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Geodesic Evolution Laws—A Level-Set Approach∗

Christina Stöcker† and Axel Voigt‡

Abstract. Motion of curves governed by geometric evolution laws, such as mean curvature flow and surface
diffusion, is the basis for many algorithms in image processing. If the images to be processed are
defined on nonplanar surfaces, the geometric evolution laws have to be restricted to the surface and
turn into geodesic evolution laws. In this paper we describe efficient algorithms for geodesic mean
curvature flow and geodesic surface diffusion within a level-set approach. Thereby we compare
approaches with an explicit representation of the surface by a triangulated surface mesh and an
implicit surface representation as the zero-level surface of a level-set function. As an application
we present the numerical treatment of the classical model of Rudin, Osher, and Fatemi to denoise
images on surfaces.
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1. Introduction. Planar motion of curves is the basis for many image processing algo-
rithms. Examples include algorithms for image denoising, image restoration, and image de-
composition; see, e.g., [23, 29] and [35, 20, 30, 6] and the references therein for a review. The
underlying geometric evolution laws in many of these models are typically of second order and
are versions of mean curvature flow. Various numerical approaches have been developed for
these equations and today are widely used in image processing for planar images. If images
defined on nonplanar surfaces have to be processed, the developed evolution laws for planar
images can easily be modified by replacing the operators by their geometric counterparts,
e.g., the Laplacian by the surface Laplacian. Instead of planar motion of curves we now have
to deal with the evolution of curves which are restricted to surfaces. The problem of mean
curvature flow, for example, becomes a geodesic mean curvature flow problem. Analytical
results and computational algorithms for the equations on surfaces require more care, which
is due to the additional nonlinearity of the surface operators.

Different approaches have been developed to deal with the motion of curves in image
processing on nonplanar surfaces. One requires the representation of the surface by a surface
mesh. For example, [10, 13, 27, 15] use this approach to solve (an)isotropic geometric diffusion
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problems on surfaces, which is related to the motion of curves on surfaces. Reference [16] uses
this approach to solve geodesic mean curvature flow. In an alternative approach, a mapping
between a parameterization plane and the surface can be used; see, e.g., [8, 19] for related
second order image processing problems on surfaces. Reference [32] uses this approach to solve
geodesic mean curvature flow and related problems. Another widely used approach in image
processing is the level-set method introduced in [25]. This is partly due to the simplicity of
implementing it by finite differences on Cartesian grids. This simplicity, however, is lost if
images defined on nonplanar surfaces have to be processed. However, one can represent the
surface as well as the data on it implicitly as level sets of functions in R

3 and reformulate the
equation on a surface into an equation in R

3; see [4]. In [7] this approach is used to solve
the problem of geodesic mean curvature flow. Similar ideas for representing the surface only
implicitly through a level-set function have also been used in phase-field methods [27]. To
summarize for second order problems, a large class of methods exists which can be used in
image processing algorithms to evolve curves on nonplanar surfaces. A detailed comparison
of the methods and convergence studies are, however, still missing. Most of the approaches
described can also be combined with an evolution of the surface, e.g., to smooth the surface.
See, e.g., [2, 16] for an approach in which the surface mesh is moved and [1, 36, 33, 28] for an
implicit surface representation. In the last examples the evolution of the surface depends on
the quantities on it.

More recent image processing models designed for image restoration and image decompo-
sition contain not only the mean curvature but also the Laplacian of mean curvature which
results in fourth order equations [26]. The authors of [26] also apply the model to image
denoising and show that for textured images it gives better results than the classical second
order models. Furthermore, an application of fourth order PDEs to medical imaging and
inpainting can be found in [22, 5], respectively. In order to extend the use of these models to
images on surfaces, numerical methods for geodesic generalizations are required. The prob-
lem of surface diffusion (Laplacian of mean curvature) now becomes geodesic surface diffusion
(surface Laplacian of geodesic mean curvature). Numerical approaches for fourth order prob-
lems on surfaces, especially geodesic surface diffusion problems, are very limited. Based on
the ideas of [14], parametric finite elements can be used to solve general PDEs on triangu-
lated surfaces; see [16] for such an approach for solving geodesic mean curvature flow and also
geodesic surface diffusion and [34] for implementation details for solving general problems on
surface meshes by finite elements. We are not aware of a treatment of fourth order equa-
tions on surfaces using a mapping between a parameterization plane and the surface. In the
case of implicit surface representations through level-set or phase-field functions, we refer to
[18, 27, 17], where a Cahn–Hilliard equation on a surface is solved. The approach is extended
in [21] to solve a Cahn–Hilliard equation on a moving surface, with the surface evolution
coupled to the concentration field on the surface. The treatment of geodesic surface diffusion
has not been considered within the concept of an implicit surface representation.

In this article we will consider only stationary surfaces and compare level-set solutions for
geodesic mean curvature flow and geodesic surface diffusion obtained by an explicit and an
implicit representation of the surface. For both approaches we use finite elements to discretize
the evolution law in space. Thereby the advantages of finite elements implemented in the
advanced simulation toolbox AMDiS [34] are demonstrated. Here the solution of any PDE
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on a triangulated surface can be done with the same code as its solution on a planar domain.
The work can be seen as a general approach to implementing image processing algorithms on
surfaces. As an example we apply the classical Rudin–Osher–Fatemi (ROF) model [29], which
can be considered as mean curvature flow with a forcing term, to denoise images on various
surfaces.

The article is organized as follows: In section 2 we review the level-set formulation for mean
curvature flow and surface diffusion and show the relation to a level-set formulation for geodesic
mean curvature flow and geodesic surface diffusion by replacing the standard operators by their
intrinsic counterparts. Furthermore, we use the approach of [4] to translate the formulation
for an implicit surface representation. In section 3 we discuss the weak formulation for the
two equations and in section 4 we describe the discretization and the solution of the resulting
linear system. Section 5 shows numerical results, and, finally, section 6 deals with a finite
element treatment of the ROF model on implicit surfaces and gives numerical results for
image denoising.

2. Level-set method. We start by reviewing standard level-set methods for geometric
evolution laws, such as mean curvature flow and surface diffusion. In the next step we extend
the concept to geodesic evolution laws on surfaces and on implicitly defined surfaces.

2.1. Level-set method for geometric evolution laws. Let us start with the classical
problem of defining the motion of a surface. We consider the level-set equation for a level-set
function φ defined in R

n+1 with φ = 0 representing the n-dimensional surface Γ:

(2.1) φt + V |∇φ| = 0

with a given normal velocity V . This equation was introduced for numerical surface evolution
in [25]. It describes the surface and its evolution by the implicit function φ. Through φ we
can define the normal and the curvature to each level line and thus also to the surface Γ by

ν =
∇φ
|∇φ| , κ = ∇ · ∇φ

|∇φ| .

If we now specify V , we can use the level-set equation to solve the geometric evolution laws of
interest. A classical geometric evolution equation is motion by mean curvature. The normal
velocity of the surface Γ is given by minus its mean curvature:

V = −κ.

Using the level-set equation (2.1) and the definition for the curvature we obtain the level-set
representation for mean curvature flow:

φt

|∇φ| = ∇ · ∇φ
|∇φ| .

Similar calculations can be done for motion by surface diffusion. The normal velocity of the
surface Γ is given by the surface Laplacian of Γ applied to the mean curvature:

V = ΔΓκ.
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In level-set representation this equation reads, rewritten as a system of two second order
equations for φ and ψ, as

φt = ∇ · (|∇φ|(I − ν ⊗ ν)∇ψ),

ψ = ∇ · ∇φ
|∇φ| .

For a review of numerical approaches for mean curvature flow, see [12]. Numerical ap-
proaches for surface diffusion have been developed using finite differences in [9, 31] and finite
elements in [11]. As the evolution of Γ is implicitly represented as the evolution of the zero-
level line of φ, the problem to solve is defined on R

n+1 and is thus typically less efficient than
directly solving the geometric evolution law on a triangulated surface. However, such a direct
approach is not always applicable, e.g., if topology changes occur. The computational over-
head of the level-set method furthermore can be reduced by using narrow band approaches or
adaptive mesh refinement strategies which make the numerical costs comparable to those of
direct methods.

2.2. Level-set method for geodesic evolution laws. In the same way as in R
n+1 we can

consider a level-set equation for a level-set function u defined on a surface Γ with u = 0
representing the curve C on Γ (see, e.g., [3, 16]):

(2.2) ut + Vg|∇Γu| = 0

with intrinsic normal velocity Vg. ∇Γ denotes the surface gradient of Γ. Here we assume Γ
to be stationary. Through u we can define the intrinsic normal and the intrinsic curvature
(geodesic curvature) to each level line of u and thus also to the curve C:

νg =
∇Γu

|∇Γu| , κg = ∇Γ · ∇Γu

|∇Γu| .

As for surfaces in R
n+1, we can define geometric evolution laws (so-called geodesic evolution

laws) for the curve C, now restricted to Γ. Geodesic mean curvature flow thus reads as

Vg = −κg,

which relates the intrinsic normal velocity to minus the geodesic curvature. Using the level-set
equation on the surface (2.2), we thus obtain the level-set representation for geodesic mean
curvature flow

ut

|∇Γu| = ∇Γ · ∇Γu

|∇Γu| .

In a similar way we can consider motion by geodesic surface diffusion

Vg = Δgκg.

Here the intrinsic normal velocity is given by the intrinsic Laplacian of C on Γ of the geodesic
curvature. Thus Δg depends on C and Γ. In level-set representation, geodesic surface diffusion
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reads, rewritten as a system of two second order equations for u and v, as

ut = ∇Γ · (|∇Γu|(I − νg ⊗ νg)∇Γv),

v = ∇Γ · ∇Γu

|∇Γu| .

A finite element discretization for these equations is derived in [16]. It should be noted that
any modern finite element implementation of the level-set equation in R

n+1 on unstructured
meshes can also solve the level-set equation on triangulated surfaces. For implementational
details see [34]. The only requirement is an appropriate surface mesh. Figures 5, 6, 7, and 8
show results of geodesic mean curvature flow and geodesic surface diffusion, computed with the
algorithm initially developed in AMDiS [34] for mean curvature flow and surface diffusion [11].

In this approach the evolution of a curve C on a surface Γ is implicitly represented as the
evolution of the zero-level line of u, with u defined on Γ. Thus the methods require a surface
triangulation, which might not be available or easy to generate for complex geometries. We
thus now want to reduce this requirement and define the surface Γ only implicitly following
the approach in [4].

2.3. Level-set method for geodesic evolution laws on implicit surfaces. Let the surface
Γ be defined as the zero-level line of the level-set function φ defined in R

n+1. With u the
level-set function extended also to R

n+1, the curve C thus is defined as C = {x ∈ R
n+1 :

φ(x) = u(x) = 0}. The level-set equation (2.2) now reads in its extended version to R
n+1 as

(2.3) ut + Vg|(I − ν ⊗ ν)∇u| = 0.

Through u and φ we can define the intrinsic normal and the intrinsic curvature (geodesic
curvature) to each level line of u and φ and thus also to the curve C:

νg =
(I − ν ⊗ ν)∇u
|(I − ν ⊗ ν)∇u| , κg =

1
|∇φ|∇ ·

(
|∇φ| (I − ν ⊗ ν)∇u

|(I − ν ⊗ ν)∇u|
)
.

The level-set representation for geodesic mean curvature flow on an implicitly defined surface
thus reads as

(2.4)
ut

|(I − ν ⊗ ν)∇u| =
1

|∇φ|∇ ·
(
|∇φ| (I − ν ⊗ ν)∇u

|(I − ν ⊗ ν)∇u|
)
,

which has already been derived in [7]. In the same way we obtain the level-set representation
for geodesic surface diffusion on implicitly defined surfaces as

ut =
1

|∇φ|∇ · (|∇φ||(I − ν ⊗ ν)∇u|(I − νg ⊗ νg)(I − ν ⊗ ν)∇v),(2.5)

v =
1

|∇φ|∇ ·
(
|∇φ| (I − ν ⊗ ν)∇u

|(I − ν ⊗ ν)∇u|
)
.(2.6)

We have reduced the problem of evolving a curve along a surface to a problem in R
n+1.

In other words, we have reformulated an initially one-dimensional problem into a three-
dimensional problem. The computational overhead thus has to be reduced by efficient nu-
merical tools for the evolution equation, such as narrow band or adaptive mesh refinement
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strategies. Through the reformulation we gain the flexibility to handle complex surfaces,
circumventing the need to construct an appropriate surface mesh.

The problem of geodesic mean curvature flow was already introduced and solved within
a finite difference method in [7]. The problem of geodesic surface diffusion, however, has not
been solved yet.

3. Weak formulation.

3.1. Mean curvature flow and surface diffusion. Only to show the analogy between the
formulation in R

n+1 and on surfaces, we recall first the weak forms for mean curvature flow
and surface diffusion used in [11]:∫

Ω

φt η

|∇φ| dx = −
∫

Ω

∇φ · ∇η
|∇φ| dx

and ∫
Ω
φt η dx = −

∫
Ω
|∇φ|(I − ν ⊗ ν)∇ψ · ∇η dx,∫

Ω
ψ ξ dx =

∫
Ω

∇φ · ∇ξ
|∇φ| dx,

respectively, with test functions η and ξ defined in the domain of interest Ω ⊆ R
n+1.

3.2. Level-set method for geodesic evolution laws on explicit surfaces. The weak forms
for geodesic mean curvature flow and geodesic surface diffusion on explicit surfaces thus follow
by replacing the operators by their geometric counterparts and read as∫

Γ

ut η

|∇Γu| dA = −
∫

Γ

∇Γu · ∇Γη

|∇Γu| dA

and ∫
Γ
ut η dA = −

∫
Γ
|∇Γu|(I − ν ⊗ ν)∇Γψ · ∇Γη dA,∫

Γ
ψ ξ dA =

∫
Γ

∇Γu · ∇Γξ

|∇Γu| dA,

respectively, with test functions η and ξ defined on the surface Γ. The same forms have been
used in [16].

3.3. Level-set method for geodesic evolution laws on implicit surfaces. The implicitly
defined surface is embedded into a simple domain Ω. The weak forms of (2.4) and (2.5)–(2.6),
which here are equations in Ω, read as∫

Ω

ut |∇φ|
|(I − ν ⊗ ν)∇u|η dx = −

∫
Ω
|∇φ| (I − ν ⊗ ν)∇u

|(I − ν ⊗ ν)∇u| · ∇η dx

and
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∫
Ω
|∇φ|ut η dx =

∫
Ω
|∇φ||(I − ν ⊗ ν)∇u|(I − νg ⊗ νg)(I − ν ⊗ ν)∇v · ∇η dx,∫

Ω
|∇φ| v ξ dx = −

∫
Ω
|∇φ| (I − ν ⊗ ν)∇u

|(I − ν ⊗ ν)∇u| · ∇ξ dx,

respectively, with test functions η and ξ defined in Ω.

4. Discretization. We present the discretization for geodesic mean curvature flow and
geodesic surface diffusion on implicit surfaces. The domain Ω is chosen in a way which allows
for easy triangulation. This is no restriction because the only requirement on Ω is that it
contain the surface Γ. We further use standard linear finite elements and denote Vh as the N -
dimensional finite element space on the triangulated domain Ω. We apply a semi-implicit time
discretization and, as small gradients may occur, regularize the Euclidean norm |.| through
|x|ε = (|x|2 + ε2)1/2 with ε chosen about the grid size h. The discretized equations for geodesic
mean curvature flow are then given through∫

Ω

uk+1 |∇φ|ε
|(I − ν ⊗ ν)∇uk|ε η dx−

∫
Ω

uk |∇φ|ε
|(I − ν ⊗ ν)∇uk|ε η dx

+ τ

∫
Ω
|∇φ|ε (I − ν ⊗ ν)∇uk+1

|(I − ν ⊗ ν)∇uk|ε · ∇η dx = 0.(4.1)

For the description of the arising linear system we introduce the following notation for the
mass and stiffness matrices. For a function f : Ω → R, a linear operator A : R

3 → R
3, and

(ϕi)i=1,...,N basis functions of Vh, we set

M [f ] :=
(∫

Ω
fϕiϕj dx

)
ij

,

L[A] :=
(∫

Ω
A∇ϕi · ∇ϕj dx

)
ij

.

With the linear expansion u =
∑N

i=1 ūiϕi and

M1 := M [|∇φ|ε|(I − ν ⊗ ν)∇uk|−1
ε ],

L1 := L[|∇φ|ε|(I − ν ⊗ ν)∇uk|−1
ε (I − ν ⊗ ν)],

the linear system corresponding to (4.1) then reads as(
M1 + τL1

)
ūk+1 = M1ū

k.

We solve the linear system with the Krylov subspace method BiCGStab2.
In a similar way the discretization for geodesic surface diffusion results in∫

Ω
|∇φ|εuk+1η dx−

∫
Ω
|∇φ|εukη dx

− τ

∫
Ω
|∇φ|ε|(I − ν ⊗ ν)∇uk|ε(I − νk

g ⊗ νk
g )(I − ν ⊗ ν)∇vk+1 · ∇η dx = 0,(4.2) ∫

Ω
|∇φ|εvk+1ξ dx+

∫
Ω
|∇φ|ε (I − ν ⊗ ν)∇uk+1

|(I − ν ⊗ ν)∇uk|ε · ∇ξ dx = 0,(4.3)
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Figure 1. Geodesic mean curvature flow with level-set representation of the surface: evolution of circle.
[0, 4] × [0, 4] × [0, 4] grid with 30,000 grid points, grid size h = 0.0625 at the surface, and timestep �t = h2 =
0.0039. From left to right: t = 0.0, t = 0.0273, t = 0.0468.

where νk
g = (I−ν⊗ν)∇uk

|(I−ν⊗ν)∇uk| is the intrinsic surface normal in the last timestep. With the linear

expansions u =
∑N

i=1 ūiϕi and v =
∑N

i=1 v̄iϕi and the matrices

M1 := M [|∇φ|ε],
L1 := L[|∇φ|ε|(I − ν ⊗ ν)∇uk|ε(I − νk

g ⊗ νk
g )(I − ν ⊗ ν)],

L2 := L[|∇φ|ε|(I − ν ⊗ ν)∇uk|ε(I − ν ⊗ ν)],

the linear system corresponding to (4.2) and (4.3) reads as

(
M1 −τL1

L2 M1

)(
ūk+1

v̄k+1

)
=
(
M1ū

k

0

)
.

The linear system is solved with a Schur complement approach

(
M1 + τL1M

−1
1 L2

)
ūk+1 = M1ū

k

and the Krylov subspace method BiCGStab2.

5. Numerical results.

5.1. Geodesic mean curvature flow. To validate our computations for geodesic mean
curvature flow on implicit surfaces, we regard the evolution of a circle on a sphere, where the
exact solution can be calculated easily, and compare our computational results for different
grid sizes and timesteps with the exact evolution. The evolution of a circle with initial radius
R0 on a sphere with radius r gives at time t a circle with radius

R(t) =
(
r2 −

(
t

r

)
+ (r2 −R2

0)
1/2

)1/2

.

In our example we choose r = 1.0 and R0 = 0.3. The evolution is shown in Figure 1 which
displays the solution on the zero-level set. The solution is analyzed in Figure 2 and Table 1.
The results show that the choice of grid size h = 0.0625 and timestep �t = h2 is appropriate.
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Figure 2. Geodesic mean curvature flow with level-set representation of the surface: evolution of a circle
with initial radius R0 = 0.3 on a sphere with radius r = 1.0 with different grid sizes and timesteps; see Figure 1.
Above: comparison of the exact evolution of the circle with computational results with grid sizes h = 0.0625
and h = 0.03125 and timestep �t = h2. Below: absolute error in the radius with grid sizes h = 0.125, 0.0625,
and 0.03125 and timesteps �t = 0.1h and h2, respectively.

Table 1
Results at time t = 0.0156 with R(t) = 0.24494 for the problem in Figure 1.

h Computational radius err(h)

0.125 0.22467 0.02026
0.0625 0.24335 0.00159
0.03125 0.24606 0.00113
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Figure 3. Geodesic surface diffusion with level-set representation of the surface: evolution of star-shaped
closed curve. [0, 4]× [0, 4]× [0, 4] grid with 30,000 grid points, grid size h = 0.0625 at the surface, and timestep
�t = h4 = 1.5 × 10−5. From left to right: t = 0.0, t = 0.0003, t = 0.00105.

The error analysis is based on the computationally measured area A(t) enclosed by the evolving
circle on the implicit surface. The radius of the circle at time t is calculated through

R(t) =

(
r2 −

(
r − A(t)

2πr

)2
)1/2

.

Thus the error is measured only on the implicit surface and not on the complete mesh.

5.2. Geodesic surface diffusion. To validate our computations for geodesic surface diffu-
sion on implicit surfaces, we check the volume conservation property. We regard the example
in Figure 3 for different grid sizes and timesteps. The volume-conserving behavior is presented
in Figure 4 and Table 2. Again, Figure 4 shows that the choice of grid size h = 0.0625 and
timestep �t = h4 is appropriate.

Here err(h) denotes the absolute error in the computationally measured area enclosed
by the evolving closed curve and grid size h at the implicit surface. The error is calculated
with respect to the initial discrete area enclosed by the curve at time t = 0, which should be
preserved. We should note that the initial discrete area depends on grid size h.

5.3. Comparison of geodesic mean curvature flow and geodesic surface diffusion on
explicit and implicit surfaces. As a second test we compare solutions obtained for geodesic
mean curvature flow and geodesic surface diffusion on different explicit and implicit surfaces;
see Figures 5, 6, 7, and 8. In Figures 7 and 8 the initial closed curves on the torus are circles
with a superposition of the sine function with two different frequencies. As expected, first the
high frequencies are damped before the lower frequencies vanish on a larger time scale.

5.4. Adaptivity. To make the simulations efficient, we use adaptively refined grids. The
criterion for refinement is the distance to the level set of interest. This strategy ensures a
coarse mesh away from the surface and thus reduces the computational overhead introduced
due to the higher dimension. The computational domain thus can be large enough such that
the boundary condition has no influence on the solution on the surface of interest and is
usually a simple cube. For an example of such a grid, see Figure 9. Compared with a narrow
band approach to restrict the computational domain to a thin region around the surface, the
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Figure 4. Geodesic surface diffusion with level-set representation of the surface: volume conservation for
the example in Figure 3 for different grid sizes h = 0.125, 0.0625, and 0.03125 and timesteps �t = 0.1h2 and
h4, respectively.

Table 2
Results at time t = 0.00105, for the problem in Figure 4.

h Computational initial area err(h)

0.125 0.76284 0.01318
0.0625 0.78831 0.00882
0.03125 0.79730 0.00482

adaptive mesh has the advantage that no further boundary conditions have to be specified on
the edge of the computational domain.

Figures 10 and 11 show the evolution of a sine function on the Stanford bunny under
geodesic mean curvature flow and geodesic surface diffusion, respectively.

6. Denoising of surface images. For the denoising of images Rudin, Osher, and Fatemi
proposed a time-dependent model in [29]. With its adaption in [24] to circumvent strong
timestep restrictions, it can be regarded as mean curvature flow with a forcing term. For an
initial noisy image u0, the evolution equation in R

n+1 in level-set formulation is

ut = |∇u|
(
∇ · ∇u

|∇u| − 2λ(u− u0)
)

with the forcing term coefficient λ. The equation can also be applied on surfaces, which gives

ut = |∇Γu|
(
∇Γ · ∇Γu

|∇Γu| − 2λ(u− u0)
)
,
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Figure 5. Geodesic mean curvature flow with parameterization of the surface (first and third rows) and
level-set representation of the surface (second and fourth rows). Parametric approach: 3,000 grid points, grid
size h = 0.064, and timestep �t = 0.004. Level-set approach: [0, 4]× [0, 4]× [0, 4] grid with 30,000 grid points,
grid size h = 0.0625 at the surface, and timestep �t = 0.004. From top left to bottom right (for each approach):
t = 0.0, 0.004, 0.008, 0.02, 0.096, 0.12, 0.14.

and on implicitly defined surfaces, where the equation reads as

(6.1) ut = |(I − ν ⊗ ν)∇u|
(

1
|∇φ|∇ · |∇φ| (I − ν ⊗ ν)∇u

|(I − ν ⊗ ν)∇u| − 2λ(u− u0)
)
.
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Figure 6. Geodesic surface diffusion with parameterization of the surface (first and third rows) and level-
set representation of the surface (second and fourth rows). Parametric approach: 3,000 grid points, grid size
h = 0.064, and timestep �t = 1.0× 10−5. Level-set approach: [0, 4]× [0, 4]× [0, 4] grid with 30,000 grid points,
grid size h = 0.0625 at the surface, and timestep �t = 1.0 × 10−5. From top left to bottom right (for each
approach): t = 0.0, 0.00002, 0.00004, 0.0001, 0.001.
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Figure 7. Geodesic mean curvature flow with parameterization of the surface (first and third rows) and
level-set representation of the surface (second and fourth rows). Parametric approach: 8,200 grid points, grid
size h = 0.048, and timestep �t = 0.001. Level-set approach: [0, 4]× [0, 4]× [0, 4] grid with 91,000 grid points,
grid size h = 0.005 at the surface, and timestep �t = 0.001. From top left to bottom right (for each approach):
t = 0.0, 0.004, 0.01, 0.06, 0.1, 0.2.
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Figure 8. Geodesic surface diffusion with parameterization of the surface (first and third rows) and level-
set representation of the surface (second and fourth rows). Parametric approach: 8,200 grid points, grid size
h = 0.048, and timestep �t = 5.0× 10−6. Level-set approach: [0, 4]× [0, 4]× [0, 4] grid with 91,000 grid points,
grid size h = 0.005 at the surface, and timestep �t = 5.0 × 10−6. From top left to bottom right (for each
approach): t = 0.0, 0.00002, 0.00005, 0.0002, 0.003, 0.012.
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Figure 9. Cut-through adaptive grid used for calculations shown in Figures 10 and 11. Adaptive grid
refinement at the implicit surface φ = 0. The complete grid has 192,000 grid points.

Figure 10. Geodesic mean curvature flow with level-set representation of the surface: evolution of different
level sets. [0, 4] × [0, 4] × [0, 4] grid with 192,000 grid points, grid size h = 0.039 at the surface, and timestep
�t = 0.001. From top left to bottom right: t = 0.0, t = 0.002, t = 0.005, t = 0.04, t = 1.0, t = 1.8.
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Figure 11. Geodesic surface diffusion with level-set representation of the surface: evolution of different
level sets. [0, 4] × [0, 4] × [0, 4] grid with 192,000 grid points, grid size h = 0.039 at the surface, and timestep
�t = 2.5 × 10−6. From top left to bottom right: t = 0.0, t = 0.00002, t = 0.00005, t = 0.0003.

The last equation has been solved numerically with finite differences in [4]. The authors in [4]
also extend the calculation of the forcing term coefficient λ from the situation in R

n+1 given
in [29] to implicitly given surfaces. The idea is as follows: when steady state is reached, the
term on the left-hand side vanishes. Multiplication with |∇φ|(u−u0) and integration by parts
results in

λ = − 1
2σ2

∫
Ω
|∇φ| (I − ν ⊗ ν)∇u

|(I − ν ⊗ ν)∇u| · ∇(u− u0) dx

with noise parameter σ2 =
∫
Ω |∇φ|(u − u0)2 dx. We now use this model to demonstrate the

possibility of updating existing models in image processing to surfaces. For image denoising
on implicitly defined surfaces the weak form of (6.1) is given through

∫
Ω

ut |∇φ|
|(I − ν ⊗ ν)∇u|η dx

= −
∫

Ω
|∇φ| (I − ν ⊗ ν)∇u

|(I − ν ⊗ ν)∇u| · ∇η dx− 2λ
∫

Ω
|∇φ| (u− u0) η dx.
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The discretization for image denoising reads as∫
Ω

uk+1 |∇φ|ε
|(I − ν ⊗ ν)∇uk|ε η dx−

∫
Ω

uk |∇φ|ε
|(I − ν ⊗ ν)∇uk|ε η dx

+ τ

∫
Ω
|∇φ|ε (I − ν ⊗ ν)∇uk+1

|(I − ν ⊗ ν)∇uk|ε · ∇η dx

+ τ2λk

∫
Ω
|∇φ|εuk+1η dx− τ2λk

∫
Ω
|∇φ|εu0η dx = 0.(6.2)

The forcing term coefficient λk depends on the solution uk of the last timestep and has to be
calculated in each timestep in a preprocessing step through

λk = − 1
2σ2

∫
Ω
|∇φ| (I − ν ⊗ ν)∇uk

|(I − ν ⊗ ν)∇uk| · ∇(uk − u0) dx.

Note that σ2 is a fixed noise parameter, which is an estimation of the amount of noise in the
initial image. To conclude we present the linear system. With

M1 := M [|∇φ|ε|(I − ν ⊗ ν)∇uk|−1
ε ],

M2 := M [|∇φ|ε],
L1 := L[|∇φ|ε|(I − ν ⊗ ν)∇uk|−1

ε (I − ν ⊗ ν)],

R1 :=
(∫

Ω
|∇φ|εu0ϕi dx

)
i

,

the linear system corresponding to (6.2) is(
M1 + τL1 + τ2λkM2

)
ūk+1 = M1ū

k + τ2λkR1.

Again, we solve the linear system with the Krylov subspace method BiCGStab2.
Figure 12 shows results of the approach on the bunny, and Figure 13 shows a comparison

between the implicit and the parametric surface representation for image denoising on the
torus.

In a similar way, other variational models established to process images in R
2 can be

reformulated to deal with images defined on surfaces. The basic ingredients for second and
fourth order problems are given in this paper. Whether an explicit or implicit representation of
the surface should be used will depend on the availability of an appropriate surface mesh. The
numerical results are indistinguishable; the computational costs for the implicit representation,
however, are higher.
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Figure 12. Image denoising with level-set representation of the surface. From left to right: original image,
noisy image, image after 5 timesteps. [0, 4]× [0, 4]× [0, 4] grid with 192,000 grid points, grid size h = 0.039 at
the surface, and timestep �t = 0.001.

Figure 13. Image denoising with parameterization of the surface (top row) and level-set representation of
the surface (bottom row). From left to right: original image, noisy image, image after 5 timesteps. Parametric
approach: 16,500 grid points, grid size h = 0.034, and timestep �t = 0.001. Level-set approach: [0, 4]× [0, 4]×
[0, 4] grid with 193,000 grid points, grid size h = 0.03125 at the surface, and timestep �t = 0.001.



398 CHRISTINA STÖCKER AND AXEL VOIGT

REFERENCES

[1] D. Adelsteinsson and J. A. Sethian, Transport and diffusion of material quantities on propagating
interfaces via level set methods, J. Comput. Phys., 185 (2003), pp. 271–288.

[2] C. L. Bajaj and G. Xu, Anisotropic diffusion of surfaces and functions on surfaces, ACM Trans. Graph.,
22 (2003), pp. 4–32.

[3] T. J. Barth and J. A. Sethian, Numerical schemes for the Hamilton-Jacobi and level set equations on
triangulated domains, J. Comput. Phys., 145 (1998), pp. 1–40.
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