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Abstract Nowadays image acquisition in materials science allows the resolution of grains
at atomic scale. Grains are material regions with different lattice orientation which are fre-
quently in addition elastically stressed. At the same time, new microscopic simulation tools
allow to study the dynamics of such grain structures. Single atoms are resolved experimen-
tally as well as in simulation results on the data microscale, whereas lattice orientation and
elastic deformation describe corresponding physical structures mesoscopically. A qualita-
tive study of experimental images and simulation results and the comparison of simulation
and experiment requires the robust and reliable extraction of mesoscopic properties from
the microscopic image data. Based on a Mumford—Shah type functional, grain boundaries
are described as free discontinuity sets at which the orientation parameter for the lattice
jumps. The lattice structure itself is encoded in a suitable integrand depending on a local
lattice orientation and one global elastic displacement. For each grain a lattice orientation
and an elastic displacement function are considered as unknowns implicitly described by
the image microstructure. In addition the approach incorporates solid-liquid interfaces. The
resulting Mumford—Shah functional is approximated with a level set active contour model
following the approach by Chan and Vese. The implementation is based on a finite element
discretization in space and a step size controlled, regularized gradient descent algorithm.
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1 Introduction

This paper deals with the extraction of mesoscopic quantities from microscopic image data
in materials science. For many problems on an atomic microscale, it is essential to link the
underlying atomic structure to the material properties (electrical, optical, mechanical, etc.).
The actual material properties are usually determined on a mesoscopic length scale on which
non-equilibrium structures exist, which form and evolve during material processing. For ex-
ample, local variations of the inter atom distance can be understood as material deformation
on the mesoscale and the yield strength of a polycrystal varies with the inverse square of
the average grain size. Grains are material regions with different lattice orientation which
are typically not in equilibrium. In additional they are frequently observed in an elastically
deformed state. Experimental tools such as TEM (transmission electron microscopy) [15]
today allow measurements down to an atomic resolution (cf. Fig. 1). A reliable extraction of
elastic deformations, grains and grain boundaries from these TEM-images is essential for an
efficient material characterization. On the other hand, recent numerical simulation tools have
been developed for physical models of grain formation and grain dynamics on the atomistic
scale. Concerning such simulations, we refer to numerical results obtained from a phase
field crystal (PFC) model [13] derived from the density function theory (DFT) of freezing
[28]. Its methodology describes the evolution of the atomic density of a system according
to dissipative dynamics driven by free energy minimization. The resulting highly nonlinear
partial differential equation of sixth order can be solved applying a finite element discretiza-
tion [3]. Such simulations in particular will allow a validation of the physical models based
on the comparison of mesoscopic properties such as the propagation speed of grain bound-
aries. Figures 1 and 2 show a comparison of experimental (TEM) and numerically simulated
(PFC) single grain boundaries on the atomic scale and the nucleation and growth of grains,
respectively.

Fig. 1 On a TEM image (left), light dots render atoms from a single atom layer of aluminum, in particular
this image shows a X 11(113)/[100] grain boundary [15] (courtesy of Geoffrey H. Campbell, Lawrence
Livermore National Laboratory). On a mesoscale elastic displacements are implicitly encoded in a spatially
varying inter atom distance (middle) (courtesy of Nick Schryvers, Antwerpen University). Nowadays, there
are physical models like the phase field crystal model which enable numerical simulations of grains. Indeed, a
time step from a numerical simulation (right) on the microscale shows a similar atomic layer. In both images,
grain boundaries are characterized by jumps in the lattice orientation
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Fig. 2 Nucleation of grains in a phase field crystal simulation

As mesoscopic material properties result from observations of microstructures their ro-
bust and reliable extraction via image processing methodology is expected to provide phys-
ical insight in the underlying materials. In this paper we focus on grain segmentation and
elastic grain lattice deformation. We aim at a reliable extraction of grain boundaries and in
addition of liquid—solid interfaces between the liquid and the solid phase. Thus, we apply
a variational approach based on the description of the interfaces by level sets. Furthermore,
we generalize the variational approach for the extraction of elastic deformation and a full
coupling of orientation and deformation classification. We apply our method to phase field
crystal simulation results and demonstrate the applicability of our approach to experimental
images.

Next, let us introduce some basic notation which will be used throughout the paper. We
consider a single atom layer resolved on the microscale. In the phase field crystal simulation
results as well as in the experimental images, single atoms are represented by blurry, dot-like
structures. These dots are either described via the image intensity of the TEM image or the
phase field crystal function from the simulation. Let us denote this intensity or phase field
crystal by a function u : @ C R*? — R, where Q is the image domain or the computational
domain, respectively. Furthermore, we introduce the lattice orientation as a piecewise con-
stant function o : Q@ C R?> — R. We take into account a decomposition of the domain 2 into
grains, each of them characterized by a constant lattice orientation «. The grain boundaries
form the jump set of the orientation function «. Furthermore, we assume a global deforma-
tion v : 2 — R? acting on all grains and reflecting the physical response for instance due to
an external loading.

The paper is organized as follows: In Sect. 2 we review related work. Then, in Sect. 3
we discuss the case of a single grain with unknown orientation and elastic deformation.
The segmentation of grain boundaries in the non deformed case is discussed in Sect. 4.
In both sections we first introduce a variational problem involving sharp interfaces on the
microscale describing atomic dot pattern and on the macroscale representing grain bound-
aries, then discuss a suitable smooth approximation, and derive a minimization algorithm
based on a regularized gradient descent. The particular case of a liquid phase beside the
solid phase is treated in Sect. 4.3. Combining the different approaches in Sect. 5 we derive
a joint approach for the simultaneous extraction of grain domains classified by local lat-
tice orientations and the computation of an underlying elastic deformation. Finally, we draw
conclusions in Sect. 6.

2 Related Work

Our method to be presented here differs to the best of our knowledge significantly from other
variational approaches in the literature. Our focus is not on a general purpose texture clas-
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sification and segmentation tool but on the specific application in materials science. Texture
segmentation can be regarded as a two-scale problem, where the microscale is represented
by the structure of the texture and the macroscale by the geometric structure of interfaces
between differently textured regions. In this sense, we have strong a priori knowledge on
the geometric structure of the texture on the microscale and incorporate this directly into
the variational approach on the macroscale. Thus, the scale separation is more direct than
in other approaches based on a local, direction sensitive frequency analysis. Currently, the
post processing of experimental images and the pattern analysis is mostly based on local,
discrete Fourier filtering [25].

General image classification has extensively been studied in the last decades. It consists
of assigning a label to each point in the image domain and is one of the basic problems
in image processing. Classification can be based on geometric and on texture information.
Many models have been developed either based on region growing [8, 23, 29], on statistical
approaches [6, 7, 18, 19], and in particular recently on variational approaches [2, 4, 10, 20,
31].

The boundaries of the classified regions can be considered as free discontinuity sets of
classification parameters, which connects the problem with the Mumford—Shah approach
[21] to image segmentation and denoising. A robust and efficient approximation of the
Mumford—Shah functional has been presented by Chan and Vese [9] for piecewise constant
image segmentation and extended to multiple objects segmentation based on a multiphase
approach [30]. Thereby, the decomposition of the image domain is implicitly described by
a single or by multiple level set functions (for a review on level sets we refer to [22, 26]).
In [24], their approach has been further generalized for the texture segmentation using a di-
rectional sensitive frequency analysis based on Gabor filtering. Texture classification based
on the energy represented by selected wavelet coefficients is investigated in [1]. Inspired by
the work of Meyer [20] on cartoon and texture decomposition, the classification of geomet-
ric and texture information has been investigated further in [4]. There a logic classification
framework from [24] has been considered to combine texture classification and geometry
segmentation. A combination of level set segmentation and filter response statistics has been
considered for texture segmentation in [14]. For a variational texture segmentation approach
in image sequences based on level sets we refer to [11].

3 Macroscopic Elastic Deformations from Deformed Lattices

As already discussed in the introduction, grains are characterized by a homogeneous lattice
orientation. At first, let us suppose that there is no liquid phase and we focus on a single
grain.

3.1 Local Identification of Lattice Parameters

The lattice is uniquely identified by a description of the local neighborhood of a single atom
in the lattice. In a reference frame with an atom at the origin, the neighboring atoms are
supposed to be placed at positions ¢g; for i = 1,...,m, where m is the number of direct
neighbors in the lattice. In case of a hexagonal packing each atom has six direct neighbors
at equal distances and we obtain

qi ::d(cos(i%),sin(z’%)), i=1,...,6.

@ Springer



J Sci Comput (2008) 35: 1-23 5

Here d > 0 denotes the distance between two atoms. If the lattice from the reference config-
uration is now rotated by an angle « and translated to a position x, the neighboring atoms are
located at the positions x + M («)g;, where M («) is the matrix representation of a rotation
by «, i.e.

sinae  cosa

M@) = <cosa —sinoz) .

Given an elastic deformation v of the oriented reference lattice we finally observe atoms at
positions ¥ (x + M («)gq;) around a center atom at ¥ (x).

Let us suppose that 6 is a suitable threshold for the identification of atom dots described
by the function u and define the indicator function

1, ulx)>0,
0, else.

Xlu>61(X) 1= {

Then, for a given lattice orientation «, an elastic deformation ¢ and a point x with
Xu=01 (¥ (x)) = 1, we expect X0 (¥ (x + M(x)g;)) =1 as well fori =1,...,m. Let us
suppose that the average radius of a single atom dot is given by r and define the maximal
lattice spacing d := max;—1,.._n |¢:|. Next, we consider the following identification function
f depending on a latticeorientation « and on a lattice deformation function v, and evaluated
pointwise at positions x:

2

d
Flas ¥16) = 5 Xiuso1 (W () A K01 (Y (¥ + M(@)gi))i1,..om)- (3.1

Here, (xi)i=1,...m With x; := Xu=0(¥ (x + M(«)q;)) is the vector of displaced and rotated
characteristic functions and A : {0, 1} — R a function attaining its global minimum at
(1,...,1) with A(1,...,1) =0. The scaling ‘f—j ensures a uniform upper bound of order 1
(in particular independent of d and r) for the integral of f over the domain of the grain. In
what follows we will consider A(xi, ..., Xm) := mi > i—i...m(1 = xi). In case the lattice is
just rotated and not further deformed, we consider i to be the identical deformation 1 with
1(y) =y for all y and simply write f[a](x).

One easily verifies that f[o, ¥](x) = 0if x is inside a deformed grain with perfect lattice
structure, orientation «, deformed by v, and the distance of x to the grain boundary in the
reference state is at least d.

3.2 Lattice Deformation and Lattice Orientation on a Single Grain

At first, we consider a bounded domain €2 with Lipschitz boundary to represent a single grain
and ask for an unknown fixed underlying orientation « and a deformation . We phrase this
as a minimization problem on the class of constant orientation angles « and deformations .
Thereby, a fidelity functional measures how well a given o and  fit to the actually observed
lattice structures, whereas a regularity functional acts as a prior on the deformation. The
fidelity functional is given by the following integral over the lattice identification function
f depending on both unknowns, the orientation « and the grain deformation :

Eola, y]= / Flo W10 . (3.2)
Q

For x close to the boundary of the grain €2, this requires the evaluation of i and u outside 2.
Thus, we suppose ¥ to be defined on a sufficiently larger set D O Q2 with dist(€2, D) > d.
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Furthermore, we set u(x) = 0 for x ¢ Q. The regularity functional is expected to measure a
smoothness modulus of the deformation 1 on D. In the presence of a discontinuous integrant
in the deformation—in our case the characteristic function—existence of minimizers can by
ensured using a suitable nonlinear elastic regularization energy (for details we refer to [12]).
Nevertheless, for the sake of simplicity we confine here to a quadratic energy leading to a
linearized elastic regularization in the Euler Lagrange equations. In our model introduced so
far, there are effectively two deformations involved. At first, the reference lattice is rotated
applying M («) and the new configuration is considered as the reference configuration for
the physical deformation 1. Without any a priori knowledge there is no way to separate
a global rotational component in the physical deformation i from the rotation taking care
of the proper lattice orientation. But in case of a physically stressed material the axiom of
frame indifference applies and we are actually only interested in the non rotational part of
the deformation. Thus, taking into account a linearized deformation model we consider the
displacement v — 1 and the symmetric part of its gradient Dy + D7 — 21 and define the
elastic regularization energy

1
Eeas[¥] = 5/ |DY (x) + Dy (x)" =21 dx. (3.3)
D

Here, we denote by |A| = +/A : A the Frobenius norm on matrices, where A : B =tr(A” B).
Let us emphasize that we do not impose any specific linear elastic model. Furthermore, we
assume the angular momentum of the deformation of the grain to vanish, i.e.

/ Y2 (x)x; — Y1 (x)x2dx =0. (3.4)
Q

This constraint ensures a proper decoupling of a global rotation M («) and the linearized
elastic deformation  with a vanishing global, linearized rotational component. As an
alternative—which turned out to be favorable in case of the numerical implementation—we
have taken into account a constraint mean value of the skew symmetric deformation gradi-
ent, i.e. fQ D (x) — (D)7 (x) dx = 0, which rules out infinitesimal rotations. Finally, we
end up with the energy for the single grain case

Esingle[aa Y] = Egla, Y]+ nwEesx[¥], (3.5

and ask for a minimizer (o, ¥) of this energy over all admissible lattice rotation angles
o € R and all admissible deformations

WY e {1} e Wh2(D,R?): / Yo (x)x1 — Yy (x)xp dx =0}.
Q

Here W!2(D, R?) denotes the usual space of vector valued functions on D with locally
square integrable derivatives. Let us remark, that the energy E.j.«[V] is translation invari-
ant. Thus, we can expect minimizers only up to a translation which is a multiple of the lattice
spacing in each lattice direction. Next, we consider the Euler-Lagrange equations for this
variational problem. At first, we take into account variations of the fidelity energy. To sim-
plify notation, we rewrite the characteric function x,-¢) of a super level set [u > 0] in terms
of the Heaviside function H : R — R, where H(¢t) =1 for t > 0 and H (t) = 0 otherwise,
and obtain for the indicator function f:

d2
flo, ¥1(x) = — Hu (¥ (x)) — 6) E (1= (Hu@(x+ M@)qg)) —0))).
mr

i=1,...m
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For the variation of the energy with respect to the deformation in a direction { we get

d2
Ay Eqla, ¥1(0) = — Vu((x)) - ¢ (x)
mr= Juoy=6]
x Y (1= Hu@ @ + M(@)g)) — 0)) dH'
i=l1,...m
d2
-— > f H(u( (x = M(@)q;)) = 0)Vu( (x)) - £ (x) dH'.
mr=. [uoy=6]
Here, we have applied a shift x’ = x + M («)q; for the integration variable in the second
row. For the elastic energy we compute

Ay Eetast[Y1(5) = / (DY (x) + Dy (x)" —21) : (D¢ (x) + D¢ (x)")dx
D
= 2] (DY (x) + Dy (x)T —21) : Dz (x)dx,
D

making use of the symmetry relation A7 : B = A : BT. Now, let us consider test functions ¢
whose support does not intersect the boundary [u o Y = 0] of the atomic dots. Thus, there is
no contribution from the variation of the grain energy. Applying integration by parts and the
fundamental lemma we end up with the system of partial differential equations —2u (A +
Vdiv ) = 0 and the corresponding natural boundary condition (D7 + D) - v =0 on
dD in case we do not impose the constraint (3.4). Here v denotes the outer normal on
dD. In the constraint case of vanishing angular momentum (3.4), there appears a Lagrange
multiplier A on the right hand side of the differential equation and we achieve —2u (A (x) +
Vdivy(x)) = A(? _Ol)x for x € D\ [u o ¢ = 0]. Next, we consider test functions whose
support intersects [u o Y = 0] and observe that in this case integration by parts in the elastic
energy term leads to the jump term 2[ (D7 4+ D) - v], where v(x) is the normal on [u oy =
0] at position x and [£](x) :=limc0&(x + €v(x)) — £(x + €v(x)) denotes the jump of a
vector valued function on the interface [u o Y = 0] at position x. Thus, we end up with the
following jump condition at point x on [u o ¥ =6]:

d?
[(DYT (x) + DY (x) - v(x)] = - 5 Vu(y(x)) Z (Huoy(x +M(a)g) —0) — 1
i=l,.

+H@uoy(x - M(Ot)qi) —0)).

The variation with respect to the scalar quantity « leads to the single scalar equation

o Eqla, 1= mr2 72 /[ gy OV = M@ =)
X Vu((x)) - DY ()M (o)g; dH", (3.6)
where

M (o) = (? _01 ) M(@).
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Finally, the Euler-Lagrange conditions to be fulfilled by a minimizer of the functional (3.5)
consist of a system of partial differential equations for the deformation v and a single non-
linear equation for the constant orientation value «, subsumed as follows:

Theorem 3.1 (Euler-Lagrange conditions in the single grain case) Suppose the image u to
be smooth and the interface [u oy = 0] to be a set of piecewise smooth curves. Furthermore,
assume the minimizing deformation  of (3.5) to be sufficiently smooth as well. Then the
following conditions hold for a minimizer (o, V) of the above variational problem: For x €
D\ [u o Yy = 0] the deformation  solves the system of partial differential equations well-
known from linearized elasticity

2 (A (x) + V div g (x)) = A (‘1) _01 ) X,

with a Lagrange multiplier A € R appearing on the right hand side, on the interface [u oy =
0] the jump condition for the elastic stresses

2

(DT + DY) -v] = (Viyoy > (1= Huoy(-+M@)g) —6)

i=1,...m

2mur?
—H@oy(—M(a)g)—0))
is fulfilled, on 0D the natural boundary condition
DyT +Dy)-v=0
for the outer normal v on 3D holds for the deformation \, and finally o solves

0=3 M’(a)q,»-<f[ H]H(uowoc—M(a)qi)—G)DW(x)TW(w(x»dHl),

i=1,...m
where M'(a) = ((1) _OI)M(a).
3.3 Regularization and Numerical Approximation

As we have seen above, the discontinuous integrant of the energy Eg, leads to concentration
on interfaces bed by level lines in the Euler-Lagrange equations. With respect to a robust
minimization algorithm and an effective numerical approximation we have to regularize the
functionals. Thus, we replace the discontinuous Heaviside function H in the definition of
the lattice identification function by a smeared out approximation H,(s) := % + % arctan(i)
(cf. the regularized Mumford—Shah model by Chan and Vese [9]), where € > 0. In fact,

H(s) = @ converges to H' in the sense of distributions. We get

d2
Jelo, ¥1(x) = — He (u(y (x)) — 6) Z (I = (Heu(¥ (x + M(2)g:)) — 0)))
mr

i=l1,...m

and deduce from that a regularized fidelity energy

Egla, ¥] =/ felo, ¥1(x) dx
Q

and correspondingly the total regularized energy E:ingle[a, Y] = Egla, W1 + pEeaslV].
We choose € = h, where h is the grid size. Thus € represents the data resolution on the
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microscale of the atomic dot pattern. Next, we compute the variation of the energy with
respect to a variation ¢ in the deformation:

:mgle[a 1r//](é-) - 2:“’/ (DW(X) + Dw(x)T 2]1) D{()C) dx

d2
+—s f [H (u( (x)) = 0)(Vu) (Y (x)) - £ (x)
x Z (1 — He(u(y (x + M()q;) — 0))

— Ho(u(y (x — M(a)g;) — 6)))]dx.
Here, we again have applied the variable transformation x’ = x + M («)g; and used the zero
extension property of u outside 2. For the derivative of f, with respect to o« we obtain

d2
dofelon Y100 = ——5 37 (Vu@(x+ M(@4g) - DY (x + M(@)g) M (@)g;

i=1,...m
X He(u(y (x)) — 0)H (u(¥ (x + M(e)qi)) — 6)).

Finally, straightforward integration of 9, f. over 2 leads to the variation of the energy with
respect to the lattice orientation o:

a E;ngle[a! 1/f]=\/A aafe[a, llf](x)dx
Q

A gradient descent algorithm is used for the minimization of the functional Esmgle Each
descent step consists of a descent in the deformation ¥, followed by a corresponding de-
scent in the scalar orientation variable . The descent step in the deformation is based on a
regularizing metric

2
g(Clyé“z):/ ;1(x)~§2(x)+%D{l(x):DQ(x)dx (3.7
D

on variations ¢, ¢, of the deformation, where o represents a filter width of the correspond-
ing time discrete and implicit heat equation filter kernel. First we perform a nonconstraint
descent in the deformation and then apply a back projection onto the space of deforma-
tions with vanishing mean skew symmetric gradient. The gradient descent method looks as
follows:

Algorithm 3.1 (Gradient descent in the deformation and orientation on a single grain) Start-
ing from an initial guess ¥° = 1 and «® = 0 we compute a sequence (o, /) k=1,.. such that

g =t ) = =70y EGpg o, ¥11(0) - Vvariations ¢,
YRl = g §(.— xq), where

1 - - 1
S = —/ DY (x) — (DY HT (x)dx, x :—/ dx,
219 I
ak+l _ (X — 1) a Esmgle[aka 1)ka#—l].

In both cases Armijo’s rule [16] is separately considered as a step size control resulting in
different timesteps Tf/j and tt.
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Fig. 3 The recovery of a deformation is shown in case of test data representing artificially deformed lattices.
The orientation is fixed @ = 0 and the constraint on the skew symmetric part of the mean deformation gradient
is omitted. The input images u (top row) reflect different types of deformation: a global rotation, a global shear
and a non homogeneous and nonlinear deformation (from left to right). The images u o Y (middle row) and
deformations V¥ (bottom row) are shown

Concerning the spatial discretization, we consider bilinear finite elements on the regular
grid for the spatial discretization of the deformation . Each pixel of an experimental image
or each node of the regular simulation grid corresponds to a node of the finite element mesh.
Furthermore a multiscale minimization strategy is applied. Thus, the algorithm starts with
o = 1 and performs the descent until the energy decay per step falls below a given threshold.
Then, we decrease o by a factor % and continue iteratively until a relaxation of the energy is
achieved for a filter width o less then the spatial resolution of a single image pixel. This reg-
ularized descent controlled by the scale parameter o does not affect the energy landscape,
but the descent path towards minima. Thus, this type of regularization is conceptually differ-
ent from the relaxation of the energy itself. Here, the latter is represented by the smoothing
of the Heaviside function controlled by the parameter €. We observed that the regularized
descent alone already leads to satisfying results in the applications considered here.
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Fig. 4 Results are depicted for experimental data (top row) showing single atom layers of different met-
als/metal alloys: GaN, Al and NiTi. Again the deformation is computed for fixed orientation without a con-
straint concerning rigid body motions. The pull back u o ¥~ of the images u into a reference configuration
via the computed deformations v are rendered in the middle row, whereas the corresponding deformations
are plotted in the bottom row. The TEM-image in the first column is courtesy of David M. Tricker (Depart-
ment of Materials Science and Metallurgy, University of Cambridge), the TEM-image in the second column
is courtesy of Geoffrey H. Campbell, Lawrence Livermore National Laboratory, the image in the third column
is courtesy of Nick Schryvers, Antwerpen University

In the applications below the image resolution ranges from 129 x 129 to 513 x 513
resulting in a corresponding grid size from A = 0.0078125 to & = 0.001953125. The pa-
rameters are chosen as follows: d = 0.072552 (test data), r =d, 6 ~ 0.5, € = h. The co-
efficient in front of the elastic energy varies from p = 0.1 (test data) to u = 1.0 (experi-
mental data). In the second row in Fig. 4 an even stronger elastic energy contribution with
1 = 10.0 turns out to be appropriate. The parameter d describing the dot pattern in the ex-
perimental images depends on the concrete type of image and is measured based on a small
image sample. Figure 5 gives an impression about how many grid points are in the transition
layer.
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Fig. 5 Zoom up of a PFC
simulation result (/eft) and an B

experimental TEM image (right)
showing the resolution of the
underlying grid

Fig. 6 Plot of the energy descent
in the relaxation algorithm for the
deformation v applied to the
data in the first row of Fig. 3. The
crosses mark refinements of the
scale parameter o

Energy

0.14 L L L L

itarations

We tested the algorithm first on test data for fixed orientation parameter o = 0 and with-
out the constraint on the skew symmetric part of the mean deformation gradient. Thus, the
deformation 1 is expected to recover both a rigid body motion and a non rotational and non
translational deformation. Figure 3 shows the recovery of different types of deformation for
test cases and Fig. 4 renders the output deformation obtained for experimental data. Fur-
thermore, Fig. 7 demonstrates the simultaneous detection of & and v with back projection.
Finally, Fig. 6 depicts the energy decay in a particular application of the descent algorithm.
The crosses mark time steps, where the scale parameter o is refined.

4 Segmenting Grain Boundaries

In the following section, we will first introduce a Mumford—Shah type model for the seg-
mentation of grain boundaries in the absence of an elastic deformation. Thereby, grains are
identified by a homogeneous lattice orientation. In a second step, we will explain how to
expand this model in case of an additional solid-liquid interfaces as it appears in particular
in case of the phase field crystal simulation of homogeneous nucleation. Later, in Sect. 5
elastic deformations will be incorporated in the segmentation model and we combine the
computation of lattice deformation and orientation and the segmentation of grains in a joint
approach.

4.1 A Mumford-Shah Type Model
Let us suppose that a domain 2 is partitioned into n open sets ; for j =1,...,n, with

each Q; is supposed to be characterized by a spatial homogeneous lattice orientation oz; € R.
Furthermore, we suppose that at most three grains meet at a point and that the faces ; N
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Fig. 7 Simultaneous detection of @ and v with back projection: results on an test image deformed by a
nonlinear deformation (fop) and on experimental images (middle and bottom). From left to right the input
image u, the deformed and rotated image u o M (—«) o ¥ 1, the deformed image u o 1,0*1, and the computed
deformation y are depicted. The extracted rotation angles are o = 0.119545 (top row), a = —0.152956
(middle row), « = —0.159562 (bottom row)

Q between two grains Q; and ; are smooth curve segments. We gather the different
orientations in a piecewise constant function

o= Z o XQ;-

The grain domains 2; and the grain orientations «; form the set of unknowns. Now, we
define a functional Eg, acting on the set of lattice orientations ¢; and open grain domains
2; in the spirit of the Mumford—Shah functional:

Ensl(e, ) j=1,...n] i= Z (Egq;la;, 1]+ nPer($2;))

Jj=1,...n
= Z (/ f[otj](x)dx—i-nPer(Qj)). 4.1
J=1yen N2

Here, Per(X) denotes the perimeter of a set X, i.e. the length of the boundary of the set. The
lattice identifier f[a;]:= fle;, 1] plays the role of the segmentation criteria for each grain.
A minimizer of this energy is considered as a reliable identification of lattice orientations
and corresponding grains. Next, we compute the variation of this energy with respect to the
shape of the grain domains €2; and the lattice orientations «; for j =1,...,n. Hence, we
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consider variations d€2; + v;v; of the grain boundary in directions of the outward pointing
normal v; for a scalar function v; : 3Q2; — R. Based on shape sensitivity analysis [27] we
achieve for this normal variation

dq; Emsl(ak, Q0)i=1,...n1(v)) = / [f[1lv; + nxv; dH',

9]

where [f[-11(x) = flo;]1(x) — fla](x) denotes the jump operator applied to f on a face
082, N 082, between the grain 2; and an adjacent grain €2, and « the curvature with respect
to the normal v;. Here we assume the variation v; to vanish on the outer boundary 9€2.
In addition, we observe the usual condition (Young’s law) at triple points, i.e. three grains
always meet at equal angles of %n. The variation of the energy with respect to the lattice
orientation «; is a straightforward localization of (3.6) and we get

0o ; Emsl (o, Qi)=1,...n1(v;)

WZZ fwm  HGr = M(@)q) —0)Vu(x) - M'(@;)q; dH'.

N[u=0]

Finally, let us summarize the resulting Euler-Lagrange conditions for the grain domains £2;
and the grain orientations «;:

Theorem 4.1 (Euler-Lagrange conditions for differently oriented grains) Suppose the im-
age u to be smooth and the interface [u o = 6] to be a set of piecewise smooth curves.

Then, a decomposition of 2 into grain domains 2y, ..., Q,, of the above discussed type and
a set of grain orientations ay, . .., &, which minimizes the energy Ews fulfill the following
conditions:

On faces Q in Q. between grain domains Q; and

=—(fla;] = floxD

holds for the curvature k evaluated with respect to the normal pointing outward of the grain
Q;. At triple points the boundary segments of grains meet at angles %7‘[. Finally, the orien-
tation o on grain 2; solves the scalar, nonlinear equation

0= ZM/(aj)q,. : <ﬁj+M(°‘ﬂ”i H(u(x — M(a;)q) — 6)Vu(x)dH'>.
i=1

N[u=0]

From these conditions we can derive a bound on the curvature « of the grain boundary
2
segments. In fact, from 0 < f[a] < ‘f—z we deduce

2
K| <—
K=

and hence for fixed geometric parameters d, r and sufficiently large weight 7 in front of the
shape prior in the energy grain boundary segments tend to straighten.

In case of only two different lattice orientations «; and o, and corresponding (possibly
not connected) domains 2; and €2,, we can formulate the variational problem as a problem
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on the binary function « and the interface I'; between the two sets €2, and €2, and obtain
(up to the constant term Per(£2)) the energy

Ewslar, 00, Tgli= | flenldx + | flaaldx +20H' (Tg),
@ Q2

where ! (-) denotes the one-dimensional Hausdorff measure.
4.2 Chan—Vese Type Regularization and a Level Set Implementation

To solve the above free discontinuity problems, we again consider a Chan—Vese type ap-
proach [9] and rewrite the variational formulation based on an implicit description of the
domains via level set functions. We focus here on two different unknown grain orientations
oy and o, and consider a level set function ¢. Here, ¢ is supposed to define the decompo-
sition into the two grain domains 2; and €2, i.e. Q2; = [¢ < 0] and 2, = [¢ > 0]. Again,
making use of the Heaviside function, we can rewrite the above Mumford—Shah type energy
and obtain

Ecvlay, o, ¢] ;:/ H (@) floz]l+ (1 — H(@)) flan] +2vIVH (9)| dx (4.2)
Q

depending on the level set function ¢ and the two grain orientations «; and ;. The varia-
tional modeling of more than two grain orientations can be based on the multiple domain
segmentation method by Chan and Vese [30] in a straightforward way. In this paper, we con-
fine to the case of only two orientations, but our latest implementation also supports multi-
phase segmentation (cf. Fig. 11). Now, we again take into account a regularized Heaviside
function Hs(x) := % + % arctan(%) for some § > 0 and derive together with the regulariza-
tion of the indicator function from Sect. 3.2 a regularized Chan—Vese type energy

ERlar, o, 9] = / Hs(@) felaz] + (1 — Hs () felan] + 2v[VHs(¢)|dx.  (4.3)
Q

The desired guidance of the initial zero contour to the actual interfaces to be detected re-
quires a non-local support of the regularized Heaviside function. The numerical computation
is again based on a gradient descent in the level set function ¢ and two orientation values
o) and «,. Different from the grey value segmentation based on the original approach by
Chan and Vese, the energy is not quadratic in the orientation parameters «; and o, and thus
minimization over these two angles is already a non-linear problem. Now, we compute the
variation of the energy with respect to the level set function ¢ and the orientations «; and
o,. At first, we consider the regularized perimeter functional Per’[¢] : fQ |V H;s(¢)| dx,
and obtain

d
0uPer91(6) = [ (H G+ eV +e0D| _ ax
— [ o @vee+ H@vod= [ 28 @
= = X.
2 V9] Vol

Thus, for the variation of the energy with respect to the level set function ¢ we get
8,€ ’ V¢ ’
dpEcylar, az, 91(6) = | Hi(@)§(felon]l — felon]) +2v Vol - V(Hs(¢)§) dx,
Q Q
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which reflects the sensitivity with respect to modifications of the implicit description of the
grain interface [¢ = 0]. Furthermore, a variation of the energy with respect to one of the
grain orientations—we exemplarily pick here o;—Ileads to

3a1Eé’\E/[011,012,¢]=/(1 — H;(¢)) 0, felar]dx.
Q

Now, we again consider a regularized gradient descent in the level set function ¢. Hence,
we use a transformation in the test function, replacing H;(¢)& by a new test function again
denoted by £. In analogy to (3.7) we define by

2
g1 &) = f sl(x>sz(x>+"7vs1(x>~vsz<x>dx (4.4)
D

a metric on scalar variations of the level set function. The resulting algorithm is based on
the following iterative descent scheme:

Algorithm 4.1 (Gradient descent for grain segmentation and deformation extraction) Then,
starting from an initial guess of the boundary contour encoded in a level set function ¢°
and initial values for the two orientation parameters oz(l), ocg = 0, we compute a sequence
(oz’l‘, ozé, ok )k=1,... based on successive regularized gradient descent steps in the level set rep-

resentation

k+1 _ 4k k
g(%,é) = —réf/ﬂb} |§zk| - V& +.§(fe[oe/2‘] — fé[o/f]) dx Vvariations &

for a time step size 7, alternated with the corresponding descent step for the two orientation
parameters

i =~ 2t [ (1= Hi@na flaf1ar,
Q
oA gk _ ok /Q Hy($), f.lo1dx.

A separate Armijo’s rule is applied to control each of the two different time steps ‘L'(;f and t¥.

As in Sect. 3.3 for the deformation ¥ we now consider bilinear finite elements on the
regular grid for the spatial discretization of the level set function ¢. Regarding numerical
methods for levelset propagation by finite elements we refer to [17]. Furthermore, the same
type of multi scale minimization strategy is applied for the relaxation of the level set func-
tion. For a coarse filter width o first coarse scale adjustments of ¢ are enforced. Then on
successively finer scales more and more of the detailed structure of the grain boundaries
can be recovered by the level set function. As pointed out earlier, this regularized descent
does not affect the energy landscape, but the descent path towards minima. Even though the
level set function ¢ describes grain boundaries on a mesoscopic scale, and the lattice identi-
fier functions is given on the microscale of the actual atomic dot pattern, the corresponding
regularization parameters € and § can both be chosen of the order of the grid size. Indeed,
we resolve the mesoscopic grain boundaries on the atomic microscale. The achieved accu-
racy in the spatial position of the grain boundary is of the order of the lattice parameter d.
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Fig. 8 Plot of the energy decay 0.85 ‘ : : : :
in the level set method for grain
boundary extraction applied to 0.8 ]
the data in the third/forth row of
Fig. 10. The crosses mark 075 i
refinements of the scale
parameter o, which gives rise to > 07 |
a slightly increasing energy inthe 2
corresponding step. Redistancing iy
of ¢ is done every five iterations 065 |
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Fig. 9 Grain boundary detection on test data: input images u (first and third picture) with initial zero level
set of ¢ and computed grain boundaries (second and fourth picture). Interfaces with different amplitude are
considered in the first and second image pair

In case of a smooth grain boundary, we expect a sub-lattice accuracy, due to the symmet-
ric treatment of the lattice indicator function and the overlapping measurement of pattern
consistency encoded in this function.

In the applications below the image resolution ranges from 129 x 129 to 257 x 257
resulting in a corresponding grid size from & = 0.0078125 to & = 0.003906255. Further-
more, we have chosen the following parameters: d = 0.072552 (test data), r =d, 6 ~ 0.5,
€ =6 =0.01, n =0.05. As before, for the experimental images the parameter d depends on
the concrete lattice pattern in the image and is extracted based on a small image sample.

Figure 8 shows the energy decay for a specific application of the level set algorithm. The
crosses mark time steps, where the scale parameter o is refined.

At first, we applied the algorithm on test data, generated from homogeneous dots on a
lattice with precisely the same lattice spacing as encoded in our algorithm. A simple blend-
ing between two such lattices with different orientation is used to generate grain boundary
type interfaces. Figure 9 shows the identification of grain boundaries of different amplitude.
Furthermore, we applied our method to transmission electron microscopy (TEM) images.
The results, shown in Fig. 10, in particular demonstrate the robustness of the approach with
respect to noise in the experimental data and natural fluctuations in the shape of the atom
dots and the lattice spacing. In particular, let us emphasize that the variational method is ca-
pable to detect effects on an intermediate scale like the oscillating pattern of the interface in
the second picture pair. Finally, in Fig. 11 the detection of a grain boundaries in a simulation
result from a phase field crystal model is demonstrated [3]. Even though we confine to a
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Fig. 10 Two results of grain boundary detection on TEM-images: input images u (first and third picture)
with initial position of the zero level set of ¢, finally detected grain boundaries (second and fourth picture).
The TEM-image in the first picture pair is courtesy of Geoffrey H. Campbell, Lawrence Livermore National
Laboratory (compare Fig. 1), the image used in the second picture pair is courtesy of David M. Tricker
(Department of Materials Science and Metallurgy, University of Cambridge) showing a grain boundary in
GaN

Fig. 11 Multiphase grain
boundary detection on PFC
simulation data: crystal phase
field function u (left) with the
initial zero level sets, finally
computed grain boundaries
(right)

single levelset function in this paper, our latest implementation also supports segmentation
with multiple levelset functions.

4.3 Simultaneously Detecting a Liquid—Solid Interface

Let us now incorporate the distinction between solid and liquid phase into our variational
model. In particular in the simulation results, the solid state is characterized by prominent
atom dots with large values of u. Indeed, taking into account threshold values 6, and 6,, we
suppose that u(x) > 6, indicates an atom dot at position x and vice versa inter-atom regions
are characterized by low values of u, i.e. u(x) < 6. In the liquid regime there are neither
very high nor low values of u, i.e. u(x) € [0}, 6,]. Unfortunately, the converse is not true. In
transition regions between atom and hole in a solid region u will attain values between 6,
and 6,. But in these transition regions, the gradient of u exceeds a certain threshold € > 0.
Thus, we assume x to be in the liquid phase 2, if u € [0, 6,] and |Vu| < €. A variational
description of the domain splitting into a liquid phase €2; and a solid phase Q2 \ €, is
encoded in the energy

g (0 dx + f (1 q(x)) dx + vPer(2y),
QL

Ephase[QL] = /

QL
based on the indicator function

q(x) =1 = Xu>6,1(0) X[u<651(X) X[ V] <e1 (X)

0, forue[f,0]A|Vu|<e,
] 1, else.
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Fig. 12 (Color online) The combined extraction of a liquid—solid interface and a grain boundary is demon-
strated. On the left we depict a test input image u (first picture) with the initial grain boundary level set in red
and the initial liquid—solid interface in blue, and the finally computed shape of the grain boundary and the
liquid—solid interface location (second picture). On the right the same method is applied to PFC simulation
data, showing the crystal phase field function u (third picture) with the initial positions of the two level sets
and the finally extracted liquid—solid and grain boundary interface (fourth picture)

Since ¢ = 1 in the solid region the first term favors to remove solid phase points from €2 .
On the other hand ¢ = 0, in the liquid region. Hence, it is preferable to remove liquid parts
from Q2 \ . In the usual spirit of the Mumford—Shah approach, the third term regularizes
the boundary of ;.

Now, we merge the two approaches above and simultaneously want to detect the liquid
phase Q2 and the solid phase €2\ ©; which itself is decomposed into grains €2, such that
U ; Q; =Q\ Q. We end up with the following energy

Epmasonts [, (@), 2)) 1] = 1t / g0 dx + / (1 q(x)) dx + vPer(2y)
Qr Q\Qp

+ > (/Q.f(x,aj)dx+nPer(Qj)>. (4.5)

j=l,...n

The primal decomposition is the one into a liquid and a solid domain. To reflect this in
the variational formulation above we consider a relatively large constant w. Indeed, here
we choose © = 10 and v = n = 0.05. Furthermore, we take into account the following
values for the other parameters involved: 6 = 0.5, 8, = 0.3, 6, = 0.5, € =1 for test data
and € = 20 for phase field crystal simulation data, respectively. For further details on the
level set approximation and the concrete numerical relaxation in this special case we refer
to [5]. Figure 12 depicts the identification of a liquid—solid interface and a grain boundary
on a test data set and for simulation results from a phase field crystal model.

5 Joint Deformation and Grain Geometry Extraction

Now, we consider a general model, which incorporates grains €2; of different orientation «;
and a global elastic deformation i effecting the lattice spacing in the grains. To set up a vari-
ational formulation we pick up the energy for the local identification of lattice parameters
Eq o, ¥] (cf. (3.2)) separately for each grain €2; and each orientation «/; and sum them up.
Furthermore, we incorporate the perimeter Per(£2;) (cf. (4.1)) for all grains and the elastic
energy E.p.q[¥] (cf. (3.3)) for deformations ¥ constraint to vanishing angular momentum.
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Finally we obtain the following Mumford—Shah type functional for a joint deformation and
grain geometry extraction model:

Eiimms[ (@ ) o W1 =Y (Eq,la. Y]+ nPer(82))) + ft Eetas[ 1.
j=l,...n

For the sake of completeness let us list the variations of this energy with respect to the
deformation v in a direction ¢, the lattice orientation «; on the grain €2;, and the shape of
the grains in the direction of a normal variation v;. We achieve

Oy Ejoin,ms (e, 27) j=1,...n, ¥1(2)

d2
-5y (fg Vi @) £

j=1,.,n N 2jOluoy=0]

x o (= Hu( (x + M(@4qy) —0) dH!

i=1,...m

-y [wmm H(uw(x—M(a)q,-))—ewu(w(x»c(x)dﬂl)

,,,,, m Nluoy=0]

+ 2u/ (DY (x) + Dy (x)" —21): D¢ (x),
D

O Ejoint, ms[ (e, $25) j=1,...n, V]

d 2 m

== @ M0 H(uoy(x — M(a;)g) — 0)Vu((x)) - DY (x)M'(ar)q; dH',
i=l1 Nluoy=0]

With respect to the numerical implementation we again consider a joint Chan—Vese type
model for two grains, where the interface between the grains is described by a level set
function ¢ as above. Hence, we take into account the energy functional

Ej%fmycv[ocl,az,tb,W] :=/H6(¢)fe[a27w]+(1_HS((P))fe[ahW]+2V|VH8(¢)|
Q
1 T 2
+M§/ DY (x) + Dy (x)" — 21| dx,
D

which is to be minimized subject to constraint fQ Dy (x) — (D¥)T (x) dx = 0 on the skew
symmetric part of the deformation. The algorithm is a straightforward generalization of the
algorithms presented in Sect. 3.3 and Sect. 4.2. We implemented an operator splitting, where
each iteration consists of a descent step in the deformation i with respect to the metric (3.7),
a descent step in the level set function ¢ with respect to the metric (4.4), and two descent
steps for the two orientation parameters «; and «,. As before i and ¢ are discretized using
finite elements. Figure 13 shows result of the joint approach for a test data set and an a
posteriori deformed experimental image.
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Fig. 13 Simultaneous segmentation based on « and calculation of the deformation v : result on a test image
(top) and on a HREM image (bottom) both a posteriori deformed. Initial levelset function on the input image u
(left), computed boundary on the deformed image u o ¥~ (middle) and deformation v found

6 Conclusions

We have presented a robust method for the reliable extraction of macroscopic parameters
from microscopic images from materials science. The method deals with grains identified
by a constant lattice orientation on the corresponding domain and a global elastic defor-
mation acting on these grains and modifying the local lattice spacing. The local lattice is
encoded by an indicator functions for atomic dots describing their spatial relation to ad-
jacent atomic dots. It depends on the local orientation and the deformation. A variational
approach is based on an integral over this indicator function and an elastic energy for the
deformation acting as a prior. We are able to compute the macroscopic deformation and
the lattice orientation on each grain. A Mumford—Shah type variational formulation for the
case of multiple grains involves a further prior on the shape of the grains by measuring
the perimeter of the grain domains. The numerical implementation is inspired by the seg-
mentation approach by Chan and Vese. The algorithm works equally well on phase field
crystal (PFC) simulations and on experimental transmission electron microscopy (TEM)
images. It has been extended to detect liquid—solid interfaces. At first, we confine here to
the case of two different grain orientations. The straightforward extension to 2" orienta-
tions is currently still work in progress. On still images, the demarcation of such interfaces
might be done by hand as well, but will become already very tedious for a large number
of grains. For the validation of physical models with experimental data, it is the evolution
of the grain boundaries which actually matters. Here, an accurate and robust extraction of
interface velocities requires a reliable automatic tool. Thus, an extension of our model to
temporal data is envisaged. So far, the lattice orientation is considered as the only local de-
gree of freedom. The type of crystal structure and the atom spacing are preset. In a future
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generalization one might incorporate further lattice parameters in the variational approach
or combine the lattice type classification directly with the variational parameter estima-
tion.
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