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Abstract

Image registration algorithms rely on multilevel strategies in order to improve efficiency and robustness. Hierarchies in image reso-
lution, the underlying grids for spline-based transformations, as well as the regularisation parameters are used. This paper deals with the
optimisation of the coupling of these hierarchies.

An image registration procedure – suitable for 2D polyacrylamide gel electrophoresis images – using piecewise bilinear transforma-
tions and an intensity based objective function with a regularisation term based on the elastic deformation energy is described. The result-
ing nonlinear least squares problem is solved by the Gauss–Newton method.

Techniques reminiscent of dynamic programming are used to optimise the coupling of hierarchies in image and transformation res-
olution. Besides using these techniques to devise an advantageous fixed coupling of both hierarchies, we favour incorporating the
dynamic programming ideas into the final registration algorithm. This leads to an adaptive and streamlined approach.

Numerical experiments on 2D-PAGE images show that the adaptive registration algorithm is much more reliable than the same algo-
rithm with a fixed coupling of hierarchies. The proposed optimisation procedure for the coupling of hierarchies presents a valuable tool
to optimise other registration algorithms.
� 2008 Published by Elsevier B.V.
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1. Introduction

Image registration is one of the most challenging tasks
in image processing. The computation of a transformation
that maps a given template image to a reference image
requires the solution of a high-dimensional nonlinear min-
imisation problem. Efficiency and robustness of suitable
optimisation algorithms are enhanced by multi-resolution
techniques. Hierarchies in image and transformation reso-
lution are used. We present here a general approach to cou-
ple multiple, in our case two, hierarchies based on
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techniques from dynamic programming. The efficiency of
the approach is illustrated using the example of a registra-
tion algorithm based on piecewise bilinear transformations
and elastic regularisation applied to 2D-PAGE (polyacryl-
amide gel electrophoresis) images.

The analysis of 2D-PAGE image pairs, or more general
sets of image groups, aims at identifying corresponding
spots (detection and assignment) and discovering differ-
ences in the spot pattern. A typical and widely used first
step in performing this analysis is the registration of image
pairs. The main objective of this first step is to remove
those distortions in the gel images which are the result of
uncontrolled experimental side conditions and of the han-
dling of gels (e.g. the scanning procedure). A rough regis-
tration that leads to substantial overlap of corresponding
spots is sufficient for this step. A particularity at 2D-PAGE
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images is that spots are very local features and hence, in a
registration of two images, spots may have no initial over-
lap at all.

A general overview on image registration is given in [25].
The authors of [5] review variational approaches with
emphasis on regularisation and computational techniques,
whereas [16] investigates variational approaches, viscous
flow, and several regularisers in depth. The objective func-
tion of the registration problem may be either intensity
based or landmark based. Landmark based registration
requires either manual setting of landmarks [20] or feature
detection [24,18]. A framework for the combination of
landmark based and intensity based registration is given
in [7]. Aiming at automatic registration procedures, inten-
sity based registration is a natural approach. For images
captured by the same machinery the L2-distance of the
images is a widely used choice as distance measure, see
[14,11,13,15,12,16,23,5,24]. Otherwise, statistical
approaches, based on mutual information, see [4], can be
used.

Non-parametrised registration leads to ill-posed prob-
lems which have to be regularised, typically using a penalty
term in the objective function. The elastic potential of the
transformation is a commonly used penalty term
[4,11,24], furthermore curvature [12], and also Tikhonov
stabilisation [15]. In optical flow registration, viscosity
serves as regularisation parameter [16,4]. For a comprehen-
sive overview on regularisers, see [16]. In contrast, para-
metrised registration uses a finite-dimensional function
space, where regularisation is not mandatory, see e.g.
[13,18,20,23], however, with an increasing number of
parameters, a regularisation is highly advisable.

Optimisation algorithms typically are based on deriva-
tive/gradient information of the objective function. The
reader should note that features (spots) that do not overlap
in the two images to register, do also not contribute to the
gradient of the objective function and hence are not taken
into account in the optimisation process. The use of image
pyramids – a hierarchy of different resolutions of each
image – solves this problem, see [13,18,15,23,10,22]. Fur-
thermore, hierarchies in transformation classes are fre-
quently used to improve computational efficiency, see
[4,21,20,23,13]. For instance, piecewise bilinear transfor-
mations can be defined on increasingly finer grids. Also,
in the case of non-parametric transformations, the smooth-
ness controlled by a regularisation parameter can be incor-
porated in a hierarchy [11,12].

Hierarchies are coupled in several approaches. A hierar-
chy of piecewise bilinear transformations together with a
hierarchy in the landmarks is used by Salmi et al. [20] for
the registration of gel images. However, they give no com-
ments on the relation between the hierarchies. A fixed cou-
pling between image resolution and regularisation
parameter is used by Gustafsson et al. and Rogers et al.
[10,18]. Haber and Modersitzki [11] use a grid hierarchy
to estimate suitable regularisation parameters by line
search. The case of the coupling of a hierarchy of images
at different resolutions with transformations defined on a
hierarchy of underlying grids is used in [23,22]. Veeser
et al. [23] use an image pyramid and piecewise bilinear
transformations (linear B-splines) without a regularisation
term. Sorzano et al. [22] use cubic B-splines to generate
image hierarchies as well as transformation hierarchies.
Their regulariser is based on gradients of divergence and
vorticity of the displacements. Nevertheless, both
approaches use a fixed coupling between image and trans-
formation resolution.

To the best of our knowledge, there has not yet been
devised a strategy to couple image and transformation hier-
archies efficiently. This paper aims to close this gap by sup-
plying a dynamic programming based approach. This
approach is applied to the registration of gel images using
the Euclidean distance measure, image resolution pyra-
mids, a hierarchy of bilinear transformations and the elas-
tic potential as regulariser.

The remainder of this paper unfolds as follows. In Sec-
tion 2, we review the task of elastic image registration,
without any hierarchies, using piecewise bilinear transfor-
mations. Then, in Section 3, we introduce transformation
grid and image resolution hierarchies and devise a strategy
for their coupling. Here, we use ideas from dynamic pro-
gramming. This completes the definition of our elastic
image registration algorithm. In Section 4, we apply the
devised algorithm to the registration of pairs of sample
gel images and discuss its performance. These experiments
lead to an additional streamlining of the algorithm.
Finally, Section 5 ends the paper with a summary and
conclusions.

2. Elastic image registration

2.1. Basic terms of image registration

For the task of image registration we are given two
equalised grey-scale images, a fixed reference image IR

defined on XR � R2 and a deformable template image IT

defined on XT � R2, and we aim to identify a continuous
and invertible transformation M, which transforms
approximately the template image into the reference image,
i.e. IR � MðITÞ. We assume that the images are defined by
grey-scale values on an integer lattice (pixel values) and by
bilinear interpolation in between. As usual we define
MðITÞðx; yÞ :¼ ITðMðx; yÞÞ where M is a mapping from
XR in R2. Note, that the reference image and the trans-
formed template image MðITÞ overlap on XðMÞ :¼
XR \M�1ðXTÞ.

The image registration task is posed as a minimisation
problem, where the objective function

f ½M � :¼ E1ðM ; IR; ITÞ þ E2ðMÞ ð1Þ

has to be minimised over the class M of admissible trans-
formations. Here, E1 is a measure of the distance between
IR and MðITÞ and E2 serves as a penalty term to regularise
the problem. It is easily verified that the registration
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problem without regularisation is ill-posed. To this end,
note the fact that all transformations M that have the iso-
lines of IT as invariant sets yield the same MðITÞ.

2.2. Measure of distance E1ðM ; IR; ITÞ

Our measure of distance between IR and MðITÞ is based
on the L2-norm of their difference on their domain of over-
lap XðMÞ. We weight this difference with 1= j XðMÞ j to
give preference to transformations with large domain of
overlap. Considering only the pixel positions XðMÞ \ Z2

on the domain of overlap, we then define

E1ðM ; IR; ITÞ :¼ 1

jXðMÞ \ Z2jX
ði;jÞ2XðMÞ\Z2

ðMðITÞði; jÞ � IRði; jÞÞ2; ð2Þ

where jXðMÞ \ Z2j is the number of grid points (pixels)
contained in XðMÞ.

We remark, that there are several alternatives. Mutual
agreement – the scalar product of IR and MðITÞ – is used
as well, but it is strongly correlated to the L2-norm. We
believe, that in the case of equalised images, taking the
L2-norm of the difference will lead to appropriate results.
For non-equalised images or images captured by different
imaging modalities, more sophisticated concepts based on
statistical models or topological analysis can be applied.

2.3. The class of transformations M

We denote by MpblðLx; LyÞ the classes of continuous and
piecewise bilinear transformations on the rectangular
domain XR which is partitioned into a grid of Lx � Ly con-
gruent rectangles. In order for such a transformation to be
invertible on XR any rectangle of the partition of XR has to
be mapped to a convex, non-degenerate quadrilateral. The
subclass of invertible transformations is denoted by
M�

pblðLx; LyÞ.
Each transformation M 2MpblðLx; LyÞ is parametrised

by a vector U 2 R2ðLxþ1ÞðLyþ1Þ of displacements in the grid
points; M ¼ M ½U �. Furthermore, with each transformation
M ½U � we associate a displacement field

uðx; yÞ :¼ M ½U �ðx; yÞ � ðx; yÞ
2.4. The elastic penalty term E2ðMÞ

Besides the intensity difference E1, our objective function
f ½M � includes a penalty term E2. The penalty term in elastic
image registration is the elastic energy associated with the
transformation M. This term acts as a regulariser for the
otherwise ill-posed registration problem. As a desired side
effect, transformations close to pure translations are given
preference.

Employing linear elasticity theory for a plate under
plane strain [2], we obtain the elastic energy of M ½U � from
its displacement field u as a positive semidefinite bilinear
form

EðM ½U �Þ ¼
Z

XR

lDu : Duþ k=2ðr � uÞ2 dxdy P 0; ð3Þ

where Du ¼ ðruþruTÞ=2 and l; k > 0 are the Lamé con-
stants. These constants characterise the elastic material
being used. For transformations M ½U � 2MpblðLx; LyÞ, the
elastic energy can be written as EðM ½U �Þ ¼ 1=2UTKU ,
where K is called the stiffness matrix.

We define the term E2ðMÞ :¼ EðM ½U �Þ=jXRj as the
elastic energy of M ¼ M ½U � scaled by the size of the domain
XR. Scaling by the size makes the choice of regularisation
parameters independent of the image size.

2.5. Numerical solution of the nonlinear least squares

problem

With the choices made in the previous subsections, the
minimisation problem for the image registration task is a
constrained nonlinear least-squares problem. The con-
straint derives from the fact that we require invertible
transformations M ½U �. This implies that the set of admissi-
ble vectors U is an open set and hence the constraint should
never become active. For this reason, we treat the problem
as an unconstrained minimisation problem. We opted for
the Gauss–Newton method for the solution of uncon-
strained nonlinear least-squares problem, see e.g. [8]. The
line search strategy (Goldstein–Armijo) is adjusted to
ensure that all computed transformations are invertible.
Furthermore, the Jacobian is regularised by a threshold
in the QR-decomposition. For alternative nonlinear mini-
misation schemes, see [11,15,5].

The selection of a suitable predictor (starting value) U ð0Þ

for the Gauss–Newton method is crucial for its efficiency
and is the main issue discussed in Section 3.

3. Optimised coupling of hierarchies in image and

transformation resolution

In Section 2, we considered an image registration algo-
rithm applicable to an equalised image pair ðIR; ITÞ of fixed
resolution. Also the class of transformations M�

pblðLx; LyÞ
was fixed with specified values Lx and Ly for the underlying
grid. The algorithm is based on the iterative Gauss–New-
ton method for the minimisation of the objective function
f ½M � – a highly nonlinear problem. For the efficiency and
reliability of the procedure the choice of the predictor,
i.e. starting value for the iteration, is critical. A well-chosen
predictor reduces the number of iterations necessary for
convergence and therefore the computational effort.

The objective of this section is to devise a strategy, such
that suitable predictors can be provided for the Gauss–
Newton method, as described in Section 2, in order to
guide the overall algorithm to a global solution of our
optimisation problem. The key to this strategy is to employ
two hierarchies: a pair of image pyramids (one pyramid for
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each of the images IR and IT) containing the same image at
different resolutions and a hierarchy of transformation
classes M�

pblðLx; LyÞ, where the underlying grid, and hence
the number of free parameters, varies. These hierarchies
are described in the following two subsections. A suitable
coupling of both hierarchies is subsequently developed
employing ideas from dynamic programming.

We remark that the coupling of the two hierarchies may
be fixed or adaptive. For a fixed coupling the dynamic pro-
gramming procedure is run on a subset of the image class,
the best coupling is determined and used for subsequent
registration tasks. Adaptive coupling uses the dynamic pro-
gramming technique for each registration task.

3.1. The image pyramids

The choice of the search direction in the Gauss–Newton
method is based on a linearisation of the functional f ½M �.
In order to globalise the information contained in the line-
arised functional the utilisation of image resolution pyra-
mids is indispensable, see [13,18,23,10]. Multi-resolution
approaches based on B-splines are used in [15,22]. We
use image pyramids based on the algorithm of Burt–Adel-
son [3]. We note that when the image resolution is
decreased by sub-sampling then it has to be low-pass fil-
tered in advance to avoid aliasing, see [1].

Given an image I : X! R (I 2 fIR; ITg), the image at
level l has a resolution decreased by a factor of 2l in each
direction. The image at level l ¼ 0 is defined to be the ori-
ginal image, I0 :¼ I . The image at level lþ 1 is computed
from the image at level l via Gaussian filtering (Gr) and
sub-sampling (S2)

Ilþ1 :¼ S2ðGrðIlÞÞ: ð4Þ
The sampling operator S2 simply selects every second pixel
in each direction. The filter operator Gr is a finite impulse
response filter working with a 5� 5 window. It is con-
structed as a tensor product of Gaussian distributions in
one dimension with mean zero and variance r2. The filter
is therefore separable. Using indices �2 6 i; j 6 2 in the
5� 5 window, the convolution kernel is given by

wij ¼ d expð�ði2 þ j2Þ=ð2r2ÞÞ; ð5Þ

where the normalisation factor d is chosen such thatP
i;jwij ¼ 1.
A good choice for the parameter r in Gr is obtained by

the sampling theorem. Note that signals expðixxÞ of fre-
quency x will be damped by a factor expð�ðx2r2=4ÞÞ. With
r ¼ 1, the critical frequency x ¼ p is damped by a factor
expð�p2=4Þ � 0:08.

We will start the global minimisation procedure to be
devised on a suitable image level lmax (i.e. a suitably low
resolution) selected such that at this resolution important
global information is captured only. Then the resulting
transformation of the Gauss–Newton method applied to
the image pair ðIlmax

R ; I lmax
T Þ and started with the identity

transformation as predictor results in a transformation
which is a good candidate for a predictor on the next lower
image level lmax � 1 (next finer resolution) and so on.

3.2. The transformation hierarchy

The piecewise bilinear transformations incorporate a
natural hierarchy defined below. For our application we
choose the class parameters Lx and Ly equal and as powers
of two: Lx ¼ Ly :¼ 2k. The value k ¼ 0; 1; 2; . . . is called the
grid level of the transformation. Then the classes of trans-
formation M�

pblð2
k; 2kÞ form the hierarchy

M�
pblð1; 1Þ �M�

pblð2; 2Þ �M�
pblð4; 4Þ � . . . ð6Þ

where coarse transformations are extended to finer grids by
bilinear interpolation.

Similar as for the image levels, the resulting transforma-
tion of grid level l of the Gauss–Newton method provides a
good candidate for a predictor on the next higher grid level
lþ 1 where computations are more expansive.

3.3. Optimised coupling by dynamic programming techniques

Dynamic programming [6] is a technique applied in
combinatorial optimisation. Roughly speaking, the solu-
tion of complex optimisation problems is computed from
the solution of smaller subproblems. The main ideas of
dynamic programming are the decomposition of the prob-
lem into overlapping subproblems and the memoisation of
the solution of previously solved subproblems in a dynamic
programming array. The data stored in the array are then
used to solve other subproblems, eventually the problem
one is interested in. So the dynamic programming array
is built up gradually. If the subproblems possess an optimal
substructure, then using the dynamic programming
approach will yield optimal results. A typical example of
the dynamic programming approach is for instance the
Needleman–Wunsch algorithm for global string alignment,
see [9]. In contrast to that, in our application we have to
assume that a better registration on lower resolutions will
lead to a better (or faster) registration on finer resolutions
– there is no proof. Although it lacks a strict optimal sub-
structure property the approach seems to be a good
heuristic.

We next describe how the ideas from dynamic program-
ming can help to solve the image registration problem effi-
ciently by connecting the image and transformation
hierarchies. For each image level l and each grid level k,
we denote by Mk;l an optimal transformation from class
M�

pblð2
k; 2kÞ for the image pair ðIl

R; I
l
TÞ. The transforma-

tions Mk;l will form the entries of the dynamic program-
ming array. The final goal of the algorithm is the
computation of an optimal transformation Mkmax;lmin for a
pair of images ðIR; ITÞ. In subsequent steps we use minimis-
ers from coarser grids and/or coarser images as predictors
for Gauss–Newton iterations on finer grids and/or finer
images (starting with the identity transformation on the
coarsest levels). The natural choice for predictors for the
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computation of entry Mk;l of the dynamic programming
array among all previously computed entries/minimisers
are Mk�1;l, Mk�1;lþ1, and Mk;lþ1 (if they are entries of the
array). Because we have experienced that for a too large
maximum image level lmax, the transformations computed
on the coarsest image levels are sometimes of no use as pre-
dictors for finer image levels, the identity transformation I

is used as an additional predictor on all levels. By that, the
choice of lmax becomes uncritical provided it is large
enough.

The ideas from dynamic programming may now be used
in two different ways

(a) run the algorithm on a subset of the image class1 to
identify a promising pathway through the dynamic
programming array that is fixed afterwards for the
registration process of the whole image class or

(b) use the algorithm above (with some modifications) to
determine the path adaptively for each image pair.

We have followed both, the preprocessing (a) and the
adaptive (b), approaches and they are described in further
detail in the following subsections.

3.4. The preprocessing approach

At each level ðk; lÞ we have a set Sk;l of up to 4 predictors
available. Besides the identity we use transformations from
the coarser levels ðk; lþ 1Þ; ðk � 1; lÞ; ðk � 1; lþ 1Þ when-
ever these levels exist and the transformations have been
computed successfully. We execute Gauss–Newton itera-
tions for each of the up to four predictors
P 2 fI ;Mk;lþ1;Mk�1;l;Mk�1;lþ1g and compare the resulting
transformations MðP Þ with respect to a predictor selection
criterion H ¼ HðMðPÞÞ. The predictor leading to the small-
est value of that criterion defines the new transformation
Mk;l.

3.4.1. Predictor selection criterion

The idea behind the predictor selection criterion
HðMðP ÞÞ :¼ T sðMðP ÞÞ with parameter s P 0 is to combine
a high quality of the registration with reasonably fast com-
putation times. We choose the predictor that leads to min-
imal total computation time among those predictors that
lead to almost optimal quality (small values of f ½M �).

To this end, define T ðMðP ÞÞ as the total time spent to
compute the transformation MðPÞ. Thus T ðMðP ÞÞ is given
recursively by

T ðIÞ ¼ 0;

T ðMðP ÞÞ ¼ T ðP Þ þ T P!MðPÞ;

where T P!MðPÞ is the computing time for MðP Þ with the
Gauss–Newton method when P is used as predictor.
1 In our application, an image class is a large group of gel images from
similar experiments which share certain qualitative properties.
For s 2 R; s P 0, we define T sð�Þ by

T sðMðPÞÞ :¼
T ðMðP ÞÞ for f ½MðP Þ� 6 ð1þ sÞfmin

1 otherwise

�
with

fmin :¼ mineP2Sk;l

f ½MðeP Þ�:
For decreasing values of s, criterion T sð�Þ should lead to
better registration results at, in general, increasing compu-
tational effort. Note that T 0 corresponds to the objective
function, whereas T1 corresponds to the computing time
as predictor selection criterion.

3.4.2. Building the dynamic programming array

Starting with the identity as the only predictor available
on level ðkmin; lmaxÞ, the array is filled row by row. When an
optimal predictor on the finest levels is obtained, the opti-
mal path through the array is obtained by backtracking.

Remember that the registration procedure is supposed
to be applied to a large number of images all stemming
from the same application. In this case it can be expected
that there exist a few paths through the image and grid
hierarchies which lead to good results for most image pairs.
The algorithm described above can be used to identify
these paths when it is executed on a characteristic subset
of the images. This leads to the identification of a suitable
coarsest image level lmax for the application and, more
importantly, the sets of suitable predictors Sk;l

H can be
streamlined and some transformations Mk;l

H need not be
computed at all because they will never be used as predic-
tors. In the above notation the subscript H indicates that
this streamlining depends on the choice of the predictor
selection criterion H. With this once precomputed knowl-
edge for an image class, the adjusted algorithm will be
much more efficient when applied to the remaining image
pairs of the class. This optimisation procedure is illustrated
on sample images in Section 4.

3.5. The adaptive and the streamlined adaptive approach

In a pure adaptive approach the complete dynamic pro-
gramming array is computed for each image pair using all
available predictors (up to four) in order to obtain the
transformation on the finest grid and image levels. Since
in the adaptive approach we are only interested in the reg-
istration quality (the computation time has been spent any-
way), we use H ¼ T 0 as predictor selection criterion in that
case.

Especially on the finer image and grid levels, the adap-
tive approach leads to very time consuming computations.
Therefore it appears natural to identify promising predic-
tors for the grid and image level combinations on these
finer levels by making use of results from the preprocessing
approach, ultimately leading to a streamlined adaptive
technique. We stress however, that investing small addi-
tional amounts of computing time on coarser image and
grid levels, by using the (pure) adaptive approach there,
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will improve the quality of the overall registration and
reduce the total computational effort as well.

4. Results

4.1. Sample images

Image set A is the set of four images shown in Fig. 1.
They serve as samples for the preprocessing approach.
These 2D-PAGE images result from experiments on
transgenic plants which are transformed to produce a
bacterial avirulence gene. The resistance reaction leads
to the apoptosis of cells and finally dead leaves. The con-
trol group (bottom row in Fig. 1) lacks the avirulence
gene and thus the corresponding resistance reaction. All
images have roughly the same size of 1300� 1000 pixels.
Note that for a typical image height of 200 mm, this
corresponds approximately to a resolution of 5 pixels
per mm.

Image set B consists of five images taken from the Bie-
lefeld 2D-PAGE Escherichia coli database [17]. The image
size is roughly 700� 1000.

Image pair C is a pair of 2D-PAGE images from exper-
iments with the plant Arabidopsis thaliana which has been
exposed to cadmium ions. Under these conditions the syn-
thesis of metal binding peptides is triggered, see [19] for
details. Image size is as in set A. We consider all these
images to belong to the same image class.
Fig. 1. The four sample gel electrophoresis images from set A used in the prep
images I2 (left) and I3 (right).
4.2. The preprocessing approach

We apply the preprocessing approach developed in Sec-
tion 3 to the image registration algorithm described in Sec-
tion 2 using image set A.

The goal of the numerical experiment is to determine an
optimised coupling of the transformation and image hier-
archies for the given image class. Furthermore, we will
compare the registration results obtained using predictor
selection criterion T s for three values of s and also for sev-
eral strategies with respect to the maximum number of iter-
ations in the Gauss–Newton process. More precisely, we
consider

• The predictor selection criteria H ¼ T s for
s 2 f0; 0:05; 0:1g, see Section 3.4.

• Four strategies for the maximum number of iterations in
the Gauss–Newton process: when applying the Gauss–
Newton iterations to the set of predictors Sk;l

H , we fix a max-
imum number of iterations NP. When the decision on the
best predictor has been made, we continue the Gauss–
Newton process with the selected predictor and a possibly
higher number of maximal iterations N F for the final best
transformation on level ðk; lÞ. We consider fixed numbers
for N P; N F as well as numbers NGNðk; lÞ depending on
the grid/image level. These numbers NGNðk; lÞ vary from
20 for coarse grids/images to 4 for fine grids/images. Here,
we consider the following strategies:
rocessing approach. Upper row: images I0 (left) and I1 (right), lower row:
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1. NP ¼ 1, NF ¼ NGNðk; lÞ.
2. NP ¼ NGNðk; lÞ, N F ¼ NGNðk; lÞ.
3. NP ¼ 1, NF ¼ 1.
4. NP ¼ 3, NF ¼ 3.

The ratio of the Lamé constants l ¼ 10 and k ¼ 20 for
the elastic material has been chosen such that the resulting
Poisson number is m ¼ 1=3.

For each of the different image pairs, criteria, and strate-
gies we compute the optimal transformations Mk;l for
0 6 k 6 kmax and lmin 6 l 6 lmax based on the full set of pre-
dictors as defined in Section 3. This means that
12 � 3 � 4 ¼ 144 dynamic programming tables ðMk;lÞ,
0 6 k 6 kmax and lmin 6 l 6 lmax, are computed. We have
used kmax ¼ 4 as maximum grid level and lmax ¼ 6 as coarsest
and lmin ¼ 2 as finest image level. From each table we can
extract the path taken from the identity transformation to
the final transformation Mkmax;lmin by backtracking. We
display in Fig. 2 the 36 paths for the first strategy to limit
the number of iterations in the Gauss–Newton process, i.e.
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Fig. 2. Each of the 36 subplots shows the path selected between the final transf
and so on to a transformation for which the identity transformation is the optim
The predictor selection criterion is given in the column heads and the image p
NP ¼ 1 and N F ¼ N GNðk; lÞ. The rows in each diagram cor-
respond to different image levels l, whereas the columns cor-
respond to the grid levels k (denoted by the corresponding
number of grid cells 2k in each dimension, for convenience).

We see, that there is no clear preference for a single
path. Nevertheless, several conclusions can be drawn.

1. For H ¼ T 0 there is a unique best predictor at the finest
levels ðk; lÞ ¼ ð4; 2Þ of both hierarchies, namely
P 4;2 ¼ M3;2. For the criteria H ¼ T s, s ¼ 0:1 or 0.05, this
predictor is preferred, too.

2. For the initial grid level k ¼ 0 is a promising choice. The
initial image level lmax (coarsest resolution) should be
four, five or six. Since the computation on coarser reso-
lutions are rather fast, we advocate lmax ¼ 6.

3. The approaches with H ¼ T 0:1 and H ¼ T 0:05 give very
similar results.

4. For H ¼ T 0 the diagonal predictor P k;l ¼ Mk�1;lþ1 is pre-
ferred in only a few cases, whereas for H ¼ T 0:1 and
H ¼ T 0:05 the diagonal predictor is preferred frequently.
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ormation Mkmax ;lmin in the bottom right corner through its optimal predictor
al predictor. Axes are grid size 2k (horizontal) and image level l (vertical).

air to the left of the plots. See text for more details.
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5. Some levels ðk; lÞ are never or rarely used in optimal
paths: level ðk; lÞ ¼ ð0; 2Þ is never used; levels ðk; lÞ with
k þ l ¼ 6 are rarely used (except for the final level ð4; 2Þ
and the initial level (0,6)), and levels with k þ l > 6 are
never used.

We have displayed all the results in condensed form in
Fig. 3. In each picture we see an overlay of 12 paths corre-
sponding to the 12 image pairs. The thickness of the edges
corresponds to the frequency a predictor is used. The grey
discs denote vertices where the identity is the selected pre-
dictor. The size of the disc corresponds to the frequency the
identity has been chosen. The first column in Fig. 3 corre-
sponds to the choice of maximum number of iterations in
the Gauss–Newton process as used in Fig. 2, i.e.

NP ¼ 1; N F ¼ NGN. The other three columns correspond
to the other choices of the maximum number of iterations
in the Gauss–Newton process. The results are similar and
the conclusions above remain true, although the original
choice (NP ¼ 1; NF ¼ NGN) seems to have the least varia-
tions in the optimal pathways.

The preprocessing process identifies lmax ¼ 6 as a good
choice for our gel images. It does not indicate a clear pref-
erence for a fixed path through the dynamic programming
array. Nevertheless, the results obtained can be used to
identify promising predictors for the adaptive approach.
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Fig. 3. Summary of selected paths for criterion H ¼ T s. Axes are grid size 2k (ho
a predictor is part of an optimal path. Thickness of circles indicates how ofte
4.3. The adaptive approach

The results from the preprocessing approach suggest not
to fix a unique predictor for the Gauss–Newton process for
coarse image/grid levels. For each level ðk; lÞ, we instead
restrict the set of predictors to those that have been chosen
at least once in the preprocessing step when predictor selec-
tion criterion H ¼ T 0 has been used. The resulting coupling
is visualised in Fig. 4. The selected predictors are repre-
sented by bold lines and, for the identity predictor, by grey
discs in Fig. 4.

We note that only a subset of all transformations Mk;l

(0 6 k 6 kmax and lmin 6 l 6 lmax) is computed. On the fin-
est image and grid level ðk; lÞ ¼ ð4; 2Þ, only one or two
Gauss–Newton iterations are necessary to compute the
final transformation. By using a unique predictor there
we avoid computations for the other predictors – so the
computational effort on the finest level (which is approxi-
mately 80% of overall runtime) is reduced by a factor of
two at least.

Therefore our final optimised coupling procedure
between the grid and image resolution hierarchies is
streamlined (leading to computational efficiency) and at
the same time adaptive (leading to a flexible algorithm).

In particular, the adaptivity in our coupling is in con-
trast to earlier work of others, see Section 1, where only
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rizontal) and image level l (vertical). Thickness of lines indicates how often
n the identity has been chosen as predictor.
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Fig. 4. The final optimised coupling between the grid and image
resolution hierarchies. Axes are grid size 2k (horizontal) and image level
l (vertical).

Table 1
For each image pair of set A we display the quadratic mean of the image
differences (with values ranging from 0 to 255) for the unregistered images,ffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ðIdÞ
p

, and the registered images,
ffiffiffiffiffi
E1

p
, using the coupling with the fixed

diagonal path (FD), the fixed staircase path (FS) and the streamlined
adaptive approach (A)

Images
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðIdÞ

p ffiffiffiffiffiffi
E1

p
CPU time (s)

FD FS A FD FS A

(0,1) 63.6 27.6 25.6 23.7 36 44 58
(0,2) 53.2 34.0 30.9 24.4 28 34 125
(0,3) 61.3 35.4 24.7 26.0 171 80 84
(1,0) 63.6 34.3 27.1 24.7 33 51 58
(1,2) 54.7 41.2 28.4 27.7 29 48 61
(1,3) 53.6 31.4 24.3 23.3 181 218 65
(2,0) 53.2 35.6 26.3 26.6 75 121 69
(2,1) 54.8 40.3 33.6 28.1 70 135 56
(2,3) 56.8 46.7 31.5 28.2 147 212 63
(3,0) 61.3 29.1 26.2 25.9 69 114 123
(3,1) 53.6 28.7 25.2 22.5 66 47 91
(3,2) 56.8 43.3 34.2 29.1 57 62 72

The last three columns give the corresponding CPU times.

Table 2
Values (image pair C) and mean and standard deviation r (image sets A
and B) of the quadratic mean of the image differences and CPU times
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a single fixed path is used to go from the identity predictor
through various levels ðk; lÞ to the desired final transforma-
tion at level ðkmax; lminÞ.

We mention, that the algorithm performs well for all
the different strategies for the selection of the maximum
number of Gauss–Newton iterations. Nevertheless, when
emphasis is put on the quality of the registration, the fol-
lowing choice turns out to be slightly favourable:

• We have opted for the optimisation criterion H ¼ T 0

because we see it as advantageous to spend more time
on (less expensive) coarse image and grid resolutions
with the likely outcome of a better or faster registration
on fine image and grid levels.

• For the maximum number of iterations in the Gauss–
Newton procedure we have chosen N P ¼ 1 and
NF ¼ NGN which leads to less variations in the pathways
chosen.

We next demonstrate that with the streamlined adaptive
approach, based on the streamlined coupling as visualised
in Fig. 4, a considerable improvement over a static cou-
pling of hierarchies, i.e. using a fixed path, can be achieved
in registration quality.

We consider two fixed paths for the coupling. Using
image levels l ¼ 2; . . . ; 6 and grid sizes 2k ¼ 1; 2; 4; 8; 16,
we use a diagonal path through the dynamic programming
array, i.e. we start with l ¼ 6; k ¼ 0 and increase image
and grid resolution simultaneously up to l ¼ 2; k ¼ 4. This
self-evident choice for the coupling of image and grid reso-
lution by simultaneous refinement is also suggested by
Sorzano et al. [22]. Our preprocessing approach suggests
that the staircase-type path using ðl; kÞ ¼ ð6; 0Þ; ð5; 0Þ;
ð5; 1Þ; ð4; 1Þ; . . . ; ð2; 3Þ; ð2; 4Þ is better. We compare
therefore
Images
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ðIdÞ

p ffiffiffiffiffiffi
E1

p
CPU time
FD t
he self-evident fixed coupling by a diagonal path,
FS t

FD FS A FD FS A
he fixed coupling by a staircase path that is sug-
gested from the preprocessing,
Set A Mean 57.2 35.6 28.2 25.9 80 97 77
A t

Set A r 4.1 6.1 3.5 2.1 55.1 64.4 24.2
Set B Mean 22.0 20.7 18.0 15.1 17 28 37
he streamlined adaptive coupling with predictors
from Fig. 4.
Set B r 2.4 4.1 4.5 3.5 13.7 18.9 12.5
Pair C 47.6 33.5 25.0 23.2 54 62 46

See Fig. 1 for labelling.
Comparison of the achieved average square differences
E1 (for convenience we display

ffiffiffiffiffi
E1

p
where grey values
range from 0 to 255) and the CPU times for the diagonal
path (FD), the staircase path (FS) and the adaptive
approach (A) are given in Tables 1 and 2. Particular results
for each image pair from set A are given in Table 1. Results
for pair C and statistics for set A and set B are given in
Table 2. In Fig. 5 we visualise the results for image pair
(3,1) from set A.

Comparing solely the achieved quality, the initial fixed
coupling using a diagonal path can be improved consider-
ably by using the staircase coupling that has been sug-
gested by the preprocessing approach. The streamlined
adaptive approach gives even better results than the
improved fixed path. In the cases of the image set A
and the image pair C, the streamlined adaptive approach
is even faster than the fixed approaches. Nevertheless, in
the case of image set B more computational work is nec-
essary with approach A in order to achieve the results of
higher quality.

Among the images in set A the differences between the
three registration results seem to be smallest for image pair
(3,1). Even for this pair, the difference between the three
approaches is enormous. We have displayed difference
images for the three couplings in Fig. 5. To visualise differ-
ences in a grey-scale image, we use the intensity function



Fig. 5. From left to right: difference image for image pair (3,1) with the diagonal approach, the staircase approach and the adaptive approach.
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Fig. 6. The difference between the template and the reference image (before (left) and after registration) for image pair C.

Fig. 7. The transformed grid of the bilinear transformation Mkmax ;lmin in the
untransformed template image of image pair C.
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Idiff :¼ ððIT � IRÞ þ 255Þ=2: ð7Þ

Hence, a medium grey in the difference image indicates no
difference between reference and template image, a white
area corresponds to a dark area (protein spot) in the refer-
ence image and a black area corresponds to a dark area
(protein spot) in the template image. Although most of
the spots have been registered, there is a considerable
amount of unregistered spots to be seen in the left part
of the difference images for the fixed coupling approaches,
among which the improved staircase coupling gives better
results than the original diagonal coupling.

We remark, that the adaptive algorithm spends approx-
imately 20% of the total computing time on the computa-
tion of predictors and transformations Mk;l that are not
used for the computation of the final transformation
Mkmax;lmin . We consider this to be quite a mild overhead
compared to the flexibility achieved in the coupling of both
hierarchies.

In Fig. 6 we see the registration result for image pair C
using the registration algorithm with the streamlined cou-
pling, see Fig. 4, between the image resolution and grid res-
olution hierarchies.

In Fig. 6 (left), the difference between the template and
the reference image before registration is displayed. The
differences are clearly visible. The right image of Fig. 6
shows the difference after registration, i.e. between the
transformed template image and the reference image. The
final transformation Mkmax;lmin is visualised in Fig. 7. The
predominant medium grey intensity in the right difference
image in Fig. 6 indicates a very successful registration.
Almost all spot configurations present in both, the refer-
ence and the template image, are mapped onto each other
by the computed registration map. The remaining differ-
ences serve to detect interesting spots (spots that have
changed size or spots that vanish in the template image)



50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200
50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Fig. 8. Interesting spot configurations: spots that change size (left) and vanishing spots in the template image (right). Magnifications of the areas marked
in Fig. 6 (right).
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by visual inspection. Two such regions are highlighted in
Fig. 6 with white boxes. In Fig. 8 (left), we see the config-
uration located in the box ½900; 1200� � ½500; 700� of Fig. 6.
The white rings in the centre of the image indicate a higher
production of a certain protein under the exposition of the
plant to cadmium ions. In the right picture in Fig. 8 (which
shows the section located in the box ½900; 1200� � ½200; 400�
of Fig. 6) spots can be recognised that do not occur in the
template image, i.e. the corresponding protein is produced
when the plant is exposed to cadmium ions.
5. Summary

In this paper, we have presented a procedure to optimise
the coupling between different hierarchies used in image reg-
istration algorithms. We have proved the efficiency of the
optimisation procedure for a registration algorithm based
on piecewise bilinear transformations, Euclidean distance
measure and an elastic registration term. Although our grid
spacing on the finest grid level is much larger than the pixel
width (so the algorithm has to be classified as parametric)
we have decided to add an elastic regularisation term to
increase the robustness of the registration. For our choice
of Lamé parameters and images we have not experienced
that the elastic penalty term prevents registration.

Experiments on 2D-PAGE images show very promising
results. In our tests we devised an improved strategy for
determining fixed couplings as well as a streamlined adap-
tive strategy that lead to a very reliable and efficient regis-
tration algorithm. For the images processed, the adaptive
approach worked always properly, whereas the less sophis-
ticated couplings failed several times to overlap all spots,
the improved coupling (FS) being superior to the original
coupling (FD).

The devised optimisation procedure offers a valuable
tool to be used by specialists in the field to improve state
of the art registration algorithms.

The approach presented can be a base for future state of
the art image registration algorithms. Our vision is to use
continuous hierarchies in image resolution and transforma-
tion resolution (or regularisation parameters) and to cou-
ple them via the continuous pendant of dynamic
programming – the Hamilton–Jacobi–Bellmann equation.
Such a future generation registration algorithm could be
able to identify bifurcations in the pathway of optimal
transformations for fixed resolutions of images and trans-
formations and therefore to identify all local minima of
the registration problem on the finest levels.
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We thank Edda v. Röpenack-Lahaye, Udo Roth and
Stephan Clemens from the Leibniz Institute of Plant Bio-
chemistry for providing gel images and background infor-
mation. This work was in part supported by the
Bundesministerium für Bildung und Forschung under
Grant 0312706D.

References

[1] A. Bovik (Ed.), Image & Video Processing, Academic Press, San
Diego, 2000.

[2] D. Braess, Finite Elements: Theory, Fast Solvers and Applications in
Solid Mechanics, Cambridge University Press, 2001.

[3] P.J. Burt, E.H. Adelson, The Laplacian pyramid as a compact image
code, IEEE Transactions on Communication 31 (1983) 532–540.

[4] G.E. Christensen, Deformable Shape Models for Anatomy, PhD
Thesis, 1994.

[5] U. Clarenz, M. Droske, S. Henn, M. Rumpf, K. Witsch, Computa-
tional methods for nonlinear image registration, in: O. Scherzer (Ed.),
Mathematical Method for Registration and Applications to Medical
Imaging, Mathematics in Industry, Vol. 10, Springer, Berlin, Heidel-
berg, 2006, pp. 81–102.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algo-
rithms, MIT Press and McGraw-Hill, 1990.

[7] B. Fischer, J. Modersitzki, Combining landmark and intensity driven
registrations, PAMM 3 (2003) 32–35.

[8] R. Fletcher, Practical Methods of Optimization, second ed., Wiley
Chichester, 1990.

[9] D. Gusfield, Algorithms on Strings, Trees and Sequences, Cambridge
University Press, 1997.

[10] J.S. Gustafsson, A. Blomberg, M. Rudemo, Warping two-dimen-
sional electrophoresis gel images to correct for geometric distortions
of the spot pattern, Electrophoresis 23 (2002) 1731–1744.



J. Wensch et al. / Image and Vision Computing 26 (2008) 1000–1011 1011
[11] E. Haber, J. Modersitzki, A multilevel method for image registration,
SIAM Journal on Scientific Computing 27 (2006) 1594–1607.

[12] S. Henn, K. Witsch, Image registration based on multiscale energy
information, SIAM Journal on Multiscale Modeling and Simulation
4 (2005) 584–609.

[13] C.-L. Huang, P.-Y. Chang, A multi-resolution image registration
method for multimedia application, in: Proceedings of 1998 IEEE
ISCAS, 1998.

[14] B. Josso, E. Zindy, H. Aldemir, Automatic 2-D gel registration using
distance minimization of image morphing, in: International Confer-
ence on Information Visualisation, vol. IV, 2000, pp. 357–361.

[15] J. Kybic, M. Unser, Multidimensional elastic spline registration of
images using splines, in: Proceedings of ICIP2000, 2000.

[16] J. Modersitzki, Numerical Methods for Image Registration, Oxford
University Press, 2004.

[17] University of Bielefeld, Fermentation Engineering Group.
2DBase:2D-PAGE Database of Escherichia coli. <http://2dbase.tech-
fak.uni-bielefeld.de>.

[18] M.D. Rogers, J. Graham, R.P. Tonge, R.M. Leahy, C. Roux, 2D
electrophoresis gel registration using feature matching, in: IEEE
International Symposium on Biomedical Imaging, 2004.
[19] U. Roth, E. von Roepenack-Lahaye, S. Clemens, Proteome changes
in Arabidopsis thaliana roots upon exposure to cd2+, Journal of
Experimental Botany 57 (15) (2006) 4003–4013.

[20] J. Salmi, T. Aittokallio, J. Westerholm, M. Griese, A.
Rosengren, T.A. Nyman, R. Lahesmaa, O. Nevalainen, Hier-
archical grid transformation for image warping in the analysis
of two-dimensional electrophoresis gels, Proteomics 2 (2002)
1504–1515.

[21] Z. Smilansky, Automatic registration for images of two-dimensional
protein gels, Electrophoresis 22 (2001) 1616–1626.
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