
Integrating object-oriented and generic programming paradigms in
real-world software environments

Experiences with AMDiS and MTL4

Peter Gottschling Thomas Witkowski Axel Voigt

Institut für Wissenschaftliches Rechnen
Technische Universität Dresden

{Peter.Gottschling, Thomas.Witkowski, Axel.Voigt}@tu-dresden.de

Object-oriented software development is a broadly
used programming paradigm that is successfully ap-
plied to a huge number of large-scale software systems,
including many scientific HPC applications. Generic
programming on the other hand is able to release un-
necessary interface restrictions, thus allowing for lift-
ing applicability to a potentially infinite number of
types. At the same time, conceptual specialization en-
ables algorithmic specialization at compile time lead-
ing to optimal performance. Both paradigms expose
many parallels and are simultaneously orthogonal in
many aspects. Although their combination does not
create a theoretical contradiction, the integration of OO
and generic software expose some technical limitations
and is accompanied with several technical difficulties.
We demonstrate the problems on the real-world ex-
ample of integrating the generic linear algebra library
MTL4 (Matrix Template Library) into the OO finite el-
ement software AMDiS (Adaptive Multi-Dimensional
Simulations). We show solutions for these problems
and present the benefits in terms of improved generality
and increased performance.

Categories and Subject Descriptors D.1.5 [Program-
ming Techniques]: Object-oriented programming; D.2.3
[Software Engineering]: Coding Tools and Techniques—
object-oriented programming; D.2.2 [Software Engi-

Copyright 2008 Association for Computing Machinery. The U.S. Govern-
ment retains a license to exercise, or to have exercised on its behalf, almost
all of the rights of copyright. Permission for others to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
POOSC July, 2008, Paphos, Cyprus.
Copyright c© 2008 ACM 1-59593-xxx-xxxxxxxxx. . . $5.00

neering]: Design Tools and Techniques—software li-
braries

General Terms Design, Languages, Generic Pro-
gramming

Keywords Matrix Template Library, AMDiS

1. Introduction
Software libraries as they are used today typically con-
sist of collections of related functions and data types,
often as archives of object files in conjunction with
header files that define interfaces to components in the
library. The Standard C Library [16], the FORTRAN
BLAS libraries for linear algebra [3, 4, 13], and the
LEDA graph library [12] are prototypical examples.
Such libraries are limited by the fact that one can use
the functions in the library only with the data types sup-
plied by (or specified by) the library. A user who wishes
to compose two independently developed libraries may
be unable to do so, simply because the interfaces in
software libraries today are over-specified. Instead of
requiring only what is necessary for a routine to func-
tion correctly, interfaces express additional “adminis-
trative” requirements for their inputs.

Object-oriented and generic programming provide
more powerful mechanisms of reusability by using dif-
ferent kinds of polymorphism. While OO mechanism
are clearly more flexible than classical programming,
the common derivation from a certain base class still
imposes avoidable constraining. In this regard generic
programming is more flexible and we will illustrate this
in the next section.

2. Paradigms
2.1 Generic Programming
To introduce the paradigm on an example, consider the
strstr routine in the Standard C library, which searches
for an occurrence of a sub-sequence in another se-
quence. Although the same basic algorithm could be
used to search sequences made up of many other types,
strstr only works for character sequences.

Generic programming is an important paradigm
for the development of highly-reusable software li-
braries [1, 15]. The term “generic programming” is
perhaps somewhat misleading because it is about much
more than simply programming per se. Fundamentally,
generic programming is a systematic approach to clas-
sifying entities within a problem domain according to
their underlying semantics and behaviors. The atten-
tion to semantic analysis leads naturally to the essen-
tial (i.e., minimal) properties of the components and
their interactions. Basing component interface defini-
tions on these minimal requirements provides maximal
opportunities for re-use.

2.1.1 Lifting
Concrete implementations are evolved into generic im-
plementations through a process known as lifting, in
which unnecessary requirements on types are removed
from an implementation (the abstraction level of the
implementation is “lifted”). Consider the following two
implementations. The first computes the sum of dou-
bles stored in an array; the second computes the sum of
elements in a linked list.

double sum(double ∗array, int n)
{

double s = 0.0;
for (int i = 0; i < n; ++i)

s = s + array[i];
return s;

}

double sum(node ∗first, node ∗last)
{

double s = 0.0;
while (first != last) {

s = s + first→data;
first = first→next;

}
return s;

}

Abstractly, both implementations are doing the same
thing: traversing a collection of elements and summing
up the values. However, the implementations also im-
pose additional requirements (and ones that are unnec-
essary for the purposes of summation). In the first im-
plementation, the elements must be doubles stored in
an array. In the second implementation, the elements
must be of type node∗ with doubles stored in the data
field.

Summing a collection of elements only requires that
we are able to visit all of the elements in the collection
and extract the corresponding values. A generic algo-
rithm should therefore be able to work correctly with
any collection of elements supporting traversal and el-
ement access. For instance, one could define a generic
implementation of sum as:

template <typename InputIterator, typename T>
T sum(InputIterator first, InputIterator last, T s) {

while (first != last)
s = s + ∗first++;

return s;
}

This algorithm is implemented as a function template,
parameterized on InputIterator and T. The algorithm
can be used with any type substituted for InputIterator,
as long as that type supports the ++ operation for mov-
ing from one element to another and the ∗ operation for
accessing a value. Similarly, the type bound to T must
support assignment and addition. Note that although we
have specified a particular syntax for these parameter-
ized types (we have to write the algorithm down some-
how), we have only specified policy — we have not
specified how these operations must be carried out. In
fact, the sum algorithm can be used with arrays, linked
lists, or any other type that meets the requirements for
InputIterator and T.

double x[10];
double a = sum(x, x+10, 0.0);

vector<int> y(10);
int b = sum(y.begin(), y.end(), 0);

list<complex<double>> z(10);
complex<double> c = sum(z.begin(), z.end(),

complex<double>(0.0,0.0));

Computing the product of a set of numeric values is
essentially the same form of calculation — only the bi-
nary operation is replaced within the loop’s statement.

The same is true for maxima, minima, logical conjunc-
tion, bitwise exclusive-or, i.e. every binary operation.
Abstracting this binary operation leads to the generic
STL algorithm accumulate [1]. The following listing
illustrates its usage to compute a sum, a product and a
logical disjunction of different types of containers:

double x[10];
double s= accumulate(x, x+10, 0.0, plus<double>());

vector<int> y(10);
int p= accumulate(y.begin(), y.end(), 1,

multiplies<int>());

list<bool> z(10);
bool d= accumulate(z.begin(), z.end(), false,

logical or<bool>());

Compilers cannot optimize such calculation because
their code transformation strategies rely on semantic
properties that are only available for intrinsic types
and known operations. Future compilers will be able to
handle semantic properties on user-defined operations
and types. We could recently show that this ability
allows for optimizing STL accumulate if the according
semantic behavior is declared [6]. The foundation of
this are concepts that we will introduce in the next sub-
section.

2.1.2 Concepts
Concepts are sets of syntactical and semantical require-
ments on a type or a tuple of types. A concept that adds
requirements to another concept is called refinement. A
type or tuple of types that fulfill all requirements of a
concept is called a model of this concept. The require-
ments consist of

Valid Expressions: compilable C++ expressions that
the type must provide,

Associated Types: other types than the modeling re-
lated to the concept,

Invariants: semantical properties, which can required
to be true for all object of the type(s) — like as-
sociativity — or required on function arguments as
precondition — like symmetric values of a matrix
— and

Complexity Guarantees: maximum limits on com-
pute time and memory needs often depending on
complexity requirements on the parameters.

Currently, concepts are only documented and it is the
user’s responsibility to call generic functions correctly.
Errors concerning valid expressions and associated
types are syntactic and caught by the compiler. Invari-
ants are semantic properties and undetectable by cur-
rent compilers. It is very likely that the next standard of
C++ will introduce concepts into the language [9] but
this is beyond the scope of this paper.

2.2 Genericity in Inheritance-based OO
Similar multi-functionality as in Section 2.1 can be
achieved without generic programming by using in-
heritance. The difficulties and limitations arising from
this derivation approach are discussed in this subsec-
tion. Nevertheless, this limited form of abstraction is
used very often in OO software; maybe more often than
generic implementations.

2.2.1 Case study: accumulate

Instead of a concept like Iterator, we need an explicitly
implemented base class with virtual functions:

struct iterator base
{

virtual iterator base& operator++() = 0;
virtual int operator∗() const = 0;

virtual bool
operator==(const iterator base& x) const = 0;

virtual bool
operator!=(const iterator base& x) const {

return !(∗this == x);
}

};

Classes entirely consisting of pure virtual functions are
called “interface classes” with respect to their usage. In
our example we have one virtual function that is not
pure but is realized in terms of pure virtual functions
and we therefore regard the type still as interface class.

The actual iterator type is than derived from this
interface class:

struct list iterator : public iterator base
{

list iterator(list element∗ me) : me(me) {}

list iterator& operator++() {
me= me→next; return ∗this;

}
int operator∗() const { return me→v; }
bool operator==(const iterator base& x)

const {
return me ==

dynamic cast<const list iterator&>(x).me;
}

private:
list element∗ me;

};

In the same fashion, an interface class for binary oper-
ations is provided:

struct operation base
{

virtual int operator()(int, int) const = 0;
};

This class is derived in straightforward manner to real-
ize binary operations as addition:

struct add op : public operation base
{

int operator()(int x, int y) const { return x + y; }
};

The function accumulate1 can be implemented against
the two interfaces:

int accumulate(const iterator base& begin,
const iterator base& end,
int init, const operation base& op)

{
for (; begin != end;

++const cast<iterator base&>(begin))
init= op(init, ∗begin);

return init;
}

Using appropriate iterator and operation types, differ-
ent reduction operations on different containers can be
realized:

list l; l.push back(3); l.push back(5);
int sum= accumulate(l.begin(), l.end(), 0, add op());
int p= accumulate(l.begin(), l.end(), 1, mult op());

int a[]= {4, 5};
int asum= accumulate(array iterator(a),

array iterator(a+2), 0, add op());

2.2.2 Discussion
Although the usage of interface classes allows for a
comparable lifting process, the approach has several
serious disadvantages but also some advantages. We
will start with the latter.
1 For the sake of simplicity we omitted the abstraction of the oper-
ations’ argument and result types.

Compile time: With the interface approach, the lifted
function is only compiled once with the interface types.
The distinction between the different calculations is re-
alized at run-time by means of virtual function tables.
The generic implementation requires a new compila-
tion for each combination of types. As a consequence,
the sources must reside in header files2 and cannot be
stored to libraries.3

Executable size: As mentioned before, generic func-
tions need multiple compilations and as a result of this,
the generated executable contains code for each insta-
tiation. A function programmed against an abstract in-
terface exist only once. On the other hand, the virtual
functions introduce some additional memory need to
store the virtual function tables. Except for some patho-
logical examples, one can expect that this additional
space is less than the extra space needed for having sep-
arate machine code for every instantiation of a generic
function.

Performance: The higher compilation efforts for
generic programming has a double performance bene-
fit. Functions/functors within the multi-functional com-
putations do not need to be called indirectly via ex-
pensive function pointers but can be called directly.
Whenever appropriate they can be even inlined saving
the function call overhead entirely. We measured the
performance gain in the considered case study of the
two accumulate implementations. Adding 1000 int in
an array takes 42.3 µs with the interface approach and
1.8 µs with STL accumulate (without concept-based
optimizations [6]) on a 2.6 GHz AMD Athlon.

Handling of r-values: Considering the code exam-
ples before, it is convenient to pass parameters of con-
tainers given as r-values [11] — i.e. results of expres-
sions such as l.begin() — directly to a generic func-
tion, e.g., accumulate(l.begin(), ..). Types like point-
ers and iterators have small objects and passing by
value to functions is suitable. The interface approach
does not allow passing arguments because it would cre-
ate objects of abstract types. When using pointer argu-
ments or non-const references for arguments r-values
like l.begin() must be stored first into variables before
they can be passed to function. Const references are
more convenient in this regard but disable modifica-

2 Unless export will be commonly supported by compilers.
3 Libraries in the classical sense as opposed to template libraries.

tions or require error-prone const casts as we did in
the example

Concept refinement: that is adding (syntactic) re-
quirements is feasible with the interface approach. Pub-
licly deriving from an interface class (say Interface1)
by adding pure virtual functions leads to another in-
terface class (say Interface2). This is isomorphic to
creating Concept2 by adding syntactic requirements to
Concept1. Analogously, types that model only Concept1
but not Concept2 can be derived from Interface1 but
not from Interface2 in the inheritence-oriented imple-
mentation. Although this approach allows for emulat-
ing a concept hierarchy, the class hierarchy is unnec-
essarily inflated sacrificing clarity and finally also con-
tributing to increasing compile time (without improv-
ing execution time).

Intrusiveness: The genericity emulation by inheri-
tance induces not only a deep class hierarchy as men-
tioned before, more critical for the universal appli-
cability is that the technology is intrusive. No itera-
tor type that is not derived from iterator base can be
used with the interface implementation of accumulate
from Section 2.2.1. Not even if the iterator provides
the correct interface! To enable such an iterator for
this accumulate, one must change the class definition.
Needless to say that such modifications are not always
feasible with third-party software or intrinsic types. For
instance, pointers cannot be passed to the interface im-
plementation but to the generic function. Generic func-
tions are written in terms of free functions and type
traits so that appropriate third party classes and intrin-
sic types can be provided with the necessary interface
without intruding into the definition.

Résumé: It is not our goal to compare object-oriented
and generic programming in general. The two ap-
proaches complete each other in many respects and
this is beyond the scope of this paper. However, when
only considering the aspect of maximal applicability
with optimal performance the generic approach is un-
doubtly superior. Especially if functions of a library
are used with types defined outside this library, pos-
sibly necessary interface adaption is quite easy with-
out modifying the type definition while the addition of
extra base classes forces changing the type definition
what is not always possible (or desirable). In contexts
where functions are used with limited numbers of types

and they are defined in the same library, derivation can
be an appropriate technique to achieve polymorphism.

3. Realization in Real-world Software
Packages

Many program techniques work well as long as ap-
plied to simple tasks but reveal severe difficulties once
used in large-scale software development. For this rea-
son, we consider state-of-the-art packages of signifi-
cant code complexity.

3.1 Matrix Template Library 4
MTL4 is a generic library for high-performance nu-
meric operations on matrices and vectors [7, 14]. At the
moment it provides a dense vector format, compressed
sparse matrices, dense matrices and a large spectrum of
recursively lay out dense matrices (like Morton-order
in the simplest case). Traditional dense matrices can be
stored in row-major order like C/C++ arrays or column-
major like Fortran arrays. Sparse matrices are available
as compressed row storage (CRS) and compressed col-
umn storage (CCS). The elements of the vectors can
be intrinsic arithmetic or user-defined types as quater-
nions, intervals, high-precision numeric types and ma-
trices and vectors themselves.

The library contains multiple new techniques as
implicit enable-if and meta-tuning (short for perfor-
mance tuned based on meta-programming). The latter
allows for performance optimization like changing the
block size of an unrolled loop or modifying tile sizes in
blocked algorithm that otherwise require code rewrit-
ing. Thanks to meta-tuning the user can choose such
parameters with template arguments in the function
call and the compiler will generate corresponding code,
e.g., dot<12>(u, v) computes a dot product with an
unrolled loop using a block size of 12. The technique
has proved high efficiency, partly out-performing as-
sembler libraries as GotoBLAS [8].

3.2 AMDiS
AMDiS (Adaptive Multi-Dimensional Simulations)
[20] is a toolbox for multi-dimensional simulation of
physical phenomena and processes with a focus on
solving problems in material science. It is based on the
concepts of ALBERTA [18], an adaptive finite element
toolbox for the numerical solution of partial differential
equations (PDEs), but extends this concepts in several
points and realizes them in a modular object-oriented
design. Besides a much more modern software design,

which allows for a more flexible use of the software,
the main additional feature is the extension of several
concepts to systems of PDEs and coupling of problems
over different dimensions.

AMDiS solves general systems of second order
PDEs. Problem formulations can be done on a high
level of abstraction in a dimension independent way.
Numerical implementation details are user-transparent,
as far as possible. This makes it very easy for the user
to implement and to test equations in 1D or 2D, and
to solve them afterwards on a 3D geometry without
changing the code. To solve time-dependent equations,
a stationary problem and a time iteration interface have
to be defined. The latter allows for controlling the
whole process by implementing functions of this in-
terface.

To solve complex problems on large domains with
long timescales, AMDiS supports adaptivity in space
and time. The goal of adaptivity is to achieve a solution
that satisfies a given maximal error threshold (with
as little computational effort as possible). In several
case studies [2, 5, 17] we have shown the necessity of
adaptivity for complex physical simulations.

A novel parallelization concept, called full domain
covering meshes, is implemented in AMDiS [19]. Clas-
sical domain decomposition approaches divide the full
problem domain into smaller partitions, which are than
distributed to all processes. When data changes at par-
tition boundaries, it must be communicated with the
corresponding processes. Using full domain covering
meshes reduces the parallel communication overhead.
Here, each process computes a solution on the whole
domain. Outside of its local partition a relatively coarse
mesh is used. At the end of computation, the different
processes combine their solutions into one global solu-
tion by the partition of unity method.

4. Integration
A significant fraction of ongoing development activi-
ties in AMDiS is dedicated to raising the performance.
A central component with large potential of accelera-
tion is the so-called DOFMatrix that contains the as-
sembled element matrices over the degrees of free-
dom, therefore the name. It is heavily used in the lin-
ear solvers, thus strongly impacting the overall perfor-
mance of every application.

The compressed sparse matrices in MTL4 provide
optimal performance for general purpose. Innovative

matrix types particularly suitable for FEM applications
are under development. Refactoring the DOFMatrix
based on MTL4 matrices will have an immediate per-
formance boost.4

There are more advantages of using a generic matrix
type as opposed to a hard-wired single type implemen-
tation. The DOFMatrix can be changed regarding the
element type to complex by modifying only one line
of code; or to fixed-size matrices for achieving better
locality (i.e. higher performance) by blocking; or to in-
tervals to examine the numerical stability of solvers; or
to types with operators overloaded for automatic dif-
ferentiation (AD) [10]; or to any combination of the
above.

Last but not least, MTL4 matrices and the respective
operations will be extended in the near future towards
parallelism on shared and distributed memory. Further-
more, accelerations for future high-performance pro-
cessor generations are planned.

In order to achieve maximum genericity, we templa-
tized the DOFMatrix class regarding the used matrix
type from MTL4 (or somewhere else):

template <typename BaseMatrix
= mtl::compressed2D<double> >

class DOFMatrix
{

/∗ ... ∗/
private:

BaseMatrix matrix;
};

The first problem with this templatization is that the en-
tire definition of DOFMatrix must be completely visi-
ble for all using entities. It must be therefore moved
from source to header file(s). As it only concerns
the DOFMatrix itself and not the utilizing library
segments, this modification is fortunately local and
can be limited to the two files DOFMatrix.h and
DOFMatrix.cpp.

The second issue is that declarations of DOFMatrix
exist in many other files which need to be adapted to
the templatization. Such declaration adaption can be re-
duced to one single code modidification when instead
of repeating declarations in all concerned files one ded-
icated file exist in the library containing only function
and class declarations. Since this file is entirely inde-

4 Unfortunately, the refactoring is not entirely finished by the time
of that writing so that we cannot provide performance plots yet. We
expect showing them at the workshop.

pend on the remainder of the sources it can be included
in all other files. It is a common practice to name such a
file like the library with an abbreviated ‘forward’ suffix,
i.e. in our case amdis fwd.h.

The third modification is that free and member func-
tions with DOFMatrix as argument must be templa-
tized as well. Those that are already template functions
need an additional template argument for BaseMatrix.
Unfortunately, these program alterations appear through
a multitude of files while the changes are typically lim-
ited to few lines.

The most significant problem is the conflict between
template classes and virtual functions. AMDiS uses
virtual functions to a large extent, typically in the form:

class c1
{

virtual void f1(DOFMatrix& m) = 0;

void f2(DOFMatrix& m) {
f1(m); /∗ ... ∗/;

}
};

class c2 : public c1
{

void f1(DOFMatrix& m) { /∗ ... ∗/ }
};

Virtual functions cannot be templatized in C++,5 e.g.,
one cannot write:

class c1
{

template <typename BaseMatrix>
virtual void f1(DOFMatrix<BaseMatrix>& m) = 0;

template <typename BaseMatrix>
void f2(DOFMatrix<BaseMatrix>& m) {

f1(m); /∗ ... ∗/;
}

};

It is possible to templatize the entire class:

template <typename BaseMatrix>
class c1
{

virtual void f1(DOFMatrix<BaseMatrix>& m) = 0;

void f2(DOFMatrix<BaseMatrix>& m) {
f1(m); /∗ ... ∗/;

}
5 The effort in compiler technology would be enormous and out-
weight the benefits.

};

The consequence of such modification would be an
avalanche of more code changes since all classes con-
taining virtual member functions with c1 as argument
would then require modifications as well and all classes
containing More importantly, this extensive class
templatization would be conceptually wrong because
c1 is not directly parametrized by BaseMatrix but only
some of its member functions.

Facing all these technical complications, in particu-
lar the last one of templatizing virtual functions, we re-
frained from general templatization of AMDiS, at least
for the near future. The general templatization would
cause a complete redesign of AMDiS and also bearing
the risk of significant increases of applications’ com-
pile times.

Instead, we opted for a compromise that we call
installation-static genericity similar to the choice of the
scalar type during the installation of PETSc.

In fact, PETSc is not generic, its development was
started before the introduction of generic programming
in C++. Moreover, it is written in C impeding generic-
ity at large. PETSc contains a macro definition for its
scalar type and all vectors and matrices consist unex-
ceptionally of this scalar type. When installing PETSc,
the user must choose the scalar type and applications
must be written for this type. If applications with differ-
ent scalar types exist, multiple installations of PETSc
are required. Despite the fact that PETSc only works
with float, double and their respective complex types
as scalars one can consider this as a limited form of
genericity.

In AMDiS we fix the type of DOFMatrix’s base
matrix:

class DOFMatrix
{

typedef mtl::compressed2D<double>
base matrix type;

/∗ ... ∗/
private:

base matrix type matrix;
};

This does not affect the design of the library, i.e. pro-
gram sources does not need to moved from source files
to header files and polymorphism is still dominantly
realized by means of virtual functions. However, all
functions in AMDiS that explicitly rely on the internal

structure of DOFMatrix — mostly linear solvers and
assembly routines — are consequently refactored to-
wards generic implementations. As a consequence, the
base matrix type can be changed without further need
of modifications in the remainder of the library. This
allows for easy switching to complex types, intervals,
infinite-precision numerics, or to any other appropriate
numeric type. Furthermore, the entire structure of the
sparse matrix can be changed within one line towards
unassembled, sparse banded, optimized symmetric, or
distributed matrices, all under development in MTL4.

5. Conclusion
The integration of the generic linear algebra library
MTL4 into the OO finite element software AMDiS dis-
closed several technical difficulties. These difficulties
impeded the full usage of MTL4’s genericity. Instead,
we constraint ourselves to installation-static genericity,
i.e. data types can be freely choosen during installation
but not in the applications. This allows for future ex-
tensions as complex matrices or sparse band matrices
without the need for fundamental redesign of AMDiS.

References
[1] Matthew H. Austern. Generic programming and the

STL: Using and extending the C++ Standard Template
Library. Professional Computing Series. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1998.

[2] Eberhard Bänsch, Frank Haußer, Omar Lakkis, Bo Li,
and Axel Voigt. Finite element method for epitaxial
growth with attachment-detachment kinetics. Journal
of Computational Physics, 194:409–434, 2004.

[3] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling.
A set of level 3 basic linear algebra subprograms. ACM
Transactions on Mathematical Software, 16(1):1–17,
1990.

[4] J. Dongarra, J. Du Croz, S. Hammarling, and R. Han-
son. Algorithm 656: An extended set of basic linear
algebra subprograms: Model implementations and test
programs. ACM Transactions on Mathematical Soft-
ware, 14(1):18–32, 1988.

[5] Frank Haußer and Axel Voigt. A discrete scheme for
parametric anisotropic surface diffusion. Journal of
Scientific Computing, 30:223–235, 2007.

[6] Peter Gottschling and Walter E. Brown. Fundamental
mathematical concepts for the stl in C++0x. Technical
Report N2645=08-0155, ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming
Language C++, June 2008.

[7] Peter Gottschling, David S. Wise, and Michael D.
Adams. Representation-transparent matrix algorithms
with scalable performance. In ICS ’07: Proceedings
of the 21st annual international conference on Su-
percomputing, pages 116–125, New York, NY, USA,
2007. ACM Press.

[8] Peter Gottschling, David S. Wise, and Adwait Joshi.
Generic support of algorithmic and structural recursion
for scientific computing. In Parallel Object-Oriented
Scientific Computing workshop at ECOOP08, Cyprus,
Greece, 2008.

[9] D. Gregor, B. Stroustrup, J. Widman, and J. Siek.
Concepts (revision 5). Technical Report N2617=08-
0127, ISO/IEC JTC 1, Information Technology,
Subcommittee SC 22, Programming Language C++,
June 2008.

[10] Andreas Griewank. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. Num-
ber 19 in Frontiers in Appl. Math. SIAM, Philadelphia,
PA, 2000.

[11] Howard E. Hinnant, Dave Abrahams, and Peter Dimov.
A proposal to add an rvalue reference to the C++
language. Technical Report N1690=04-0130, ISO/IEC
JTC 1, Information technology, Subcommittee SC
22, Programming language C++, September 2004.
http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2004/n1690.html.

[12] C. Uhrig K. Mehlhorn, S. Näher. Leda: Library of
efficient datatype and algorithms. http://www.mpi-
sb.mpg.de/LEDA/, 1998.

[13] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Ba-
sic linear algebra subprograms for fortran usage. ACM
Transactions on Mathematical Software, 5(3):308–
323, 1979.

[14] Andrew Lumsdaine, Jeremy Siek, Lie-Quan Lee, and
Peter Gottschling. The Matrix Template Library home
page. http://www.osl.iu.edu/research/mtl,
2006.

[15] David R. Musser and Alexander A. Stepanov. Generic
programming. In P. (Patrizia) Gianni, editor, Symbolic
and algebraic computation: ISSAC ’88, Rome, Italy,
July 4–8, 1988: Proceedings, volume 358 of Lecture
Notes in Computer Science, pages 13–25, Berlin, 1989.
Springer Verlag.

[16] P. J. Plauger. The Standard C Library. Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, 1992.

[17] Andreas Rätz and Axel Voigt. PDE’s on surfaces
- diffuse interface approach. Communications in
Mathematical Science, 4:575–590, 2006.

[18] Alfred Schmidt and Kunibert G. Siebert. Design of
Adaptive Finite Element Software: The Finite Element

Toolbox ALBERTA, volume 42 of LNCSE. Springer.

[19] Simon Vey and Axel Voigt. Adaptive full domain cov-
ering meshes for parallel finite element computations.
Computing, 81(1):53–75, 2007.

[20] Simon Vey and Axel Voigt. AMDiS: adaptive multi-
dimensional simulations. Computational Visualization
and Science, 10:57–67, 2007.

