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Abstract

The effect of kinetics on the faceting of crystal surfaces caused by strongly anisotropic surface free energies is shown by numerical

simulations. We compare the evolution of a crystal towards its equilibrium shape by surface diffusion and surface diffusion with kinetics

and observe a significant slow down of the dynamics. For quantitative studies of surface morphologies this effect is crucial, as kinetics are

assumed to play a dominant role in the surface evolution of thin crystalline films.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the evolution of a solid–vapour interface of
a homogeneous crystalline film. An understanding of the
morphology of such interfaces is crucial if films with
specific properties have to be produced. Various effects are
known which can lead to the development of small surface
structures. Two prominent examples are the formation of
quantum dots as a result of the release of elastic stresses
caused by the lattice misfit between the film and the
substrate and the thermal faceting of unstable surfaces
caused by strong anisotropic surface energies. The resulting
pyramidal structures on these surfaces, however, are
always the result of an interplay of the two, and probably
many more effects, which might result from kinetics. A
detailed model which describes these interplay has recently
introduced by Fried and Gurtin [1] in the framework of
configurational forces. Here we will consider a different
derivation based on more standard variational concepts
and numerically demonstrate the effect of kinetics on the
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evolution of a crystal with strong surface anisotropy
towards its equilibrium shape.

2. Model derivation

Let G ¼ GðtÞ be a surface separating a solid phase
(labelled by ‘‘þ’’) and a vapour phase (labelled by ‘‘�’’),
with a normal n pointing into the vapour phase. We define
a surface free energy

E ¼

Z
G
gþ

a2

2
H2 dG (1)

with g ¼ gðnÞ the surface free energy density, H the mean
curvature. The last term in Eq. (1) is a penalization term,
which smears out sharp corners on a length scale a. If g is
non-convex, which corresponds to a strong anisotropy,
such corners develop for orientations for which the surface
stiffness becomes negative. For these orientations the
surface is unstable and undergoes a spinodal decomposi-
tion process to form stable orientations. With g being non-
convex and H being recognized as a gradient term the
energy (1) can thus be understood as a geometric analog of
a Ginzburg–Landau energy. Such an energy has been
introduced for curves by DiCarlo et al. [2] and was later
extended to surfaces by Gurtin and Jabbour [3] and Rätz
and Voigt [4].
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Computing the variational derivative of E with respect to
variations in G yields

dE

dG
¼ Hg � a2 DGH þH kSk2 �

1

2
H2

� �� �
, (2)

with DG the surface Laplacian, Hg the weighted mean
curvature defined as

Hg ¼
Xd�1
i¼1

qpipi
gðnÞki,

and S the shape operator, see e.g. Ref. [5]. Here qpipi

denotes the second derivative of the one-homogeneous
extension of g : Sd�1 � Rd ! R with respect to n in the ith
principal direction, and ki, i ¼ 1; . . . ; d � 1 the principal
curvatures. Our goal is now to define a thermodynamically
consistent evolution law for the surface G. Without any
contribution from the bulk phases we can define for the
normal velocity V

bV ¼ �
dE

dG
(3)

with b ¼ bðnÞ a non-negative kinetic coefficient. This
evolution defines a gradient flow and thus guarantees
thermodynamic consistency. But the evolution of the
surface is influenced from the bulk and we need to consider
in addition to the contribution from the surface free energy
the jump in the grand canonical potential of the bulk
phases, see e.g. Ref. [6]. In the vapour, however, the grand
canonical potential is negligible and what remains is the
grand canonical potential in the solid Cþ � rmþ, with Cþ

the free energy density in the solid, r the density in the solid
and mþ the chemical potential in the solid. The surface
evolution equation now reads

bV ¼ �
dE

dG
�Cþ þ rmþ

and incorporates effects from the solid phase. Assuming
the solid to be unconstrained, the limiting value of the
chemical potential at the surface is equal to the surface
chemical potential m ¼ mþ.

A basic law we would also like to establish is mass
conservation. To derive this we consider S ¼ SðtÞ to be
an arbitrary subsurface of the GðtÞ, with geometric
boundary qS. The atomic balance on the subsurface S
requires that, if diffusion in the bulk is neglected, any
change in mass is only due to a surface flux q across qS. We
therefore have

d

dt
m ¼ �

Z
qS

q �mds,

with m the conormal. Due to the movement of S we also
have

d

dt
m ¼

Z
S
rV dG,

with r the bulk density in the solid and V the normal
velocity of S. Together with the formula for integration by
parts on SZ
qS

q �mds ¼

Z
S
rG � qdG,

we obtain the local mass balance

rV ¼ �rG � q.

We now need to define constitutive equation for q. We
define

q ¼ �nrGm,

with n ¼ nðnÞ a non-negative coefficient, corresponding to
surface diffusivity. We thus obtain a coupled system of
equations for the evolution of G

rV ¼ rG � ðnrGmÞ, (4)

bV ¼ �
dE

dG
�Cþ þ rm. (5)

It is a general model to describe the evolution of
homogeneous crystalline surfaces, incorporating different
mass transport mechanisms on the surface: surface diffu-
sion as well as kinetic effects, which are due to the
rearrangement of atoms on the surface. Furthermore, the
evolution of the surface is effected by contributions from
the bulk phases, here the free energy in the film. The last
component has to be computed by solving additional
equations in the bulk.
Eqs. (8) and (9) simplify and reduce to well-known

geometric evolution equations if several terms are ne-
glected. If we set Cþ ¼ 0 and b ¼ 0 we obtain the model
for surface diffusion

rV ¼ rG � ðnrGmÞ,

0 ¼ �
dE

dG
þ rm,

which can be combined to yield

r2V ¼ rG � ðnrGðHg � a2oÞÞ,

o ¼ DGH þHðkSk2 � 1
2
H2Þ. ð6Þ

It was first derived in the isotropic setting (g ¼ 1; a ¼ 0) by
Mullins [7] and describes mass transport by surface
diffusion. If we set Cþ ¼ 0 we obtain a model for surface
diffusion including kinetics

rV ¼ rG � ðnrGmÞ,

bV ¼ �
dE

dG
þ rm,

which can be combined to yield

rV ¼ ðrG � nrGÞ rG � nrG �
1

b

� ��1
1

b
ðHg � a2oÞ

� �
,

o ¼ DGH þHðkSk2 � 1
2
H2Þ. (7)

This model was first considered for weak anisotropies (g
convex, a ¼ 0) by Cahn and Taylor [8].
For the case of a convex anisotropy in g and a ¼ 0 the

resulting equations for surface diffusion (6) and surface
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diffusion with kinetics (7) are fourth order. If a40 the
equations turn into sixth order equations. Numerical
approaches for these higher order equations are only
derived recently and are restricted to the case of surface
diffusion. HauXer and Voigt [9] developed an algorithm for
curves, which uses parametric finite elements. Burger [10]
and Burger et al. [11] developed a numerical approach in a
graph and a level-set formulation, respectively. Attempts to
approximate the equations within a phase-field approach
have been considered by Wise et al. [12,13] and Rätz et al.
[14]. Here we will extend the algorithm in Ref. [11] to the
surface diffusion model with kinetics and analyse the
influence of the kinetic term on the dynamic evolution
towards the Wulff shape.
3. Numerical approach

A level set approach is used to propagate the surface.
The corresponding equations can be derived from an
extended energy, which is defined for all level sets. In Ref.
[11] the derivation and the numerical algorithm is
described. Adaptive finite elements are used to discretize
in space and a semi-implicit time discretization is used to
obtain a linear system of equations, which yields stability
of the scheme. The modifications necessary to deal with the
Fig. 1. 2-D case: (top row) evolution by surface diffusion, (bottom row) evo

0:0; 0:0001; 0:002; 0:005; 0:01; 0:03; 0:042. For surface diffusion the Wulff shape

Fig. 2. 3-D case: (top row) evolution by surface diffusion, (bottom row) evo

0:0; 0:001; 0:01; 0:02; 0:03. For surface diffusion the Wulff shape is reached at t
additional terms in Eq. (7) are straightforward. The
approach is implemented in AMDiS, an adaptive finite
element toolbox for systems of partial differential equa-
tions, see e.g. Ref. [15].
4. Results

We will compare the simulation results for Eqs. (6) and
(7) in various examples. Throughout the simulations we use
the regularized anisotropy

gðpÞ ¼ jpj þ a
Xd

k¼1

p4
k

jpj
; d ¼ 2; 3,

with pk denoting the kth spatial component of p.
Furthermore, in order to concentrate on the anisotropy
in g, we chose n ¼ 1 and consider the kinetic coefficient b to
be isotropic with b ¼ 0 or 1. The strength of the anisotropy
is given by a ¼ 1, which leads to missing orientations and
the regularization parameter is set to a ¼ 0:1.
Fig. 1 shows the evolution of a circle towards its Wulff-

shape. It can be observed, that the time scale necessary to
reach the equilibrium shape is different for Eqs. (6) and (7).
Under the presence of the kinetic term the evolution slows
down. In both cases the unstable orientations for 0, p=2, p
lution by surface diffusion with kinetics. The times from left to right are

is reached at t ¼ 0:002.

lution by surface diffusion with kinetics. The times from left to right are

¼ 0:01.
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Fig. 3. (Left column) evolution by surface diffusion, (right column) evolution by surface diffusion with kinetics. The times from top to bottom are

0:0; 0:0001; 0:001; 0:01.
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and 3p=2 lead to the formation of wrinkles with the
allowed orientations, which subsequently coarsen.

Fig. 2 confirms the observation on the different time
scale for the same example in three dimensions. Here the
initial shape is a sphere. The winkling is not observed in
this configuration, even for smaller grid sizes.

The second example shows the evolution of a perturbed
straight line. The perturbation is a superposition of sines.
The high frequencies are damped in both cases and a hill-
valley pattern forms. After this initial stage, faceting and
subsequent coarsening takes place, see Fig. 3. The
difference between the two cases is again in the time scale.
The damping is much faster for surface diffusion. The same
is true for the coarsening process.

5. Conclusion

A detailed geometric model for the evolution of crystal-
line surfaces is derived. The numerical approach concen-
trates on specific aspects which are related to thermal
faceting. The anisotropy in the surface free energy plays a
crucial role in the faceting (spinodal decomposition) of
thermodynamically unstable crystal surfaces. The strong
anisotropy is regularized by an additional higher order
term in the surface free energy, which depends on the mean
curvature. The resulting evolution equations, defined as
gradient flow for the surface free energy are higher order
and highly nonlinear. We analyse by numerical simulations
the influence of a kinetic term in the equations. The
additional term accounts for the kinetics of rearrangements
of atoms on the surface. In most classical models for
surface evolution, based on Ref. [7] this term is not
considered. However, the simulations indicate its impor-
tance if the dynamics of the surface is of interest. All
simulations show the change in time scale, and a significant
slowing down of the dynamics, if the term is included. Thus
for quantitative studies the dissipative force �bV should be
considered. Even if b is small the effect might not by
negligible as discussed in Ref. [1]. If we define

meq ¼
dE

dG
,

assume n and b to be constant and set r ¼ 1, Eq. (7) can be
written as

V ¼ nDGm,

bV ¼ �meq þ m,

which can be combined to yield

V � nbDGV ¼ nDGmeq.

Thus, whether or not the kinetic term is important depends
on the magnitude of the product nb and not only b.
Detailed coarsening studies within these models will be

performed elsewhere [16]. As for curves, where the relation
of the described geometric evolution laws to higher order
Cahn–Hilliard-like equations for the surface slope, as
considered in Ref. [17,18], follows from a long-wave
approximation and where qualitatively similar but quanti-
tatively different coarsening behaviour is obtained by
numerical simulations in Ref. [19], comparisons with the
coarsening dynamics of classical evolution equations for
the height function of surfaces, see e.g. Ref. [20], will be
given.
To quantitatively predict the coarsening of real surfaces

additional effects have to be incorporated into the model.
In a more general setting, where further contributions from
the bulk phases are accounted for the arbitrary subsurface
S ¼ SðtÞ used to derive the mass conservation equation has
to be modified. Due to the interaction with the bulk phases
it also has to have boundaries with the solid phase, namely
Sþ and with the vapour phase S�, see Fig. 4.
Now, the atomic balance on the subsurface S requires

that any change in mass is only due to a surface flux q

across qS, diffusion from the solid j � n across Sþ and
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Fig. 4. Schematic of an interfacial pillbox along the interface, here shown

as a curve. Let SðtÞ be an evolving, i.e., time-dependent, subsurface of GðtÞ
whose geometric boundary consists of dS. Adapting the approach of Fried

and Gurtin [1] to surfaces, we view the interfacial pillbox as encapsulating

SðtÞ and having an infinitesimal thickness. The pillbox boundary then

consists of (i) two surfaces, one with unit normal nðtÞ and lying in the

vapour phase S�ðtÞ, the other with unit normal �nðtÞ and lying within the

film SþðtÞ, and (ii) end faces which we identify with the boundary of SðtÞ.

C. Stöcker, A. Voigt / Journal of Crystal Growth 303 (2007) 90–9494
supply from the vapour F across S�. We therefore have

d

dt
m ¼ �

Z
qS

q �mdsþ

Z
S
j � ndGþ

Z
S

F dG,

from which we obtain the local mass balance

rV ¼ �rG � qþ j � nþ F .

In addition to the constitutive equations for q we need to
define an appropriate relation for F, which is

F ¼ �kðm� m�Þ

with k ¼ kðnÞ a non-negative coefficient, corresponding to
attachment and m� the chemical potential in the vapour.
We thus obtain a coupled system of equations for the
evolution of G

rV ¼ rG � ðnrGmÞ þ j � n� kðm� m�Þ, (8)

bV ¼ �
dE

dG
�Cþ þ rm. (9)

This system coincides with the model derived in Ref. [1]. It
is a general model to describe the evolution of homo-
geneous crystalline surfaces, incorporating different mass
transport mechanisms on the surface: surface diffusion,
evaporation and condensation as well as kinetic effects,
which are due to the rearrangement of atoms on the
surface. Furthermore, the evolution of the surface is
affected by contributions from the bulk phases, here the
free energy in the film, the material flux from the film and
the chemical potential in the vapour phase are considered.
The last three components have to be computed by solving
additional equations in the bulk. The considered cases for
surface diffusion and surface diffusion with kinetics follow
by setting j ¼ k ¼ Cþ ¼ b ¼ 0 and j ¼ k ¼ Cþ ¼ 0. If we
instead set j ¼ n ¼ Cþ ¼ m� ¼ 0 we obtain

rV ¼ �km,

bV ¼ �
dE

dG
þ rm,
which can be combined to yield

bþ
r2

k

� �
V ¼ �Hg þ a2o,

o ¼ DGH þHðkSk2 � 1
2
H2Þ. ð10Þ

Only the kinetic coefficient is different compared to Eq. (3).
In the isotropic case ðg ¼ 1; a ¼ 0; bþ r2=k ¼ constÞ this
model was first derived by Mullins [21]. If a40 the
equation is fourth order and has been considered
numerically by parametric finite elements in Ref. [22].
The algorithm is applied to study coarsening of faceted
structures in Ref. [23] and yields similar results as obtained
in long-wave approximations of the equation, e.g. con-
sidered in Refs. [24–27].
The general case in which all mass transport mechan-

isms—surface diffusion, evaporation and condensation as
well as kinetic effects—are accounted for has not been
considered numerically, neither in the fully geometric setting
as described here, nor in the long-wave approximation.
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