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A DIFFUSE-INTERFACE APPROACH FOR MODELING
TRANSPORT, DIFFUSION AND ADSORPTION/DESORPTION OF

MATERIAL QUANTITIES ON A DEFORMABLE INTERFACE∗
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AXEL VOIGT‖

Abstract. A method is presented to solve two-phase problems involving a material quantity on
an interface. The interface can be advected, stretched, and change topology, and material can be
adsorbed to or desorbed from it. The method is based on the use of a diffuse interface framework, which
allows a simple implementation using standard finite-difference or finite-element techniques. Here,
finite-difference methods on a block-structured adaptive grid are used, and the resulting equations
are solved using a non-linear multigrid method. Interfacial flow with soluble surfactants is used as
an example of the application of the method, and several test cases are presented demonstrating its
accuracy and convergence.
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1. Introduction Many problems in the biological, physical and engineering
sciences involve systems of equations that need to be solved in evolving domains with
complex shapes. In addition, the solutions in the bulk domain may couple with the
surface through adsorption of mass from the bulk to the surface and desorption from the
surface to the bulk. Furthermore, the evolution of the domain boundary may depend
on the distribution of the surface concentration through the modification of interfacial
forces. Surfactants are a classic example where the amphiphilic organic compounds may
adsorb to and desorb from a liquid/liquid or liquid/gas interface and lower the surface
tension on the interface. Thus, inhomogeneous distribution of surfactants produces
Marangoni forces — tangential forces along the interface — that affect the dynamics;
surfactants play important roles in vortex pair interaction (e.g., [86, 34]), fingering (e.g.,
[84, 63]) and drop break-up and coalescence (e.g., [35, 36, 48, 32]). Other examples
include biomembranes where transmembrane proteins play an important role in intra-
and extra-cellular dynamics (e.g., [46, 2, 51, 29]), epitaxially grown thin films where
adsorbing/desorbing adatoms affect the dynamics and coarsening of the thin film (e.g.,
[23, 81, 52]), and electrochemical dissolution of binary alloys where one component is
removed selectively and dissolved in an electrolyte solution (e.g., [19, 15]).
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From a numerical point of view, solving a coupled bulk/surface system of equations
on a moving, complex domain is highly challenging; the domain boundary may
stretch, break-up or coalesce with other interfaces. Adsorption of mass to, and
desorption of mass from, the interfaces poses another challenge. Furthermore, the
surface concentration may only be soluble in either the exterior or interior of the
domain (e.g., amphiphilic nature of surfactants). The available numerical methods for
solving these problems can roughly be divided into two categories: interface tracking
and interface capturing methods. Interface tracking methods use either through a
separate grid for the interface, or a set of interconnected points to mark the interface.
For example, boundary integral methods use a surface mesh to track the interface.
In the context of surfactants, a boundary integral method for studying the effect of
insoluble surfactants on drop deformation was developed in [82]. This method was
extended to arbitrary viscosity ratios in [67], and to soluble surfactants in [66]. Another
tracking method is the front-tracking method, where a fixed grid is used to compute
the flow, while a set of connected marker particles is used to track the interface and any
interfacial quantities. A front-tracking method for insoluble surfactants was developed
in [39], and this method was extended to handle soluble surfactants in [91] and [69].
Lagrangian approaches are typically very accurate, but can be relatively complicated
to implement, especially in three dimensions and for problems involving topological
changes.

In interface capturing methods, the interface is not tracked explicitly, but instead
is implicitly defined through a regularization of the interface. This means that the
solution of the problem can be done independently of the underlying grid, which
greatly simplifies gridding, discretization, and handling of topological changes. For
example, a volume-of-fluid (VOF) method for insoluble surfactants was developed in
[75]. A more general method which allows non-linear equations of state for surface
tension was then developed in [38]. A level-set method for solving the surfactant
equation was presented in [89], and later coupled to an external flow solver in [88]. An
alternative approach tracking and approach was developed in [90, 32], using the so-
called Arbitrary Lagrangian-Eulerian (ALE) method. An immersed interface boundary
method for interfacial flows with insoluble surfactants was recently developed in [47].
In the context of thin films, a level-set method for the simulating the motion of thin
films under surface diffusion with free adatoms was developed in [81]. In addition,
an immersed interface method was developed to simulate electrodeposition in an
evolving complex domain [77]. Level-set methods for solving more general equations
on implicitly defined, but stationary, surfaces have also been developed in [5, 30].

Other approaches for solving equations in complex domains include fictitious
domain methods (e.g., [27, 28, 65, 31, 70, 12, 74, 72, 56, 33]), immersed interface
methods (e.g., [49, 54, 37]), modified finite volume/embedded boundary/cut-cell
methods (e.g., [41, 64, 62, 40, 42, 76, 59]) and ghost fluid methods (e.g., [20, 24, 25,
26, 60, 61]). All these methods, however, require non-standard tools typically not
available in standard finite element and finite difference software packages.

The diffuse-interface, or phase-field, method represents yet another approach for
simulating solutions of equations in complex, evolving domains. In this method, which
we follow here, the complex domain is represented implicitly by a a phase-field function,
which is an approximation of the characteristic function of the domain. The domain
boundary is replaced by a narrow diffuse interface layer such that the phase-field
function rapidly transitions from one inside the domain to zero in the exterior of the
domain. The boundary of the domain can thus be represented as an isosurface of
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the phase-field function. The bulk and surface PDEs are then extended on a larger,
regular domain with additional terms that approximate the adsorption-desorption flux
boundary conditions and source terms for the bulk and surface equations respectively.
Standard finite-difference or finite-element methods may be used. Here, we focus on a
finite difference approach.

The diffuse interface method, which has a long history in the theory of phase
transitions dating back to van der Waals (e.g., [79, 3]), was used in [46] to study
diffusion inside a cell with zero Neumann boundary conditions at the (stationary)
cell-boundary (see also [8, 9]), and later was used to simulate electrical waves in the
heart [21]. This approach has been extended [51] to simulate coupled bulk diffusion
with an ordinary-differential equation description of reaction-kinetics on the bounding
surface of a stationary domain to simulate membrane-bound Turing patterns. More
recently, general diffuse-interface methods have been developed for solving PDEs on
stationary surfaces [73], evolving surfaces [13, 14, 16, 17] and for solving PDEs in
complex evolving domains with Dirichlet, Neumann and Robin boundary conditions
[53].

As shown in the previous paragraphs, bulk/surface problems are important in a
wide range of areas. Here, we combine and refine previous work on diffuse-interface
methods to develop a new method for solving coupled bulk/surface problems on general,
evolving domains. The method is very simple compared to other methods, and can
handle advection, diffusion and adsorption/desorption in a straight-forward manner.
Matched asymptotic expansions are used to demonstrate that the diffuse interface
system converges to the original sharp interface equations as the interface thickness
tends to zero. The use of a non-linear multigrid method and block-structured, adaptive
grids also make the method computationally efficient. We present several test cases
demonstrating the accuracy and convergence of the proposed method.

The paper is organized as follows. In section 2, the governing equations for the
surface concentration and the bulk concentration are introduced, and the interface
representation presented. Section 3 presents an asymptotic analysis of the proposed
method. Section 4 then details the numerical implementation. In section 5, the
performance of the numerical method is evaluated on a set of test cases. Finally,
section 6 contains conclusions and discussions of future work.

2. Mathematical formulation

2.1. Governing equations Consider a domain Ω⊂R2,3, which contains a
closed interface, Γ. The interior of the interface is Ω0⊂Ω, and the exterior is Ω1⊂Ω.
See figure 2.1 for an illustration. Let f denote a surface concentration defined on Γ. We
suppose that f is extended off Γ constant in the normal direction (i.e., ∇f ·n= 0) so
that f is defined in a neighborhood of Γ. Then, the sharp interface mass conservation
equation is

∂f

∂t
+u ·∇f =∇Γ ·(Df∇Γf)−f∇Γ ·uΓ−fκun+j, (2.1)

where u is the velocity, ∇Γ = (I−nn)∇ is the surface gradient, n is the normal vector
to Γ pointing into Ω0, Df is the diffusion coefficient, uΓ =(I−nn)u, un=u ·n, κ is
the total curvature of Γ (positive for a sphere), and j is a source term that arises from
adsorption to and desorption from Γ

j= raF −rdf, (2.2)
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Ω0

Ω1

Γ

Fig. 2.1: Illustration of the mathematical domain.

where ra and rd are adsorption and desorption coefficients, respectively, and F is the
bulk concentration (evaluated immediately adjacent to Γ). Note that in the context of
surfactants, the interface may become saturated and instead one may use

j= raF (f∞−f)−rdf, (2.3)

where f∞ is the maximum interface concentration. An equivalent formulation is

∂f

∂t
+∇Γ ·(uf) =∇Γ ·(Df∇Γf)+j. (2.4)

We refer the reader also to [11] for further discussion of formulations involving interfacial
transport using constant normal extensions and to [38] for Eulerian formulations of
the dynamics of surface concentrations.

Assume that the surface concentration f is soluble in Ω1, but not in Ω0. Then,
define the bulk concentration in Ω1 to be F , which evolves according to the bulk mass
conservation equation

∂F

∂t
+∇·(Fu) =DF∇2F in Ω1, (2.5)

with the boundary condition at Γ

DF∇F ·n=−j on Γ. (2.6)

Note that if the surface concentration were soluble in Ω0, then an additional mass
conservation equation would need to be posed. Our formulation is sufficiently general
to handle this case.

Next, we consider a distribution formulation of equation (2.4) by introducing a
surface delta function δΓ, such that∫

Γ

f dΓ =
∫

Ω

fδΓ dΩ, (2.7)
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where Ω = Ω1∪Ω0 (actually the above equation holds for any domain Ω that contains
Γ). The mass conservation equation may be rewritten accordingly as

∂

∂t
(f δΓ)+∇·(f δΓu) =∇·(δΓDf∇f)+δΓj. (2.8)

This distribution formulation formally holds in Ω.
Analogously, the bulk equation (2.5) may be extended to hold in Ω in distribution

form. Introducing the Heaviside function

H=
{

1 in Ω1,
0 in Ω0,

(2.9)

the bulk concentration equation (2.5) and boundary condition (2.6) may be reformu-
lated as

∂

∂t
(HF )+∇·(HF u) =DF∇·(H∇F )−δΓj, (2.10)

where the boundary condition has been included as a singular source term following
[53].

2.2. Interface representation A phase-field function c may be used to ap-
proximate the characteristic function of Ω1. Let

c(x,t) =
1
2

[
1+tanh

(
r(x,t)
2
√

2ε

)]
, (2.11)

where ε is a small parameter related to the interface thickness and r(x,t) is a signed
distance function to Γ (positive in Ω1). The position of the interface may be taken to
be Γ(t) ={x∈Ω | c(x,t) = 1/2}. To evolve c, one may evolve r by

∂r

∂t
+v ·∇r= 0, (2.12)

where v is an extension of u off the interface which is constant in the normal direction
[1]. Alternatively, an advective Cahn-Hilliard equation can be used,

∂c

∂t
+u ·∇c=∇·(M(c)∇µ), (2.13)

µ=g′(c)−ε2∇2c, (2.14)

where µ is a chemical potential. Here, we take g(c)= 1
4c

2(1−c)2 as the double well
potential. Note that this polynomial energy does not constrain c∈ [0,1] but the
deviation from this interval is typically O(ε) at most. Alternative choices (e.g., double-
obstacle [6, 7] or logarithmic potentials [4]) may be used that do constrain c∈ [0,1].
The mobility M is localized on the interface and is taken to be M(c) =

√
4g(c). This

equation is fourth-order and nonlinear and thus requires specialized numerical methods
to solve in an efficient manner. This is discussed further in section 4.

2.3. Regularized delta and Heaviside functions In order to evaluate equa-
tion (2.8) and equation (2.10) numerically, regularizations of the surface delta function
and Heaviside function are needed. In the phase-field context, several definitions of
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the delta function are available from the literature. In this work, the approximation
from [73],

δΓ≈
3
√

2
ε
B(c), B(c) = c2(1−c)2, (2.15)

is used for the surface equation. Note that other choices may be used [17]. For the
boundary condition in the bulk equation, the approximation

δΓ≈|∇c| (2.16)

is used, which avoids additional scaling issues in the equation [53]. Further, the
regularized Heaviside function is simply taken to be [53]

H(c)≈ c. (2.17)

The final system of equations can now be summarized as

∂

∂t
(B(c)f)+∇·(B(c)fu) =∇·(DfB(c)∇f)+B(c)j, (2.18)

∂

∂t
(cF )+∇·(cF u) =DF∇·(c∇F )−|∇c|j. (2.19)

3. Asymptotic analysis In this section, the method of matched asymptotic
expansions is used to provide a formal justification for the diffuse interface approach.
To make the system slightly more general, we may add reaction terms to the bulk
and surface equations, i.e., Rf (f) and RF (F ) may be added to equations (2.18) and
(2.19) respectively. In this approach, the domain Ω is separated into two regions —
the regions far from Γ (outer region, i.e., the portions of Ω1 and Ω0 away from Γ) and
the region near Γ (inner region). In each region, the variables are expanded in powers
of the diffuse interface thickness. In the outer region, the variables are expanded as

c(x,t) = c0(x,t)+εc1(x,t)+ .. ., (3.1)

and analogously for the other variables. In the region near Γ, we introduce a new
coordinate system.

3.1. New Coordinate Introduce the following local normal-tangential coor-
dinate system with respect to the curve Γ. Let Γ=X(s,t)=(X(s,t),Y (s,t),Z(s,t)),
where s=(s1,s2) is a parametrization of the surface and t is time. Let r= r(x;ε) be
the signed distance along the normal from a point x to Γ, and is positive when outside
Γ (i.e. in Ω1). Then, if Γ is smooth, there exists a neighborhood

Uε :={x∈Ω : |r(x,ε)|<ρ}

of Γ for some 0<ρ�1, such that the local coordinate transformation from (x,y,z)
to (r,s1,s2) is valid, e.g., x=X(s,t)+rn(s,t). Near the interface, we introduced a
stretched normal coordinate z= r

ε . Note that as ε→0, the inner region extends from
−∞<z<∞. We then assume that the variables may be expanded in regular power
series in ε in the stretched coordinate system:

c(x,t) =C(z,s,t) =C0(z,s,t)+εC1(z,s,t)+ .. ., (3.2)
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and analogously for the other variables. Furthermore, in this coordinate system we
have

∂t=−ε−1V̂0∂z+∂t+O(ε), (3.3)

∇= ε−1n∂z+∇Γ +O(ε), (3.4)

where V̂0 is the leading term of the normal velocity of Γ.

3.2. Matching Condition Assuming that there is an overlapping region where
both the inner and outer expansions are valid, we may write the outer expansion in
the local coordinate system as

c(x,t) = c(r,s,t) = c0(r,s,t)+εc1(r,s,t)+ .. ., (3.5)

and analogously for the other variables. Matching the inner and outer expansions in
this region, the following matching conditions hold [10, 71, 22]

lim
r→0±

F0 = lim
z→±∞

F̂0, (3.6)

lim
r→0±

f0 = lim
z→±∞

f̂0, (3.7)

lim
r→0±

n ·∇F0 = lim
z→±∞

∂zF̂1, (3.8)

lim
z→±∞

∂zF̂0 = 0. (3.9)

Analogous matching conditions hold for the other variables.

3.3. Bulk Equation

3.3.1. Outer expansion The O(ε0) term of equation (2.19) gives:

∂F0

∂t
+∇ ·(F0u0) =∇ ·(DF∇F0)+RF (F0). (3.10)

Thus at leading order equation (2.5), with the reaction term, is recovered. To determine
the boundary conditions on Γ, we match with the inner expansion.

3.3.2. Inner expansion At O(ε−2), we obtain

∂z(C0DF∂zF̂0) = 0, (3.11)

which implies ∂zF̂0 = 0. At O(ε−1) we obtain(
UN,0− V̂0

)
∂z

(
C0F̂0

)
=∂z(C0DF∂zF̂1)+

(
raF̂0−rdf̂0

)
∂zC0. (3.12)

Since UN,0 = V̂0 by the asymptotic analysis of the advective Cahn-Hilliard equation
[58], F̂0 is independent of z and, as we show below, f̂0 is also independent of z, we
may integrate equation (3.12) and use that

∫ +∞
−∞ ∂zC0 dz=1, again taken from [58],

to obtain

DF lim
z→+∞

∂zF̂1 =−(raF̂0−rdf̂0). (3.13)

Together with equation (3.8), we therefore recover the Neumann boundary condition
(2.6) for the outer solution at leading order

DF lim
r→0+

n ·∇F0 =DF lim
z→+∞

∂zF̂1 =−(raF0−rdf0), (3.14)

where we have set f̂0 =f0 since f̂0 is independent of z. Next, we turn to the surface
concentration equation.
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3.4. Surface Equation Here, we only focus on the inner expansion since the
equation is localized around the interface. At O(ε−2), we obtain

∂z

(
DfB(C0)∂z f̂0

)
= 0, (3.15)

which implies ∂z f̂0 = 0, as claimed above. The O(ε−1) term gives

0 =∂z(B(C0)∂z f̂1), (3.16)

where we have used that UN,0 = V̂0. Equation (3.16) implies that ∂z f̂1 =0 also. At
O(ε0), we obtain

∂t(B(C0)f̂0)+∇Γ ·
(
B(C0)f̂0U0

)
=∂z(DfB(C0)∂z f̂2)+∇Γ ·

(
DfB(C0)∇Γf̂0

)
+B(C0)(raF̂0−rdf̂0)+B(C0)Rf (f0).

(3.17)

Since f̂0 is independent of z, we may integrate equation (3.17) in z from −∞ to +∞,
and divide by

∫ +∞
−∞ B(C0)dz>0 to obtain

∂tf0 +∇Γ ·(f0u0) =∇Γ ·(Df∇Γf0) = raF0−rdf0 +Rf (f0), (3.18)

where we taken f̂0 =f0, F̂0 =F0 and we also have assumed that UΓ,0 is independent of
z (which implies there is no jump in velocity across Γ) so that we may write U0 =u0.
Thus, equation (2.4), with the reaction term, is recovered at leading order.

4. Numerical methods This section briefly describes the numerical methods
used to solve the above equations. The algorithm follows the one developed in [87]. In
particular, the equations are discretized using finite differences in space and a semi-
implicit time discretization. A block-structured, adaptive grid is used to increase the
resolution around the interface in an efficient manner. The nonlinear equations at the
implicit time level are solved using a non-linear Adaptive Full Approximation Scheme
(AFAS) multigrid algorithm. For a detailed discussion of the adaptive algorithm and
the multigrid solver, the reader is referred to [87].

The equations are discretized on a rectangular domain. The surface concentration,
the bulk concentration, the phase-field function and the chemical potential are defined
at the cell-centers, while the velocity components are defined on cell-edges.

Special care has to be taken for the temporal discretization. The Cahn-Hilliard
system is fourth order in space, and requires the use of an implicit method to avoid
severe limitations in the time step. Here, Crank-Nicholson type schemes are used [45],

ck+1−ck

∆t
=− 1

2
[
∇d ·(uk+1ck+1)+∇d ·(ukck)

]
+

1
2
[
∇d ·(Mk+1∇dµ

k+1)+∇d ·(Mk∇dµ
k)
]
,

(4.1)

µk+1 =g′(ck+1)−ε2∇2
dc
k+1. (4.2)

In [45, 87] this approach was shown to be robust and efficient. The equations for
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surface concentration and bulk concentration are discretized in a similar fashion,

δk+1
Γ fk+1−δkΓfk

∆t
=− 1

2
[
∇d ·(uk+1δk+1

Γ fk+1)+∇d ·(ukδkΓfk)
]

+
Df

2
[
∇d ·(δk+1

Γ ∇df
k+1)+∇d ·(δkΓ∇df

k)
]

+
1
2
[
δk+1
Γ jk+1 +δkΓj

k
]
,

(4.3)

Hk+1F k+1−HkF k

∆t
=− 1

2
[
∇d ·(uk+1Hk+1F k+1)+∇d ·(ukHkF k)

]
+
Df

2
[
∇d ·(Hk+1∇dF

k+1)+∇d ·(Hk∇dF
k)
]

+
1
2
[
|∇dc

k+1|jk+1 + |∇dc
k|jk

]
,

(4.4)

where, in the above equations, we set δk+1
Γ =B(ck+1)+α and Hk+1 =

√
(ck+1)2 +α2,

with α being a small parameter (α= 10−6) that is used to ensure that division by zero
does not occur; the results are found to be quite insensitive to the precise choice of
α provided it is sufficiently small. The operator ∇d represents the standard second-
order finite-difference discretization. The convective terms of the form ∇·(uφ) are
discretized using the third-order WENO reconstruction method [78, 55]. The WENO
reconstruction method has the advantage that it handles steep gradients well, which
may occur in the type of dynamics described in this work. Additionally, fewer grid
points are needed to achieve a high order solution. This is particularly important for
the efficiency of the adaptive grid, because fewer ghost cell values have to be calculated
at the boundaries of each grid block.

Homogeneous Neumann far-field boundary conditions are prescribed for all vari-
ables. This is imposed by introducing a set of ghost cells around the domain. These
ghost cells are updated before every smoothing operation.

The AFAS multigrid algorithm is used to solve the discretized equations at every
time step. The full description of the AFAS multigrid method will not be given here,
the details can be found in [87] and in the reference text [85]. The ideal run-time
complexity of this algorithm is optimal, i.e., O(N) where N is the number of grid points.
The present implementation achieves this complexity, which is shown in section 5.6.

5. Code validation

5.1. Surface diffusion on a stationary circle First, a problem without bulk
concentration is considered. This tests the validity of the diffuse interface representation
of the surface equation, and of the correct implementation of the diffusion term.

Consider a stationary circle of radius R, with an initial surface concentration given
by

f0(θ) =
1
2

(1−cosθ), (5.1)

where θ denotes the angle measured in the counter-clockwise direction from the y-axis.
The surface concentration equation can now be written in polar coordinates as

∂f(θ,t)
∂t

=
Df

R2

∂2f(θ,t)
∂θ2

, (5.2)
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with initial condition f0 and periodic boundary condition in the θ-direction. This
equation can be solved analytically, yielding

f(θ,t) =
1
2

(
1−e−

Df

R2 tcosθ
)
. (5.3)

A series of simulations are performed comparing the numerical solution to the
analytical solution. The computational domain chosen for the simulations is [−2,2]×
[−2,2] and a circle with radius R=1 is placed in the center of the domain. The
phase-field function is initialized by

c(x,y) =
1
2

[
1−tanh

(√
x2 +y2−R

2
√

2ε

)]
. (5.4)

The initial surface concentration is given by the analytical solution, and the time step
is ∆t= 1×10−2.

In the numerical code, the surface concentration is defined at grid points near the
interface. To enable a direct comparison with the analytical solution, the concentration
at the interface is needed. This is done by using a marching squares algorithm (see e.g.
[57]) to generate a set of points at the 0.5 isocontour of the phase-field function. Bilinear
interpolation is then used to interpolate the grid values of the surface concentration
to these interface points. Note that this will introduce extra uncertainties, so the
absolute errors given later may not be exact values. The order of convergence results
should not be affected by this.

An example of the adaptive grid is shown in figure 5.1. Clearly, the grid follows
the circle shape very well. No significant difference between the solutions on adaptive
grids and uniform grids was found for this test case for the same effective resolution.
Figure 5.2 shows comparisons between the numerical solution and the analytical
solution at various times and surface diffusion coefficients. Good agreement is observed.
The error in the infinity norm between the interpolated values and the exact values
at the interface is given in Table 5.1. The numerical solution converges towards the
exact solution in a first order fashion, as predicted by the asymptotic analysis.

Table 5.1: The error and convergence order for the surface diffusion test case at t= 1.
The interface thickness is defined as ε= 1.6hmin, where hmin the minimum grid size.

Grid spacing Error Order
(×10−2)

1/8 4.29 -
1/16 2.35 0.87
1/32 1.18 0.99
1/64 0.60 0.98
1/128 0.30 1.00

5.2. Surface diffusion on an advected circle Now, the circle in the above
test case is put in a constant velocity field, u=(2,0). The analytical solution is the
same, only translated in the computational domain. The computational domain is
extended by two in the x-direction to accomodate the translation.
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Fig. 5.1: Example of the adaptive grid for the surface diffusion on a fixed circle. The
root level has 32×32 grid points and there are three levels of refinement, giving an
effective resolution at the interface of 256×256.
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Fig. 5.2: Comparison of the numerical and exact solutions for the surface diffusion
test case. Because the solution is symmetric with respect to the y-axis, only one half
of the circle is shown here. The grid spacing is hmin = 1/64.

The initial and final surface concentration is given in figure 5.3. As shown in
Table 5.2, the convergence is first order as in the diffusion only test case. The error is
slightly higher due to the additional errors caused by the advection.
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Table 5.2: The error and convergence order for the diffusion on a translating circle at
t= 1. The interface thickness is defined as ε= 1.6hmin.

Grid spacing Error Order
(×10−2)

1/8 4.60 -
1/16 2.47 0.90
1/32 1.23 1.01
1/64 0.62 0.99
1/128 0.31 1.01

Fig. 5.3: The initial and final surface concentration for the advected circle test case.

5.3. Surface concentration evolution on an expanding circle A circle is
placed in the velocity field given by

u= cosθ,v= sinθ, (5.5)

which is illustrated in figure 5.4(a). In the absence of diffusion, the surface concentration
is just a function of the circle circumference, so the mass conservation equation reduces
to

f(t) =
C0

C(t)
f0, (5.6)

where C= 2πR is the surface area, and subscript 0 denotes the initial condition.
For this test case, the computational domain was set to Ω=[−16,16]× [−16,16]

to accomodate the expansion. The initial radius was set to R0 =1, and the initial
surface concentration was set to f0 = 0.5. Instead of solving the Cahn-Hilliard system,
equations (2.13)–(2.14), the phase-field function is evolved analytically for this test
case. No significant difference is observed if the interface is evolved according to the
Cahn-Hilliard system, as is done below.
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Fig. 5.4: Numerical setup and results for the expanding circle test case.

The numerical and analytical solutions are compared in figure 5.4(b), and excellent
agreement is observed. The convergence behaviour is given in Table 5.3, and as in
previous test cases, the method converges in a first-order fashion.

Table 5.3: The error and convergence order for the expanding circle test case. The
error is measured as the maximum deviation of the mean surface concentration to the
analytical concentration. The interface thickness ε= 1.6hmin.

Grid spacing Error Order
(×10−2)

1 13.6 -
1/2 6.60 1.04
1/4 3.30 1.00
1/8 1.62 1.03

5.4. Bulk diffusion and bulk-surface mass transfer This test case was
introduced in [69] in the context of surfactants, to test the coupling between a bulk
concentration and a surface concentration. Consider an initially clean circle of radius
a in a domain which contains an initial bulk concentration F∞. A simplified version
of the source term is used, where mass moves from the bulk to the interface,

j= raF. (5.7)



1022 COUPLED INTERFACIAL AND BULK MASS TRANSPORT

Table 5.4: Values used in the bulk diffusion and bulk-surface mass transfer test case.

Quantity Value

Radius, a 1.0
Adsorption rate, ra 1.0
Diffusion coefficient, DF 1.0
Initial bulk concentration, F∞ 1.0

The evolution of the bulk concentration can now be described with the heat equation
in an infinite, hollow cylinder,

∂F

∂t
=DF

(
∂2F

∂r2
+

1
r

∂F

∂r

)
, (5.8)

with boundary conditions

∂F

∂r

∣∣∣∣
r=a

= raF (r=a), (5.9)

F (r=R) =F∞, (5.10)

where R is the extent of the domain; R is taken to be 4. In lieu of an analytical solution,
a fourth-order accurate finite-difference discretization of the above 1D problem is used
for comparison to the diffuse-interface solution. The grid size for this problem was
chosen high enough to give a resolution independent solution. The physical properties
used in the simulations are given in Table 5.4.

A visual comparison between the 1D solution and the diffuse-interface results for
the bulk concentration at various time steps is given in figure 5.5(a). Apart from the
small errors close to the interface during the early times due to the sharp gradients,
the agreement is excellent.

The amount of mass accumulated on the interface can be found from the 1D
solution via mass conservation,

Mf (t) =MF (0)−2π
∫ R

a

F (t)rdr. (5.11)

Figure 5.5(b) shows that the diffuse-interface solution is in good agreement with the
1D solution.

The error and convergence for both the bulk concentration and the surface con-
centration is given in Table 5.5. The error decreases in a second-order fashion. The
reason for this is that for this test case, the surface concentration is uniform, so there
is no surface diffusion.

Next, the effect of varying the surface diffusion coefficient relative to the bulk
diffusion coefficient, D=Df/DF , is investigated. The initial bulk concentration is set
to

F0(y) = (ymax−y)×10−3 (5.12)

instead of the previous uniform concentration and we consider both adsorption and
desorption. There is a non-uniform adsorption to the interface which gives rise to
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Fig. 5.5: Comparison of the 4th order 1D solution and the phase-field solution for the
bulk diffusion and bulk-surface mass transfer test case. hmin = 1/128, ε= 1/80.

Table 5.5: The error in the infinity norm and convergence order for the bulk concen-
tration and the accumulated surface mass in the bulk diffusion and bulk-surface mass
transfer test case. The interface thickness is ε= 1.6hmin.

Bulk concentration Surface mass
Grid spacing Error Order Error Order

(×10−2) (×10−3)

1/8 11.38 - 9.66 -
1/16 5.21 1.13 4.50 1.10
1/32 1.57 1.73 1.20 1.91
1/64 0.343 2.20 0.22 2.44
1/128 0.0473 2.86 0.036 2.61

diffusion effects on the surface. Additionally, desorption is added to yield more complex
dynamics. The radius is set to r=0.15 and the drop is centered at (0.5,0.5). The
adsorption and desorption rates are ra= rd=100 and the bulk diffusion coefficient
is DF =1.0. Figure 5.6 shows the concentration in the bulk and on the surface at
t= 0.08 for varying diffusion ratios. A grid spacing of h= 1/256 was employed, along
with interface thickness ε=0.004. Because of the non-uniform bulk distribution, the
adsorption will be higher at the bottom of the circle than at the top. As the surface
diffusion coefficient increases, mass is diffused from the bottom to the top of the circle
faster, which further reduces the adsorption at the top. This effectively increases the
diffusion and leads to a more uniform concentration distribution in the bulk. This
is illustrated in figure 5.7, which shows the bulk concentration along x=0.5. The
larger surface diffusion also leads to lower total interface concentration, since mass is
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(a) Bulk concentration (b) Surface concentration

Fig. 5.6: Bulk concentration and surface concentration for the mass transfer test case
with non-uniform initial bulk concentration at t= 0.08. From top to bottom, D= 0.1,
D= 1.0 and D= 10.
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Fig. 5.7: Bulk concentration along x=0.5 for three different diffusion coefficient
ratios at t= 0.08. A larger surface diffusion coefficient increases the transport of bulk
concentration and gives a more uniform profile.

desorbed back into the bulk.

5.5. Bulk-surface coupling on a perturbed circle In this test case, the
surface evolution on, and the bulk evolution inside, a perturbed circle is considered.
The circle is given by

r(θ) = 1+0.1cos(3θ), (5.13)

and forcing functions are added to the surface and bulk equations so that the exact
solution is known. More specifically,

∂f

∂t
=∇2

sf−f+F +ζ1 on Γ (5.14)

∂F

∂t
=∇2F −F +ζ2 in Ω0 (5.15)

is solved subject to the boundary condition

∇F ·n=f−F on Γ. (5.16)

The forcing functions are chosen such that the solution in Ω0 is

F =
1
4

(x2 +y2)e−3t, (5.17)

and the solution on Γ is

f =

(
1
2

r(θ)√
r(θ)2 +r′(θ))2

+
1
4
r(θ)2

)
e−3t. (5.18)
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(a) Bulk concentration (b) Surface concentration

Fig. 5.8: The solutions at t= 2.0×10−3 for the bulk-surface coupling on a perturbed
circle.

The diffuse-interface representation of the above system is

∂

∂t
(f B(c)) =∇·(B(c)∇f)−B(c)(f+F +ζ1) (5.19)

∂

∂t
(HF ) =∇·(H∇F )−HF +Hζ2 +(f−F )|∇c|, (5.20)

where the Heaviside function is now given by

H(c) = 1−c, (5.21)

instead of equation (2.17) since the bulk concentration is required in Ω0 (not in Ω1).
The simulation was run to time t=2.0×10−3, and the interface thickness was

scaled as ε= 1.28hmin. Figure 5.8 shows the final solution for the surface concentration
and the bulk concentration for a grid spacing of hmin= 1/128. The analytical solutions
given by equations (5.17) and (5.18) are compared to the numerical results in figure 5.9.
Excellent agreement is observed. In Table 5.6, the respective errors compared to the
analytical solutions are listed together with the convergence order. Again, first order
convergence results are obtained.

5.6. Bulk-surface coupling in a 2D vortical flow A circle with radius
r= 0.15 is placed at x= (0.5,0.75) in a domain Ω = [0,1]× [0,1]. The circle is advected
by a prescribed velocity field defined by the stream function

Ψ =−cos(πt)
1
π

sin2(πx)sin2(πy), (5.22)

which gives the individual velocity components as

u=−2 cos(πt)sin2 (πx)sin(πy)cos(πy) , (5.23)

v= 2cos(πt) sin2 (πy)sin(πx)cos(πx). (5.24)
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Fig. 5.9: Comparison between the analytical solutions and numerical solutions for
h= 1/128 at t= 2.0×10−3 s for the perturbed circle test case.

Table 5.6: The error in the infinity norm and convergence order for the bulk concen-
tration and the interface concentration in the perturbed circle test case. The interface
thickness is ε= 1.28h.

Bulk concentration Surface concentration
Grid spacing Error Order Error Order

(×10−3) (×10−2)

1/16 17.0 - 11.0 -
1/32 9.5 0.84 4.4 1.32
1/64 5.1 0.90 1.5 1.55
1/128 2.6 0.97 0.74 1.02

The initial condition is illustrated in figure 5.10. This is a demanding test case for
both the interface advection and the adaptive grid, because the interface undergoes
large deformations. Because of the periodicity of the flow field, it is common to
compare the initial solution to the solution after one period. However, with diffusion
and adsorption/desorption, the solution is not time-reversible. Here, a comparison
with the results from [90] is first considered as a validation case, before simulations
with bulk/interface coupling are presented.

For the validation case, the diffusion is set to Df =10−3 for the surface concen-
tration, and the evolution of the bulk concentration is not considered. Hence, there
is no coupling between the bulk and surface for this test case. The initial surface
concentration is f0 = 1.0. An effective grid spacing of hmin= 1/512 was used along with
an interface thickness ε= 0.002. Figure 5.11(a) shows the evolution of the interface and
the adaptive grid. The grid clearly tracks the interface in an efficient manner, and the
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Fig. 5.10: Illustration of the vortical velocity field and initial surface position.

morphology at t= 0.5 matches that of figure 11(b) in [90]. The surface concentration
along the interface is shown in figure 5.11(b). Due to the complex flow field, mass
is swept to the lower and upper part of the stretching circle. The concentration
is particularly high at the upper part. This profile is in good agreement with the
equivalent figure 11(c) in [90].

Next, the effect of varying the surface diffusion coefficient relative to the bulk
diffusion coefficient, D=Df/DF , is investigated. The initial surface concentration
is f0 =10−4 and the initial bulk concentration is given by the non-uniform profile
F0 = 10−4y. Additionally, the bulk and interface is coupled, with adsorption coefficient
ra= 100 and desorption coefficient rd= 200. The bulk diffusion coefficient is DF = 0.1,
while the surface diffusion coefficient is varied. An effective grid spacing of hmin = 1/256
was employed, along with interface thickness ε= 0.004.

The concentration at t=0.5 for the bulk and the interface for three different
diffusion coefficient ratios is shown in figure 5.12. When the surface diffusion coefficient
is low, the main transport mechanism is the convection. Some mass is adsorbed onto
the interface, but the low diffusion coefficient leads to a highly non-uniform profile. As
the surface diffusion coefficient increases, more mass is adsorbed from the upper part
of the domain, where the bulk concentration is high, then diffused along the interface
and finally desorbed in the lower part of the domain. This leads to a more uniform
bulk distribution around the advected circle.

Finally, a test of the efficiency of the multigrid algorithm and the adaptive grid was
performed on this test case. This was done by comparing the time taken to complete
1000 time steps on several grid sizes on both uniform and adaptive grids. The time
step size was kept constant, and low enough so that the number of V-cycles on each
time step was equivalent for all grid sizes. The results are shown in figure 5.13. Both
the uniform and adaptive run-times increase in a linear fashion, which indicates that
the numerical implementation achieves the optimal O(N) run-time complexity of the
multigrid algorithm, where N is the total number of grid points. Additionally, the
slope for the adaptive simulations is much lower than the corresponding slope for the
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(a) Adaptive grid and interface morphology. (b) Surface concentration along the interface.

Fig. 5.11: Evolution of a circle in a vortex field, depicted at t=0.0,0.25,0.5. The
parent grid level has spacing h= 1/32, and there are 4 levels of refinement, giving an
effective grid spacing of hmin = 1/512.
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(a) Bulk concentration (b) Surface concentration

Fig. 5.12: Bulk concentration and interface concentration at t= 0.5 for the vortex test
case with non-uniform initial bulk concentration and bulk/interface coupling. From
top to bottom, D= 0.1, D= 1.0 and D= 10.
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Fig. 5.13: Run-time of the vortex simulation versus grid size for both uniform and
adaptive grids.

uniform simulations, which is a demonstration of the efficiency of block-structured,
adaptive grids for these types of simulations.

5.7. Bulk-surface coupling in a 3D deformation field Finally, a three-
dimensional test problem is considered. The flow field is the one proposed by [50],
which combines a deformation in the x-y plane with one in the x-z plane. The velocity
components are

u= 2 cos
(
πt

3

)
sin2 (πx)sin(2πy)sin(2πz) , (5.25)

v=− cos
(
πt

3

)
sin(2πx)sin2 (πy)sin(2πz) , (5.26)

w=− cos
(
πt

3

)
sin(2πx)sin(2πy)sin2 (πz) , (5.27)

and a sphere of radius 0.15 is placed at (0.35,0.35,0.35) in a unit cube computational
domain. The initial surface concentration is f0 = 10−4 and the initial bulk concentration
is given by the non-uniform profile F0 = 10−4y. Additionally, the bulk and interface is
coupled, with adsorption coefficient ra= 100 and desorption coefficient rd= 200. The
bulk and surface diffusion coefficients are matched with DF =Df =1. A grid with
spacing h= 1/32 at the root level and three levels of refinement is used (hmin = 1/256),
along with the interface thickness ε= 0.004.

Figure 5.14(a) shows the evolution of the sphere. The morphology agrees well with
figure 29 from [18], where the same problem was solved with the level set method, only
without any surface quantities. As the interface stretches, the surface concentration
becomes lower. The concentration is higher at the front of the deforming sphere,
because of adsorption from the bulk. The bulk concentration increases in the y-
direction, and the front of the sphere moves through this part, thereby increasing
the local concentration on the front. This can be seen from the slice of the bulk
concentration, figure 5.14(b), at time 1.0, where the concentration is lower near the
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region that the interface has moved through. The middle of the stretched sphere has a
much lower concentration, due to the fact that it has experienced a large deformation
and is in a region of low bulk concentration.

Figure 5.15 shows a sequence of the block-structured grids used in the simulation.
The boxes denote grid level boundaries, so that inside each box the resolution is
doubled. This demonstrates that the adaptive grid algorithm also works well for
three-dimensional problems.

6. Conclusion A diffuse-interface method for solving problems involving trans-
port, diffusion, and adsorption/desorption of a material quantity on a deformable
interface was presented. The method was shown to perform well on a wide range of
test cases. The efficiency of the numerical implementation, using adaptive grids and a
multigrid method, was also demonstrated.

The asymptotic analysis suggests, and numerical evidence confirms, that the
convergence to the sharp interface system is first order in the interface thickness
parameter ε. It may be possible to gain second order accuracy in ε by explicitly
removing the corresponding term in the asymptotic expansion as can be done in the
context of solidification to enable simulations with arbitrary kinetic coefficients [43, 44].
This should be explored.

A natural extension of the method is to couple it to an external flow solver.
The ability of the diffuse-interface method to handle complex fluids and interfacial
dynamics makes this a very attractive combination. We are currently developing such
an algorithm to simulate the dynamics of interfacial flows with soluble surfactants.
Another interesting extension is to couple the method with models of cellular mechanics
to simulate cell-polarization and motility.

Finally, this work used a phase-field function to represent the interface. Alterna-
tively, a level-set function could be used instead. Accurate representations of delta
functions and Heaviside functions in the level-set context can be found in for example
[80, 83, 68].
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(a) Surface concentration (b) Slice of bulk concentration

Fig. 5.14: Sphere in 3D deformation field. The left column shows the interface and
the surface concentration at times 0, 0.5 and 1.0. The right column shows slices of the
bulk concentration at the same times and y-positions 0.35, 0.5 and 0.6, respectively.



1034 COUPLED INTERFACIAL AND BULK MASS TRANSPORT

Fig. 5.15: Sphere in 3D deformation field. Illustration of the adaptive grids at times
(from top to bottom) 0, 0.5 and 1.0. Two different angles are shown for each time step.
Inside the black boxes, the grid spacing is h= 1/64, inside the red boxes h= 1/128 and
inside the green boxes h=hmin = 1/256.
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