs f +τ( f , f ) (15)

where τ is the surface tension of the surface phase
components (i.e. surface tension in the absence of
phase separation: g = 0 and ε = 0) given by

τ( f , f ) = γ( f , f )− f
∂γ
∂ f

− f
|Σ(t)|

∫
Σ(t)

∂γ
∂ f

dΣ.
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(16)

Next, supposing that chemical and viscous dissi-
pation may be separated from one another leads
to the constitutive assumption for the flux

Js = ν∇sμ , (17)

which is a generalized Fick’s law, and the con-
stitutive assumption for the (generalized) surface
tension σ = ξ , which therefore yields

σ = g( f , f )− f
∂g
∂ f

− f
|Σ(t)|

∫
Σ(t)

∂g

∂ f
dΣ

− ε2

2
|∇s f |2 +ε2 f Δs f +τ( f , f ). (18)

Assuming that u∞ = 0 and using Eqs. (17), (18)
and (3) in Eq. (13) and integrating by parts and us-
ing the divergence theorem gives the energy dis-
sipation

Ė = −
∫

Σ(t)
ν |∇sμ |2 dΣ

− 1
2

∫
Ωd

ηd(∇ud +∇uT
d ) : (∇ud +∇uT

d ) dx

− 1
2

∫
Ωm

ηm(∇um +∇uT
m) : (∇um +∇uT

m) dx,

(19)

Thus, the constitutive assumptions in Eqs. (17)
and (18) are consistent with the second law of
thermodynamics.

2.2 Nondimensionalization

Let the drop radius, a, be the length scale, a/U be
the time scale, where U is a characteristic velocity
scale, p = ηmU/a be the characteristic stress scale
and σ be a characteristic surface tension scale.
Denoting the nondimensional quantities by tildes,
i.e. x̃ = x/a, T̃i = Ti/p, ũi = ui/U , σ̃ = σ/σ etc.,
we obtain the nondimensional Stokes equations

∇̃ · T̃i = 0, ∇̃ · ũi = 0, where i = d,m (20)

with the stress tensor T̃i =−p̃iI+λi
(
∇̃ũi + ∇̃ũT

i

)
and the viscosity ratio λm = 1 and λd = ηd/ηm.
The velocity is continuous across Σ̃ (e.g. Eq. (2) is

satisfied for ũi) and the Laplace-Young condition
(3) becomes

[T̃ñ]Σ̃ =
1

Ca

(
σ̃ κ̃ ñ− ∇̃sσ̃

)
, (21)

where Ca = ηmU/σ is the Capillary number. Let-
ting μ be the characteristic chemical energy scale,
we obtain from Eq. (18), the nondimensional sur-
face tension

σ̃ =
1

M

(
g̃( f , f )− f

∂ g̃
∂ f

− f
|Σ(t)|

∫
Σ(t)

∂ g̃

∂ f
dΣ

− C 2

2
|∇̃s f |2 +C 2 f Δ̃s f

)
+ τ̃( f , f ) (22)

where f is already nondimensional, g̃ = g/μ ,
τ̃ = τ/σ , the Cahn number C = ε/(a

√
μ) and

M = σ/μ measures the relative strengths of the
surface tension and chemical forces (e.g. this is
an analogue of the Mach number, see Lowen-
grub and Truskinvosky (1998)). Accordingly, the
nondimensional chemical potential is given by

μ̃ =
∂ g̃
∂ f

−C 2Δ̃s f +M
∂ γ̃
∂ f

. (23)

Further, the nondimensional version of the surface
mass transport Eq. (8) is

ft + ũ · ∇̃ f − ñ · ∇̃ũ · ñ f =
1
Pe

∇̃s
(
ν̃ ∇̃sμ̃

)
(24)

where the Peclet number Pe = ν μ/(aU). Finally,
the nondimensional energy is

Ẽ(t̃) =
1

M

(∫
Σ̃

g̃( f , f )+
C 2

2
|∇̃s f |2 dΣ̃

)

+
∫

Σ̃
γ̃( f , f ) dΣ̃ (25)

Following Lowengrub and Truskinvosky (1998),
the method of matched asymptotic expansions can
be applied to show that in the limit M ∼ C → 0
the first term in Eq. (25) converges to the line-
energy separating the surface domains. This will
be discussed further in a future work. In the re-
mainder of the paper, we drop the tilde notation.
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3 Numerical methods

We solve the system of equations in 2D using
the immersed interface method (IIM) to obtain
the fluid flow coupled with the level-set method
to capture the interfacial motion. The mass con-
centration f is extended to a neighborhood of the
interface Σ and a nonstiff algorithm is used to up-
date f . The algorithm is an extension of the ap-
proach we developed in Xu, Li, Lowengrub, and
Zhao (2006) for interfacial flows with surfactants.
For simplicity, we consider the case of viscosity
matched fluids λ = 1. We note that our algo-
rithm extends straightforwardly to 3D. The IIM
can also be extended to the case in which the vis-
cosity ratio λ �= 1 by using an augmented variable
approach Li, Ito, and Lai (2007).

3.1 The IIM for the Stokes equations

The IIM is a second order accurate method using a
Cartesian mesh that incorporates the jump condi-
tions directly into the difference stencil (e.g., see
LeVeque and Li (1994, 1997)). The IIM is based
on decomposing the Stokes equations (20)-(21)
into three Poisson equations– one for the pressure
and two for the velocity (i.e. one equation for each
velocity component). At time tk, the equation for
the pressure pk = p(x, tk) is obtained by taking the
divergence of Eq. (20). Assuming λ = 1, this
gives

∇2 pk = 0 (26)

with jump boundary conditions on Σk:

[pk]Σk =−
(

1
Ca

σκ
)k

,

[
∂ p
∂n

]
Σk

=
(

1
Ca

∇2
s σ

)k

,

(27)

and Neumann boundary conditions on ∂Ω:

(
∂ p
∂n

)k

=

{
2
(
∇2u ·n)k−1−(

∇2u ·n)k−2
,k ≥ 2(

∇2u ·n)k−1
,k = 1

(28)

Once the pressure is determined, the velocity uk

is obtained by solving the Poisson system (again
assuming λ = 1):

∇2uk = ∇pk, (29)

together with the jump boundary conditions on Σk

LeVeque and Li (1997):

[uk]Σk = 0,

[
∂uk

∂n

]
Σk

=
(

1
Ca

∇sσ
)k

. (30)

and the far-field Dirichlet boundary condition

uk = uk
∞ on ∂Ω. (31)

The interface Σk is represented by the zero set of
the level-set function φ k = φ (x, tk), i.e. Σk = {x :
φ (x, tk) = 0}. Assume that {x : φ (x, t)< 0}= Ωd ,
then the outward normal and curvature are

nk =
∇φ k

|∇φ k| , κk = ∇ ·
(

∇φ k

|∇φ k|
)

(32)

The evolution of φ is described below in section
3.2.

The Poisson equations for the pressure and veloc-
ity are discretized as follows. First, the grid points
are divided into two groups. All grid points that
are adjacent to the interface classified as irreg-
ular grid points, while the remaining points are
termed are regular. The interface position is ap-
proximated by the intersections of the zero level-
set of φ and the grid lines, assuming φ is locally
piecewise linear.

At the regular grid points, a standard centered
difference scheme is used to discretize the Pos-
sion equations. At the irregular grid points, the
standard center difference scheme is modified
by adding a correction term to account for the
jumps. The correction term, which modifies only
the right hand side of the equation, can be de-
rived from the two jump conditions, a Taylor se-
ries expansion of the solution in local coordinates
and the method of undetermined coefficients to
yield a second order accurate discretization (see
LeVeque and Li (1994); Xu, Li, Lowengrub, and
Zhao (2006)). Note that an alternative approach,
the ghost fluid method (GFM, e.g. see Fedkiw,
Aslam, Merriman, and Osher (1999); Kang, Fed-
kiw, and Liu (2000); Gibou and Fedkiw (2005);
Macklin and Lowengrub (2005, 2006)), can be
used. However, in the GFM, no expansions are
performed and the coordinate directions are used
to perform one-sided extrapolations. The GFM
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can be problematic when there is a jump in the so-
lution because tangential jumps are smeared out,
thus reducing the order of accuracy. This does not
occur using in the IIM. In order to appoximate the
jump conditions at the interface, the surface ten-
sion (and mass concentration) and its derivatives,
are computed at grid points in a local tube around
the interface (see below) and are interpolated to
the approximate interface position.

The resulting scheme has local truncation error
O(h2) at regular grid points (where h is the spa-
tial grid size), and O(h) at irregular grid points.
Since the whole set of irregular grid points is of
co-dimension one, global second order accuracy
can be achieved LeVeque and Li (1997, 1994).
The resulting discrete systems are solved by us-
ing the FFT.

3.2 Interface capturing using the level-set
function

The level-set method, first introduced by Osher
and Sethian (1988), has been highly successful
in describing interface dynamics in many applica-
tions including multiphase flows. See the recent
reviews Osher and Fedkiw (2001); Sethian and
Smereka (2003), for example. Here, we follow
our previous work Xu, Li, Lowengrub, and Zhao
(2006) and use the level-set method to capture the
interface motion. Since the interface moves with
the fluid, we take

∂φ
∂ t

+u ·∇φ = 0, (33)

although u need not correspond to the fluid ve-
locity away from the interface (e.g. Adalsteins-
son and Sethian (1999); Macklin and Lowengrub
(2005)).

The level-set function is re-initialized after each
time step to be a signed distance function locally
near the interface Sussman, Smereka, and Osher
(1994). This is performed by solving the follow-
ing Hamilton-Jacobian equation to steady state{

φτ +S(φ0)(|∇φ |−1) = 0

φ (x,0) = φ0(x)
(34)

where φ0 is the level set function before the re-
initialization, τ is the pseudo-time and S(x) is the

sign function of x defined as

S(x) =

⎧⎪⎨
⎪⎩

−1 if x < 0,

0 if x = 0,

1 if x > 0.

(35)

In practice, the re-initialization is performed at ev-
ery time step.

In the above equations, the standard third order
upwinding WENO method Jiang and Peng (2000)
is used for the spatial discretization and the stan-
dard third order TVD Runge-Kutta method Shu
(1988) is used for time time stepping. A smoothed
approximation of the sign function (35) is used,

S̃(φ ) =
φ√

φ 2 +h2
, (36)

where as before h is the spatial grid size.

3.3 The evolution of the mass concentration

The mass concentration f is evolved in two steps.
First, f and the chemical potential μ are extended
off the interface Σ into a small tube around Σ. Sec-
ond, the surface mass transport Eq. (24) is solved
in the tube using an efficient non-stiff method.

3.3.1 Extension of the mass concentration off
the interface

Using the level set methodology, f is extended
off Σ by solving the following Hamilton-Jacobian
equation Zhao, Chan, Merriman, and Osher
(1996):

{
fτ +S(φ )n ·∇ f = 0,

f (x,0) = f0(x)
(37)

where as before S(x) is the sign function of x de-
fined in Eq. (35) and τ is a pseudo-time. The
pseudo-time τ measures the magnitude of the ra-
dius of the tube into which f is extended. The
chemical potential μ is extended off Σ analo-
gously. Eq. (37) is solved using the third or-
der WENO and Runge-Kutta spatial and temporal
discretizations, respectively.



8 Copyright c© 2007 Tech Science Press FDMP, vol.3, no.1, pp.1-19, 2007

3.3.2 A nonstiff method for the surface mass
transport equation

The surface mass transport equation (24) is a non-
linear, fourth-order equation involving advection,
interface stretching and surface chemical diffu-
sion. Explicit time integration methods, therefore,
require severe (4th order) restrictions upon the
time step for stability. To overcome this difficulty,
we develop a new, non-stiff semi-implicit numer-
ical method in which the highest order terms are
integrated implicitly in time.

For simplicity, we assume that the mobility ν = 1.
Then, following Xu and Zhao (2003), we decom-
pose the Laplace-Beltrami operator as

Δsμ = Δμ − ∂ 2μ
∂n2

−κ ∂ μ
∂n

, (38)

where Δ = ∂ 2/∂x2 + ∂ 2/∂y2 is the usual Lapla-
cian, and following Eyre (1998) we decompose
the Helmholtz free energy

∂g
∂ f

= a f +(
∂g
∂ f

−a f ), (39)

where a is a nonnegative constant (a is typically

taken to be max | ∂ 2g
∂ f 2 |). We then rewrite Eq. (24)

as the vector system:

ft − 1
Pe

Δμ = F(x, t), (40)

μ −a f +C 2Δ f = G(x, t), (41)

where

F(x, t) = −u ·∇ f +n ·∇u ·n f

− 1
Pe

(
∂ 2μ
∂n2 +κ

∂ μ
∂n

)
, (42)

G(x, t) =
∂g
∂ f

−a f +
∂γ
∂ f

+C 2
(

∂ 2 f
∂n2 +κ ∂ f

∂n

)
, (43)

and except for the advection term u ·∇ f , we use
centered differences in space and a semi-implicit
backward Euler discretization in time to discretize

the system (40)-(41). The advection term is dis-
cretized using third order WENO. The left hand
sides of Eqs. (40)-(41) are discretized implicitly
while the right hand sides are discretized explic-
itly. The resulting linear system is solved in a
band around the interface by using a block Gauss-
Seidel method for f and μ simultaneously. Using
an error tolerance of 10−6, less than 50 iterations
per time step are required. Because the number of
updated points scales like N, where N is the num-
ber of grid points in a one direction, this algorithm
is still inexpensive. However, other more efficient
solution methods (e.g. multigrid) are under devel-
opment.

3.4 Enforcing area and surface mass conser-
vation

One of the drawbacks of the level-set method is
that area (volume) of the drop is not exactly con-
served by the flow. In addition, the mass of f
is not exactly conserved by our algorithm either.
Typically, small errors in each step of the algo-
rithm are incurred at every time step and after
long times these errors may accumulate and lead
to inaccurate results. Interestingly, we find that
the most significant source of mass error arises
from the fact that the the discrete velocity field ob-
tained from the IIM is not exactly divergence free
Xu, Li, Lowengrub, and Zhao (2006). Therefore,
to enforce area conservation, a small correction is
added to the normal velocity of each moving in-
terface. This is an approach frequently used in
boundary integral simulations (e.g. see Cristini,
Blawzdziewicz, and Loewenberg (2001)). Let ũh

be the discrete velocity obtained from the IIM. we
determine a small correction α to ensure that the
net mass flux across the interface is zero.∫

Σ
(ũh +αn) ·n ds = 0.

This yields the explicit expression

α = −
∫

Σ ũh ·nds∫
Σ ds

= −
∫

ũh ·nδΣ(φ )dx∫
δΣ(φ )dx

, (44)

The modified velocity is then used to advect the
level set function and the surface mass concentra-
tion f . The modification above ensures that the
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total mass flux across the interface is zero and is
found to result in dramatically reduced mass loss
overall Xu, Li, Lowengrub, and Zhao (2006).

The above modified velocity also improves the
conservation of f , however there is still signifi-
cant loss of total surface mass long-times due to
numerical diffusion. The simplest way to enforce
this correction is to multiply the mass concentra-
tion f by a constant factor to ensure that total sur-
face mass is conserved. Let f̃h be the solution of
the discrete surface mass concentration equation
and let f0, φ0 and Σ0 be the initial mass concentra-
tion, level-set function and interface respectively.
Then, we choose β such that∫

Σ
β f̃h dΣ =

∫
Σ0

f0 dΣ0, (45)

which yields

β =

∫
Σ0

f0 dΣ0∫
Σ f̃h dΣ

=
∫

Ω f0δΣ0dx∫
Ω f̃hδΣdx

(46)

The mass concentration is then reset to be fh =
β f̃h. We refer the reader to Xu and Zhao
(2003) for numerical approximations of the delta
function in the above integrals noting that δΣ =
δ (φ )|∇φ |.
Finally, we note that other, more sophisticated
area and surface mass concentration corrections
can be derived that take into account the interface
curvature and mass concentration gradients, etc.
Nevertheless, we found it sufficient to use the sim-
pler corrections described above.

4 Numerical results

We next perform numerical simulations of surface
phase separation coupled to drop dynamics under
an applied shear flow u∞ = yey. For simplicity,
we suppose that the surface energy and chemical
energy are independent of f . This is most ap-
propriate, for example, when drop deformations
are small such that f has small variation. The ef-
fect of variable f is under investigation. Assum-
ing f ≈ 1 (i.e., Ftot(0) = 1 and |Σ(0)| ≈ |Σ(t)|),
we take the chemical free energy to be g( f , f ) =
f 2(1− f )2/4 which is double-welled. That is, the
states f = 0 and f = 1 are energetically preferred
by the chemical energy.

The surface tension of the components is taken to
be τ( f , f ) = 1−x f , where x measures the reduc-
tion in surface tension by the phase f = 1. From
the nondimensional form of Eq. (16) it follows
that the surface energy is γ( f , f ) = 1 + x f log f .
In practice, the logarithmic contribution to the
chemical potential μ , given by γ ′, is mollified as
log f ≈ 1/2log

(
f 2 +C 2

)
.

The initial interface is a circle of radius 0.5 lo-
cated at the origin. The computational domain
is Ω = [−1,1]× [−1,1]. The initial concentra-
tion field on Σ is a small, nonsymmetric per-
turbation of the unstable state 0.5. In particu-
lar, we take f (x,y,0) = 0.5 + 0.01(sinxcosy +
sin(4x)cos(3y)). See Figs. 1[a] and 2[a]. In
the simulations presented below, the grid size is
h = 0.01 and the time step is Δt = h. We fur-
ther note that in the simulations below (up to time
200), the relative errors of drop area and mass of
the surface phase are both on the order of 0.2%
while the area and mass correction factors are
|α | ∼ 10−2 and |β −1| ∼ 10−4.

We take the Capillary number Ca = 0.2, the Peclet
number Pe = 10, the Cahn number C = 0.02,
and the Mach number M = 1. The parameter
a = 0.25. We consider two cases: x = 0.1 and
x = 0.5. In the former case, the surface tension τ
of the components is nearly matched while in the
latter case, the surface tension of the components
differs significantly. We then determine the ef-
fect of the surface tension differences and the flow
on the surface phase separation and drop/vesicle
morphology.

In Fig. 1, the morphologies are shown, for the
case with x = 0.1, together with the mass con-
centration f along the interface. The color scale
ranges from 0 (blue) to 1 (red). The morpholo-
gies are shown at the times indicated in the cap-
tion. At early times, the interface deforms due
to the applied shear flow and the surface phase
is swept towards the drop tips. Phase separa-
tion then rapidly occurs yielding two large regions
of f ≈ 1 at the drop tips where the curvature is
largest. Note that the surface tension of compo-
nent f = 1 is smaller than that for the f = 0 phase
(i.e. τ(1) = 0.9 < τ(0) = 1.0) so that this part
of the generalized surface tension σ favors having
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[a] [b] [c]

[d] [e] [f]

[g] [h] [i]

[j] [k] [l]

[m] [n] [o]
Figure 1: Distribution of mass concentration f along the interface for x = 0.10, Ca = 0.2, Pe = 10, C = 0.02,
and M = 1.0 at times t=0 [a], 0.5 [b], 1.0 [c], 1.5 [d], 4.0 [e], 4.5 [f], 5.0 [g], 6.0 [h], 7.0 [i], 8.0 [j], 9.0 [k],
10.0 [l], 11.0 [m], 12.0 [n], 13.0 [o].
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Figure 2: Distribution of mass concentration f (solid) and curvature κ (dotted) as a function of arclength for
the simulation in Fig. 1. Labels and times as in that figure.
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Figure 3: Maximum distance from the center of the drop to the interface as a function of time. Dot-dashed
(x = 0.5), solid (x = 0.1). The other parameters are Ca = 0.2, Pe = 10, C = 0.02, and M = 1.0. The curve
indicated by σ = 1 corresponds to a drop with f = 0 (i.e. single-phase).
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the f = 1 phase located in the regions of large cur-
vature at the drop tips. An analysis (not shown) in
fact indicates that the difference |σ − τ | ≈ 10−2

so that τ dominates σ .

Due to the nonlinear coupling between the shape,
flow and phase separation, the large f ≈ 1 regions
that form initially at the drop tips do not remain
there. Instead, these large regions move slightly,
lengthen and eventually break-off small f ≈ 1 re-
gions that travel around the interface. These small
regions merge with the large regions on the oppo-
site side of the drop and the process repeats. This
can be seen also in Fig. 2 where the mass concen-
tration f (solid) and interface curvature κ (dotted)
are plotted as a function of arclength s at the same
times as shown in Fig. 1. Here s = 0 corresponds
to the point on the interface xΣ(0) for which the
vector (xΣ(0)−xcenter) · ey = 0, where xcenter is
the position of the drop center (xcenter = 0). The
arclength is taken to increase in the counterclock-
wise direction around the drop. Note that at some
times and locations f slightly exceeds one while
in other locations f may also become slightly neg-
ative. This is due to the finiteness of C and the
polynomial form of the chemical energy g which
does not require the mass concentration to lie be-
tween zero and one. Other free energies, e.g. the
regular solution model free energy, would impose
such a restriction (e.g. see Elliot and Luckhaus
(1991)). We note that these small deviations out-
side the interval [0,1] are typical of phase-field
models with polynomial free energies and do not
affect the results.

The process of repeatedly similar break-up and re-
connection of large and small f ≈ 1 regions on
the drop interface seen in Figs. 1 and 2 is sug-
gestive of periodic evolution. To investigate this
further, we plot in Fig. 3 the maximum distance
d(t) = max |xΣ − xcenter| as a function of time t.
Note that d(0) = 0.5. After an initial transient
whereby d increases rapidly due to the deforma-
tion induced by the applied shear flow, the dis-
tance d stabilizes and becomes oscillatory about
the value d ≈ 0.585. This indicates that the drop is
actually oscillating very slightly due to nonlinear
coupling between the flow, shape and phase sep-
aration. An analysis of the data suggests that the

motion at later times is very nearly periodic with
a period 16 < Tperiod < 17. The development of
a potentially periodic evolution under these con-
ditions is quite intriguing and is currently under
study.

We next contrast the oscillatory/periodic behav-
ior when x = 0.1 to a case when the surface
tension σ is constant. In this case, there is no
coupling between the mass concentration and the
flow field. The corresponding maximum distance
d(t) is plotted in Fig. 3 as the curve marked σ = 1.
After an initial transient, d(t) settles down to a
value d ≈ 0.58 and no oscillations are observed,
in contrast to the x = 0.1 case. Note that the max-
imum distance d for the case with x = 0.1 is larger
than that for the case with σ = 1. This is consis-
tent with the surface tension decrease associated
with the f = 1 phase.

We lastly turn to the case with x = 0.5. In Fig. 4,
the drop morphologies are shown together with f
along the interface. The morphologies are shown
at the times indicated in the caption. In Fig. 5, the
corresponding f (solid) and κ (dotted) are plot-
ted as functions of arclength. At early times, the
behavior is qualitatively very similar to that ob-
served when x = 0.1. The interface deforms and
phase separation rapidly occurs leading to large
regions of f ≈ 1 located at the drop tips. Unlike
the x = 0.1 case, however, when x = 0.5 the large
f ≈ 1 regions remain localized at the drop tips.
This is likely because the large surface tension
difference between the f = 0 and f = 1 phases
makes it much more favorable for the f = 1 phase
to be located at the drop tip where the largest in-
terface curvature is achieved. This then leads to
the development of a steady-state. This is con-
firmed by Fig. 3 in which the maximum dis-
tance d(t) is plotted. Observe that during the ini-
tial transient, the drop overshoots its steady state
shape as d has a global maximum at this early
time. As time increases, small oscillations of de-
creasing amplitude are seen as d tends toward the
steady value d ≈ 0.605. In this case, the drop
is more deformed than either the x = 0.1 and the
σ = 1 cases which is consistent with the fact that
when x = 0.5, the surface tension of the f = 1
phase (τ(1)= 0.5) is much smaller than that when
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Figure 4: Distribution of mass concentration f along the interface for x = 0.50, Ca = 0.2, Pe = 10, C = 0.02,
and M = 1.0, at times t=0 [a], 0.5 [b], 1.0 [c], 1.5 [d], 2.0 [e], 2.5 [f], 5.0 [g], 30.0 [h], 50.0 [i].
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Figure 5: Distribution of mass concentration f (solid) and curvature κ (dotted) as a function of arclength for
the simulation in Fig. 4. Labels and times as in that figure.
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x = 0.1 and when σ = 1.

5 Conclusions and future work

We have introduced and investigated a simple
model of a drop or vesicle in which the drop sur-
face contains multiple constitutive components.
The model nonlinearly couples fluid flow with
the drop morphology and the evolution of the
surface phases. The coupling between the mor-
phology and surface phases on the flow occured
through a generalized surface tension. The sur-
face phases evolve according to a high-order,
advection, reaction-diffusion equation of Cahn-
Hilliard type on the surface. Constitutive relations
for the generalized surface tension and the diffu-
sion flux are proposed, based on an energetic vari-
ational approach, that guarantees that the free en-
ergy of the system is nonincreasing (e.g. entropy
is non-decreasing).

To solve the highly nonlinear, coupled system a
new numerical method is developed that is based
upon methods we previously developed for inter-
facial flows with surfactant Xu, Li, Lowengrub,
and Zhao (2006). This method combines the im-
mersed interface method to solve the flow equa-
tions, and the Laplace-Young jump conditions,
with the level-set method to represent and evolve
the interface and a non-stiff Eulerian algorithm to
update the mass concentration on the drop inter-
face. Results were presented for drops/vesicles
in an applied shear flow where an initially unsta-
ble mixture of the surface mass separated into dis-
tinct phases. As the drop deforms due to the ap-
plied shear, phase separation occurs where the low
surface tension, surface phase component appears
at the drop tips where the curvature is largest.
When the surface tension of the phases is nearly
matched, the surface phase is dynamic and the
evolution apparently becomes periodic. When the
surface tension of the phases is quite different,
on the other hand, the evolution tends toward a
steady state with the low surface tension phase oc-
cupying the region around the drop tips. Thus, the
surface tension difference between the phases is
a key variable in determining the subsequent dy-
namics and steady-state configuration.

In the future, we plan to make the model more re-
alistic by including the effects of a time and space
dependent total concentration f as well as all the
effects described in the Helfrich model of vesicles
(e.g. see Zhong-can and Helfrich (1989)) includ-
ing bending forces and spontaneous curvature. In
addition, we plan to explore the effects of inex-
tensibility on the evolution by introducing local
tensile forces on the vesicle surface to constrain
the interface length locally. We will also extend
our algorithms to three-dimensions.
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