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Abstract—We report on a numerical investigation of
three-dimensional circulation in the Southern Ocean over
a domain extending from Antarctica to -36 degrees latitude
and from the sea surface to a depth of 500 metres. The high
latitude Southern Ocean is a region low in measurements
but important for climatic and biological applications. Our
investigation is based upon velocity data simulated by a
state-of-the-art 1/4 degree resolution global ocean model.
We construct an approximate transfer operator from the
velocity data and identify dominant coherent circulation
structures from eigenmodes of the transfer operator.

1. Introduction

Coherent structures play a crucial role in explaining
transport in non-autonomous dynamical systems such as
ocean flows. Their ecological impact includes the trap-
ping of material such as nutrients, phytoplankton, and pol-
lutants. These Lagrangian structures are very difficult to
identify as they are not revealed by the underlying Eulerian
velocity fields.

While persistent ocean features such as gyres and ed-
dies may be observed and tracked by satellite altimetry [1],
detecting and tracking the regions that act as barriers to La-
grangian flow pathways is more ambiguous. This is true
even if the velocity field is perfectly known.

Froylandet al. [2] applied transfer operator techniques
to identify two key coherent structures in the Southern
Ocean, namely the Weddell and Ross Gyres. The trans-
fer operator approach identified gyre regions on the ocean
surface with 10% greater coherence than standard oceano-
graphic techniques based on sea surface height measure-
ments. The less direct method of finite time Lyapunov ex-
ponents was also studied in [2] and was found to perform
extremely poorly.

The study [2] was restricted to surface ocean flow. In
the present work we extend the techniques used in [2] to
the full three-dimensional flow. Our method is based upon
numerically constructing a transfer operator that controls
the ocean circulation from a timet to a short time later
t + τ. The eigenfunctions of this transfer operator corre-
sponding to large positive eigenvalues directly reveal dom-
inant “almost-invariant” structures in the surface flow over

the time period considered. These structures retain their
shape over the period [t, t + τ] and thus “trap” most of the
water inside them with only minimal leakage. In addition,
our approach allows us to quantify the mass leakage of the
identified regions. We demonstrate that the surface gyre
features reported in [2] in fact extend deep below the sur-
face to control particle transport over large regions of the
Southern Ocean.

2. Input data and non-autonomous flow model

Our input data is generated by the ORCA025 global
ocean model [3]. In the Southern Ocean, the model grid
follows a Mercator projection. Eddy characteristics of the
model compare favorably with satellite and drifter obser-
vations [3]. In this paper we use the data of the year 2004.
The available model output consists of 3D fields of velocity
averaged over a month.

As we consider the Southern Ocean we work on a subset
X of a solid annulusX = S1 × [−76,−36]× [−500, 0) with
S1 parameterised in degrees from−180o to 180o. Consid-
ered as a non-autonomous dynamical system, the ocean
flow may be described by (x, t, τ) 7→ Φ(x, t; τ), where
Φ : X×R×R→ X andΦ(x, t; τ) is the terminal point inX
of a trajectory beginning atx ∈ X at timet and flowing for
τ time units. A trajectoryx(t) := Φ(x0, t0; t) is a solution to
the non-autonomous ODEdx

dt = f (x(t), t) with initial con-
dition x(t0) = Φ(x0, t0; 0). The vector fieldf : X × R→ R3

is obtained from the output of the ORCA025 model. We
note that the ocean flow is volume preserving.

2.1. Vertical transport associated with the mixed layer

Vertical transport of particles is modelled in two ways.
Vertical transport associated with subduction is already in-
cluded as vertical particle velocities in the ORCA025 vec-
tor field. These vertical velocities accurately represent ver-
tical particle transport in the deep ocean, however, nearer
to the ocean surface the mixing of particles due to wind-
driven currents and the breaking of surface waves is very
high. Themixed layer(ML) refers to a layer near the
surface where this more rapid mixing occurs. This layer
extends from the surface down to themixed layer depth



(MLD). The ORCA025 model provides a monthly inte-
grated MLD field which is based on the difference between
the density at the surface and the density at depth. The
depth at which this difference exceeds 0.3kg ·m−3 is the
mixed layer depth; see [4]. Within the ML, temperature
and salinity are almost constant. The depth of the ML
varies from day to day and from season to season. Due
to surface cooling and the resulting gravitational instabil-
ity, mixed layers are generally deeper during late winter
and shallowest during summer.
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Figure 1: The mixed layer depth in metres onX during
January 2004.

3. Almost-invariant sets, coherent structures, and
transfer operators

Let µ denote three dimensional volume measure, nor-
malised so thatµ(X) = 1. The measureµ is invariant under
Φ; formally, for eachτ ≥ 0, µ(Φ(A, t;−τ)) ≈ µ(A). We
will say that a setA ⊂ X is Φ−invariant over [t, t + τ] if
A = Φ(A, t + s;−s)) for all 0 ≤ s ≤ τ. Coherent struc-
tures obey an approximate invariance principle over short
periods of time. We shall call a setA ⊂ X almost-invariant
if

ρt,τ(A) :=
µ(A∩Φ(A, t + τ;−τ))

µ(A)
≈ 1. (1)

The ratio in (1) is the proportion of the setA that remains
in A under the flow from timet to time t + τ. Clearly, the
closer this ratio is to unity, the closer the setA is to being
invariant. In order to discover coherent structures in the
flow Φ, we seek to find dominant almost-invariant sets.

The notion of almost-invariant sets arose as a means of
discovering dominant geometric structures in general dy-
namical systems [5] and has been refined and applied in a
variety of settings, e.g. [6, 7, 8]. In order to locate these
almost-invariant sets we introduce a transfer operator de-
scribing flows for short periods.

Figure 2: Coherent structures for the Southern Ocean, in-
cluding the Antarctic Circumpolar Current and its three as-
sociated fronts, the Weddell Gyre, and the Ross Gyre.

We define a linear operatorPt,τ : L1(X,m)	 by

Pt,τg(x) =
g(Φ(x, t + τ;−τ))

| detDΦ(Φ(x, t + τ;−τ), t; τ)|
. (2)

If there is aΦ-invariant setA ⊂ X over [t, t + τ], then
Pt,τχA = χA. ThusχA is an eigenfunction ofPt,τ with
eigenvalue 1. SetsA that arealmost-invariant correspond
to eigenfunctions ofPt,τ with real eigenvalues very close to
1 [5, 7].

To access these eigenfunctions numerically, we con-
struct a finite-dimensional Galerkin approximation ofPt,τ

based on a fine partition{B1, . . . , Bn} of X. Following
Ulam’s approach [5, 6, 7, 8] we form the transition matrix

Pt,τ;i, j =
m(Bi ∩Φ(B j, t + τ;−τ))

m(Bi)
. (3)

The matrixPt,τ is stochastic. The entryPt,τ;i, j may be inter-
preted as the probability that a point selected uniformly at
random inBi at timet will be in B j at timet + τ.

4. Numerical implementation

4.1. Oceanic domain and discretization

For our computational studies we create a partition of
X via a uniform three-dimensional grid ofm = 114688
boxes. Each box has side lengths of 1.4 degrees longi-
tude, 1.4 degrees latitude, and 31.25 metres depth. We set
X =

⋃

i:|| f (x,t0)||>10−6 ∀ x∈Bi
Bi, wheret0 denotes January 1st

2004. X is an approximation of the oceanic domain with
the continents and islands removed wheren = 92518.

To calculate the transition matrixPt,τ, each boxBi, i =
1, . . . , n is filled with N uniformly distributed test points



yi,ℓ ∈ Bi, ℓ = 1, . . . ,N. For eachi = 1, . . . , n we calculate
Φ(yi,ℓ, t; τ), ℓ = 1, . . . ,N by numerical integration and set

Pt,τ;i, j ≈
#{ℓ : yi,ℓ ∈ Bi,Φ(yi,ℓ, t; τ) ∈ B j}

N
(4)

whereN = 512 in the experiments reported here. The box-
discretization ofX and the construction ofPt,τ is carried out
efficiently using the software package GAIO [9].

4.2. Model interpolation and trajectory integration

The ORCA025 model is given at a resolution of 0.25 de-
grees of longitude and latitude, and 46 non-uniform depth
layers. Velocity field values forx lying between grid points
are affinely interpolated independently in the longitude, lat-
itude and depth directions. The velocity fieldf (x, t) for
t between grid points is produced by linear interpolation.
Calculation ofΦ(yi,ℓ, t; τ) is carried out using a standard
Runge-Kutta approach with stepsize of 3 days. Within 3
days the vast bulk of trajectories will flow only to a neigh-
bouring grid set in the grid upon which the velocity field is
defined. Sincef (x, t) is independently affine between grid
points, the numerical integration error should be small. We
refer the reader to [2] for a discussion on choice of box
discretisation versus flow timeτ.

4.3. Computation of MLD mixing

The mixed layer particle mixing is not captured by the
vector field f . We make a standard assumption that the ML
is well mixed. In order to simulate this with our sample
trajectories, we proceed as follows. We writey ∈ X asy =
(Lon(y), Lat(y),Dep(y)), and let MLD(t, Lon(y), Lat(y)) de-
note the mixed layer depth for the water column located at
(Lon(y), Lat(y)) at timet.

1. Integrate test pointyi,ℓ for one month (τ = 1) to pro-
ducey′ := Φ(yi,ℓ, t0; 1).

2. Test whethery′ lies in the ML for the current month.
If it does, replacey′ with (Lon(y′), Lat(y′), zpert) where
zpert is randomly sampled from a uniform distribution
on the interval [MLD(t, Lon(y′), Lat(y′)), 0]. If y′ does
not lie in the ML, make no vertical perturbation.

3. Integratey′ for a further month and repeat step 2.

4.4. Eigenvalue and eigenfunction calculation

Define a probability measureµn on X =
⋃n

i=1 Bi by

pi =
Volume ofBi

Volume ofX
, (5)

andµn(A) =
∑n

i=1 pi · m(A ∩ Bi)/m(Bi). Let A =
⋃

i∈I Bi

whereI ⊂ {1, . . . , n}. Then it is straightforward to show
[7]

ρt,τ(A) ≈

∑

i, j∈I piPt,τ;i, j
∑

i∈I pi
. (6)

The expression (6) is very close to equality and in the limit
asn→ ∞ and the diameter of the boxes{Bi}

n
i=1 approaches

zero, one obtains equality.
We transform the matrixPt,τ into a “time symmetric”

matrixRt,τ via

Rt,τ;i, j =

(

Pt,τ;i, j +
p jPt,τ, j,i

pi

)

/2. (7)

The matrixR is stochastic, hasp as a fixed left eigenvector,
and satisfies important maximization properties [8] related
to almost-invariance. As in [8] we use the right eigenvec-
tors v(k) of R to detect almost-invariant sets. The matrix
Rt,τ;i, j is typically very sparse and we are interested only in
the large spectral values near to 1, which may be efficiently
computed by Lanczos iteration methods.

 120 o
W

 

  6
0

o W
 

   0o  

  60 o
E 

 1
20

o E 

 180oW 

  80oS 

  70oS 

  60oS 

  50oS 

  40oS 

−0.009

−0.004

0.002

0.007

Figure 3: Coherent structures in the Weddell and Ross Seas
are highlighted by large values ofw := v(4) + v(6).

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0.75

0.8

0.85

0.9

0.95

c

ρ(
c)

Figure 4: Values of min{ρ(A+c ), ρ(A−c )} vs.c. We choose the
global maximum for positivec as we wish to select dark
coloured regions. See [10] for further details on the method
of selectingc.

5. Results

We demonstrate that our method detects persistent struc-
tures in the Southern Ocean flow in the Weddell and Ross
Seas. We computed the 20 largest eigenvalues ofR (rang-
ing from λ2 = 0.9933 to λ20 = 0.9796) and the cor-
responding right eigenvectors. The fourth eigenfunction



−150 −100 −50 0 50 100 150

−70

−60

−50

−40

−500

−400

−300

−200

−100

0

degree latitude

degree longitude

m
et

er
s 

de
pt

h

−0.01

−0.005

0

0.005

0.01

Figure 5: Three-dimensional coherent structures in the Weddell and Ross Seas, and in the South Pacific are highlighted
by large values ofw. BoxesBi, i = 1, . . . , n with wi < c = 0.0035 have been removed.

(corresponding toλ4 = 0.9910) identifies a coherent struc-
ture in the Weddell Sea, and the sixth eigenfunction iden-
tifies a coherent structure in the Ross Sea (corresponding
to λ6 = 0.9884). Both structures are visible on the ocean
surface. In order to treat both structures simultaneously
we consider a linear combination of the two eigenfunctions
w := v(4) + v(6), see Figure 3 forw restricted to the surface.
These results are in very good agreement to the studies in
[2] where only the surface velocity field was considered
and not the full 3d dynamics as here. They also closely
match the gyres shown in Figure 2.

To extract the coherent structures we use a heuristic
ansatz as described in [10] (see also [7]): we define sets
A+c andA−c by

A+c :=
⋃

i:wi≥c

Bi, A−c :=
⋃

i:wi<c

Bi, (8)

and choosec in such that a way that bothρ(A−c ) andρ(A+c )
are maximized, see Figure 4. The application of this
approach gives three subsurface structures asA+c (where
c = 0.0035), two in the Weddell and Ross Seas respec-
tively, and another in the Southern Pacific Ocean, see Fig-
ure 5. We obtain a coherence value ofρ(A+c ) = 0.9266,
or in other words, 92.7% of water mass is retained inA+c
after two months of flow. If we consider the coherence of
the two gyres without the Southern Pacific Ocean structure,
we obtainρ(A+,Wc ) = 0.9293, or 92.9% of the water mass
is retained in the Weddell region, andρ(A+,Rc ) = 0.8972 for
the Ross region.
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