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A new phase-field model for strongly
anisotropic systems
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We present a new phase-field model for strongly anisotropic crystal and epitaxial growth
using regularized, anisotropic Cahn–Hilliard-type equations. Such problems arise during
the growth and coarsening of thin films. When the anisotropic surface energy is
sufficiently strong, sharp corners form and unregularized anisotropic Cahn–Hilliard
equations become ill-posed. Our models contain a high-order Willmore regularization,
where the square of the mean curvature is added to the energy, to remove the ill-
posedness. The regularized equations are sixth order in space. A key feature of our approach
is the development of a new formulation in which the interface thickness is independent of
crystallographic orientation. Using the method of matched asymptotic expansions, we
show the convergence of our phase-field model to the general sharp-interface model.
We present two- and three-dimensional numerical results using an adaptive, nonlinear
multigrid finite-difference method. We find excellent agreement between the dynamics
of the new phase-field model and the sharp-interface model. The computed equilibrium
shapes using the new model also match a recently developed analytical sharp-interface
theory that describes the rounding of the sharp corners by the Willmore regularization.

Keywords: thin film; quantum dots; interfacial anisotropy; phase field;
Cahn–Hilliard equations; Willmore regularization
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1. Introduction

The formation of faceted pyramids on nanoscale crystal surfaces is an important
phenomenon that has been attracting wide attention owing to its role in the
self-organization of quantum dots. In crystalline films, these structures arise
through competition among surface and bulk forces that result in instability.
Instability may originate from a lattice misfit between film and substrate, from
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doi:10.1098/rspa.2008.0385
Published online 13 January 2009
ctronic supplementary material is available at http://dx.doi.org/10.1098/rspa.2008.0385 or via
p://journals.royalsociety.org.

uthor and address for correspondence: Department of Mathematics, University of California,
ne, CA 92697-3875, USA (lowengrb@math.uci.edu).

eived 23 September 2008
epted 9 December 2008 1337 This journal is q 2009 The Royal Society

http://dx.doi.org/10.1098/rspa.2008.0385
http://journals.royalsociety.org
http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


S. Torabi et al.1338

 on December 4, 2013rspa.royalsocietypublishing.orgDownloaded from 
strong surface anisotropies or from kinetic surface fluxes. Facets on crystalline
thin films, however, arise for a thermodynamic reason. In particular, such facets
arise because the surface free energy is non-convex with respect to the surface
normal (Herring 1951). Quantitative modelling of self-organization processes
thus requires a detailed description of surface energies and mass transport
mechanisms along the crystal surface.

Thermal faceting (spinodal decomposition) of thermodynamically unstable
crystal surfaces caused by strongly anisotropic (non-convex) surface free energy
densities and driven by surface diffusion has been considered in Stewart &
Goldenfeld (1992), Liu & Metiu (1993) and Savina et al. (2003). However, all of
these theoretical and numerical treatments are restricted to long-wave
approximations based on small variations in surface orientation. This introduces
a clear limitation in their quantitative predictive power as many experimentally
observed facet angles in thin crystalline films are not small.

Only recently have numerical methods been proposed to deal with the full
geometric evolution. The evolution law follows from a non-dimensional surface
free energy of the form (Gurtin & Jabbour 2002)

E½G �Z
ð
G

gðnÞCb

2
H 2 dG; ð1:1Þ

with g(n) the classical surface free energy density with n the surface normal, H the
mean curvature and

ffiffiffi
b

p
a small scale over which corners are smeared out. The

energy can be viewed as a geometric Ginzburg–Landau-type energy with a non-
convex functional and a gradient term. This ismost apparent in the one-dimensional
setting, where the energy can be written as E½G �Z

Ð
GgðqÞCðb=2Þ j vsq j 2 dG with q

the tangent angle (angle between the tangent vector s and the x -axis) and s is the arc
length (Herring 1951; DiCarlo et al. 1992). Thus, it is also possible to interpret
the gradient (curvature) term in equation (1.1) as the next higher order term in a
more general surface free energy density ~gZ ~gðn;H ;.ÞZgðnÞCðb=2ÞH 2C/ :

The model we investigate here is the HK1 gradient flow of the energy (1.1).
This leads to the (non-dimensional) surface diffusion equation

V ZDGn HgCb DGH C
1

2
H 3K2KH

� �� �
; ð1:2Þ

where V is the surface normal velocity; DG is the surface Laplacian; n is the
mobility; Hg is the weighted mean curvature; and K is the Gaussian curvature.
The weighted mean curvature is defined through HGZV$x, where xZDg(n) is
the Cahn–Hoffman (1974) vector. When the surface energy is sufficiently
anisotropic, equation (1.2) is ill-posed for bZ0. When bO0, Siegel et al. (2004)
and Hausser & Voigt (2005a) solved this highly nonlinear sixth-order equation
numerically. However, both approaches are restricted to curves as severe
numerical problems occur for evolving parametric surface meshes. A level-set
approach circumventing some of these difficulties is discussed in Burger et al.
(2007). Here, we are interested in a phase-field approximation of the problem.
The phase-field method is capable of describing the evolution of complex,
topology-changing surfaces and also provides a general framework to add further
physical effects such as elasticity or compositional differences. In the phase-field
approach, sharp interfaces are given a finite thickness and the energy (1.1) is
modified appropriately. As such, this is also known as a diffuse-interface method.
Proc. R. Soc. A (2009)
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Attempts towards a phase-field approximation have been made in Eggleston &
Voorhees (2002), Wise et al. (2005, 2007), Rätz et al. (2006) and Wheeler (2006).
However, none of these models approximate the geometric evolution described
above in equation (1.2) correctly as the diffuse-interface width tends to zero. In
an alternative phase-field approach, Eggleston et al. (2001) and Eggleston &
Voorhees (2002) dealt with the ill-posedness of the anisotropic problem
by convexifying the energy. This method does not reproduce equation (1.2) in
the sharp-interface limit, and it also modifies the physics by suppressing the
nucleation of new facets if the film is started with an orientation within the non-
convex region (see Gurtin & Jabbour 2002; Fried & Gurtin 2004). Wise et al.
(2005, 2007) and Wheeler (2006) used a regularization of the ill-posed equation
based on adding the square of the Laplacian of the phase-field variable to the
energy (instead of the mean curvature squared as shown above). This leads to a
rounding of corners and edges and allows for spinodal decomposition of unstable
orientations into stable ones. However, the asymptotic limit of the associated
phase-field/diffuse-interface system is not equation (1.2) and the dynamics and
equilibrium shapes of the two models are different.

A correct phase-field approximation of equation (1.2) requires an approximation
of the Willmore energy. Attempts to construct phase-field approximations for the
Willmore energy date back to De Giorgi (1991), who conjectured an appropriate
approximation, which has since been analysed and simplified using different
methods by Loreti & March (2000), Du et al. (2004, 2005), Röger & Schätzle
(2006) and Wang (2007). An alternative approach has been used by Biben &
Misbah (2003), Biben et al. (2005) and Jamet & Misbah (2008). In Rätz et al.
(2006), the De Giorgi approach to approximating for the Willmore energy, which
we follow in this paper, is proposed as a regularization for the strong anisotropic
surface energy in a phase-field model. Adaptive numerical simulations using this
approach were performed by Wise et al. (2007). However, the specific forms of
the Willmore term and the phase-field/diffuse-interface approximation of the
anisotropic surface energy term used in these works were incompatible. Thus,
this approach also does not give equation (1.2) as the asymptotic limit.
The incompatibility arises because of an inappropriate combination of anisotropic
and isotropic terms in the energy. In particular, the orientation-dependent
interface thickness introduced by the surface energy anisotropy (Kobayashi 1993)
is not compatible with the Willmore approximation that assumes a uniform
interface thickness. This motivated us to develop a new way of approximating
anisotropic free energies in phase-field models. A key feature of our approach is a
diffuse-interface thickness that is independent of the orientation. This makes it
straightforward to combine isotropic and anisotropic terms. The resulting system
is highly nonlinear and is sixth order in space.

Using matched asymptotic expansions, it can be shown that our new model
converges to the classical sharp-interface model in the limit of vanishing interface
thickness (see the electronic supplementary material). We present simulations in
two and three dimensions, which show excellent agreement between the
dynamics and equilibrium shapes simulated by the sharp-interface model and
by our new phase-field model. At equilibrium, the computed shapes also match
the results of an analytical sharp-interface theory by Spencer (2004), which
describes the rounding of sharp corners by the Willmore regularization.
Proc. R. Soc. A (2009)
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The paper is organized as follows. In §2, we discuss equilibrium shapes of
crystals with strong anisotropies. In §3, we derive the phase-field model for the
Willmore regularization of strongly anisotropic surface diffusion. In §4, we briefly
describe the numerical scheme used to solve the highly nonlinear sixth-order
phase-field/diffuse-interface equations. In §5, we present simulations of the
evolution of facetted curves and surfaces. We compare the equilibrium shapes
with the asymptotic results in Spencer (2004). We also demonstrate mound
formation and the coarsening of surface structures. Finally we draw conclusions
in §6. The formal matched asymptotic expansion showing the convergence to the
sharp-interface model is given in the electronic supplementary material.
2. Equilibrium shapes

The equilibrium (Wulff ) shape of a crystal is defined as the shape that minimizes
the surface free energy E [G] under the constraint of fixed enclosed volume.
Depending on the details of the free energy density g, the equilibrium shape may
contain corners and edges. In such cases, it is energetically favourable to exclude
high-energy orientations and allow for missing orientations. In two dimensions,
the surface energy g(n) can be written as gZg(q), where q is the tangent angle.
Corners, edges and missing orientations occur if the stiffness becomes negative
for some orientations. The stiffness is defined as ~gZgCgqq. In three dimensions,
with gZg(q, f) depending on two angles, no such analytical criterion is known.
Instead, the polar plot of 1/g has to be used and it has been shown in Sekerka
(2005) that the onset of missing orientations occurs at a convex-to-concave
transition in the 1/g plot. Using the Cahn–Hoffman (1974) x-vector, missing
orientations occur when ‘ears’ and ‘flaps’ form in the x-plot (Sekerka 2005).
Consider the fourfold symmetric model-type anisotropy

gðnÞZgðqÞZ 1Ca 4
Xd
iZ1

n4
i K3

 !
; ð2:1Þ

where a is the anisotropy strength and dZ2, 3 is the space dimension. In two
dimensions, this is equivalent to

gðnÞZ 1Ca cos 4q: ð2:2Þ
In this paper, we use these anisotropy functions exclusively although our
approach of course works for any such function. The anisotropy function (2.1) is
convex for values a!1/15 and non-convex for aR1/15. In figure 1, the
corresponding Wulff shapes that are plotted (in three dimensions the x-plot is
shown), which in three dimensions resemble a double-sided pyramid, are shown
for convex (aZ0.06) and non-convex (aZ0.2 and 0.3) surface energy functions g
from equation (2.1). Note that the actual Wulff shapes do not contain the
unphysical ears and flaps (that appear in the three-dimensional x-plot) and
instead contain corners and missing orientations (e.g. Sekerka 2005).

The HK1 gradient flow of the corresponding surface energy E½G �Z
Ð
GgðnÞ dG

defines the following model for anisotropic surface diffusion:

V ZDG n
dE

dG

� �
; ð2:3Þ
Proc. R. Soc. A (2009)
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Figure 1. (a) Three- and (b) two-dimensional Wulff shapes with a as labelled. In three dimensions,
the x-plot (Sekerka 2005) is shown. (i) aZ0.06, (ii) aZ0.2 and (iii) aZ0.3.
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where DG is the surface Laplacian (Laplace–Beltrami operator) and n is the
mobility. In two dimensions, DGZvss, where s is the arc length, and

vE

vG
Z ðgCg00ÞH ; ð2:4Þ

where g0Zdg/dq. When the anisotropy is sufficiently strong such that there are
missing orientations in the Wulff shape, the evolution by surface diffusion is
inherently unstable. In fact, the evolution equations are actually ill-posed
because the equations are backward parabolic for these orientations owing to
the non-convexity of the anisotropic surface energy. One way to overcome this
ill-posedness is to regularize the equation by adding a curvature-dependent term
to the interface energy. This was already proposed on physical grounds in
Herring (1951), and later mathematically introduced in DiCarlo et al. (1992) and
Gurtin & Jabbour (2002). Such a curvature-dependent term introduces a new
length scale on which sharp corners and edges are rounded. In Rätz & Voigt
(2006), it is argued that even higher order terms in the energy are necessary to
prevent a surface from forming corners and edges; however, here we will only
consider energies as in equation (1.1). Minimizing the surface energy thus
becomes a compromise between a large curvature at the corners and edges, which
decreases orientations with large surface energy but increases the regularization
term, and small curvature at the corner, which decreases the regularization term
but increases orientations with large surface energy. The amount of corner
rounding is therefore determined by these two competing energy terms. The
plausibility of such a regularization is clear, but its effect on the equilibrium
shape was only recently analysed for curves and is still open for surfaces. For
curves, Spencer (2004) gave an asymptotic analysis that shows the convergence
to the sharp-corner (Wulff ) results as the regularization parameter b/0 and
Proc. R. Soc. A (2009)
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Figure 2. Close-up of a rounded corner with aZ0.2 and different Willmore regularization
parameters; bZ0.04 (dot-dashed curve), 0.01 (dashed curve) and 0.0025 (solid curve), following
Spencer (2004).
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provides an analytical formula for the equilibrium shape near a rounded corner
for bO0 (figure 2). We will use this asymptotic solution, referred to as a
regularized Wulff shape, later to compare with equilibrium corner profiles for the
new phase-field/diffuse-interface model.
3. Phase-field/diffuse-interface approximation

In the phase-field/diffuse-interface approach, narrow transition layers replace
sharp interfaces and an order parameter 4 that denotes the phases in a
multiphase system is introduced. The order parameter is constant (0 or 1) in
each phase and the interface (transition layer) between phases corresponds to the
region where 4 varies from 0 to 1. The classical formulation of the phase-
field/diffuse-interface equations for isotropic systems is based on the energy
(Cahn & Hilliard 1958)

E½4 �Z
ð
U

1

e
f C

e2

2
jV4 j 2

� �
dU; ð3:1Þ

where e is a small parameter that is a measure of the interface transition layer
thickness and fZf(4) is a double-well potential. A phase-field approximation
for surface diffusion based on this energy was introduced by Cahn et al. (1996).
The evolution law is

v4

vt
Z

1

e
V $ðMð4ÞVmÞ; ð3:2Þ

mZ
1

e
ðf 0ð4ÞKe2D4Þ; ð3:3Þ

where M(4) is the mobility which is localized near the interface, e.g. M(4)Z
44(1K4). Equation (3.3) is a degenerate Cahn–Hilliard equation that converges
as e/0 to motion by surface diffusion VZDGH. An improved version has been
given in Rätz et al. (2006), where m is replaced by Gm, with GZG(4) localized
near the interface. A detailed asymptotic analysis for this and other approaches,
not discussed here, is given in Gugenberger et al. (2008). In the isotropic case,
numerical simulations indicate that using Gm rather than m does not significantly
Proc. R. Soc. A (2009)
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influence the evolution (A. Rätz & A. Voigt 2008, personal communication).
Assuming that the double-well potential is f(4)Z42(1K4)2/4, then in all cases
the profile across the interfacial layer is

4Z
1

2
1Ctanh

d

2
ffiffiffi
2

p
e

� �� �
; ð3:4Þ

where d denotes the signed distance to the centre of the interfacial layer.
Following the classical approach to incorporate anisotropy (Kobayashi 1993),
the anisotropic energy is

E½4 �Z
ð
U

1

e
f C

e2

2
jgðnÞV4 j 2

� �
dU; ð3:5Þ

and the new evolution law for weak (convex) anisotropies reads

v4

vt
Z

1

e
V $

1

gðnÞMð4ÞVm

� �
; ð3:6Þ

mZ
1

e
ðf 0ð4ÞKe2V $mÞ; ð3:7Þ

where the anisotropic gradient m is given by

m Zg2ðnÞV4CgðnÞ jV4 jPVngðnÞ; ð3:8Þ
and the unit normal n and the projection matrix P are given by

n Z
V f

jV f j ;

and

P Z IKn5n;

where I is the identity matrix. In equation (3.8), Vn represents the gradient with
respect to the components of the normal vector. In Rätz et al. (2006), the
convergence of this model to motion by anisotropic surface diffusion VZDGHg is
shown by the method of matched asymptotic expansions as e/0. In this
approach (see also Wheeler et al. 1996), the interface thickness is seen to be a
function of orientation

4Z
1

2
1Ctanh

d

2
ffiffiffi
2

p
egðnÞ

 ! !
: ð3:9Þ

Starting from these equations various attempts have been made to extend the
approach outlined above to strongly anisotropic (non-convex) surface free energy
densities g. As in the sharp-interface case, equations (3.6)–(3.8) become ill-posed
(e.g. Wise et al. 2007). Wise et al. (2005, 2007) and Wheeler (2006) used a
regularization of the ill-posed equation based on the Laplacian of the phase-field
variable, thus adding

b

2

ð
U

1

e3
ðe2D4Þ2 dU ð3:10Þ

to the energy. In Rätz et al. (2006), an approach is proposed which uses instead
a De Giorgi-type phase-field approximation of the Willmore energy as a
regularization. In this case, the additional term in the energy is
Proc. R. Soc. A (2009)
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b

2

ð
U

1

e3
ðf 0ð4ÞKe2D4Þ2 dU: ð3:11Þ

This was implemented and investigated in Wise et al. (2007). Such phase-field/
diffuse-interface approximations of the Willmore energy have been shown to
converge to the Willmore functional in the limit e/0 (see Loreti & March 2000;
Du et al. 2004, 2005; Röger & Schätzle 2006; Wang 2007). However, it can
be seen that the Willmore term leads to a constant interface thickness and is
thus not compatible with the phase-field/diffuse-interface approximation of
anisotropy as outlined above. In an alternative approach to approximating
the Willmore energy, used in Biben & Misbah (2003), Biben et al. (2005) and
Jamet & Misbah (2008), the curvature may be directly calculated by HZV$n,
with n given as above, and the integrand in equation (3.11) may be replaced with
H 2jVfj. While this approach is feasible to use here, it leads to additional
nonlinearity compared with the De Giorgi approach.

We now reformulate the anisotropic energy (3.5) such that the interface
thickness is independent of orientation. For this reason, we consider the
anisotropic surface energy as

E½f �Z
ð
U

gðnÞ
e

f C
e2

2
jV4 j 2

� �
dU: ð3:12Þ

Note that this form of the energy differs from the form in equation (3.5) in that g
multiplies both the f and jV4j2 terms. This is a natural formulation if we
interpret the term ð1=eÞð f ð4ÞCðe2=2Þ jV4 j 2Þ as approximating the surface delta
function as in the original Cahn–Hilliard system. The corresponding evolution
law becomes

v4

vt
Z

1

e
V $ðMð4ÞVmÞ; ð3:13Þ

mZ
1

e
ðgf 0ð4ÞKe2V $mÞ; ð3:14Þ

with

m ZgðnÞV4CPV ngðnÞ
f

e2 jV4 j C
1

2
jV4 j

� �
:

To further simplify, we may use the asymptotic result that near interfaces f ð4Þw
ðe2=2Þ jV4 j 2 thereby giving

mwgðnÞV4C jV4 jPV ngðnÞ; ð3:15Þ
which is different from equation (3.8) by a factor of g. As is shown in the
electronic supplementary material, the resulting interfacial layer is independent
of orientation and is given by the isotropic formula (3.4). This allows the
anisotropic surface energy (3.12) to be combined consistently with the phase-
field approximation of the Willmore regularization. Our regularized free energy
thus reads

E½4 �Z
ð
U

g
1

e
f C

e2

2
jV4 j 2

� �
C

b

2

1

e3
ðf 0ð4ÞKe2D4Þ2 dU: ð3:16Þ
Proc. R. Soc. A (2009)
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The phase-field/diffuse-interface evolution equation based on this energy,
which, when combined with the asymptotic approximation (3.15), is

v4

vt
Z

1

e
V $ðMVmÞ; ð3:17Þ

mZ
1

e
ðgf 0ð4ÞKe2V $mÞCb

1

e2
ðf 00ð4ÞuKe2DuÞ; ð3:18Þ

m ZgðnÞV4C jV4 jPV ngðnÞ; ð3:19Þ

uZ
1

e
ðf 0ð4ÞKe2DfÞ: ð3:20Þ

This is now a sixth-order system. We should point out that this evolution does
not strictly guarantee that dE/dt%0 because of the asymptotic approximation
(3.15) of m. If we did not use this approximation, the energy would be non-
increasing. However, the term f(4)/jV4j can be problematic when e is not
sufficiently small, since in principle jV4j could vanish in regions where f does
not. So using the approximation, we have to check the behaviour of the energy
numerically. In all cases, we find that the energy is non-increasing. In the
electronic supplementary material, we use the method of matched asymptotic
expansions (following Pego 1989; McFadden et al. 1993; Leo et al. 1998; Loreti &
March 2000), which shows that the system (3.17)–(3.20) converges to anisotropic
surface diffusion as e/0.
4. Numerical methods

To numerically solve the sixth-order system derived in §3, a straightforward
modification of the algorithm developed by Wise et al. (2007) suffices. We use the
mobility and free energy functions given by

Mð4ÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1642ð1K4Þ2 Ct

q
; f ð4ÞZ 1

4
42ð1K4Þ2; ð4:1Þ

where t is a small positive parameter (tZ10K6) introduced to keep the mobility
from vanishing. We solve a coupled system of three second-order equations for 4,
m and u using second-order accurate-centred finite differences in space. A Crank–
Nicholson scheme is used to discretize in time. The anisotropic gradient is
discretized in conservation form in space and is lagged in the multigrid V-cycle.
To solve the resulting nonlinear equations, a nonlinear multigrid method is used.
We further use adaptive block-structured Cartesian mesh refinement (see Wise
et al. (2007) for details).
5. Numerical results

We begin by comparing the results we have obtained from our new phase-
field/diffuse-interface model (3.17)–(3.20) with the sharp-interface model (2.3) at
different stages of the evolution in two dimensions. In order to study the sharp-
interface model described in §2 dynamically, we use a non-stiff front tracking
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technique (e.g. Hou et al. 1994; Leo et al. 2000; Siegel et al. 2004; Li et al. 2005).
The idea is to use a high-order (spectrally accurate) parametrization of the
interface together with a special tangential velocity to enforce dynamic equal
spacing in arc length and a non-stiff time integration algorithm for the interface
tangent angle.

We consider the evolution of a circle towards equilibrium under surface
diffusion with a strong fourfold anisotropy given in equation (2.1), with aZ0.1,
Willmore regularization bZ0.01 and interface thickness parameter eZ0.03. The
phase-field description of the initial circle is

4ðx; y; t Z 0ÞZ 1

2
1:0Ktanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxK3:2Þ2 CðyK3:2Þ2

q
K1:6

2
ffiffiffi
2

p
e

0
@

1
A

0
@

1
A: ð5:1Þ

The phase-field computational domain is UZ(0, 6.4)!(0, 6.4). The simulation is
performed with a root-level grid size hZ0.1 (64!64 grid points); there are two
levels of refinement and the finest resolution is hZ0.025. There are six or seven
points across the interface during the simulation. The time step is sZ0.001.
In the sharp-interface model, the parameters a, b and n are matched to the new
phase-field model using the asymptotic formulae in the electronic supplementary
material. In the sharp-interface simulation, there are 256 nodes on the interface
and the time step size is sZ0.125!10K8.

In figure 3, we present snapshots of the evolving 4Z0.5 level set (solid curve)
at different times together with the sharp-interface results (dashed curve). The
corresponding adaptive meshes and 4Z0.5 level sets are shown in the figure 3(ii).
The initial circular interface transforms under the evolution to a fourfold
symmetric shape with slightly rounded corners at tZ100, which is almost the
equilibrium shape. There is an excellent agreement between the new phase-field
model and the sharp-interface model throughout the evolution. In figure 4, we
compare the corresponding energies for the two models, where the scaling of
the sharp-interface energy is consistent with the asymptotic formulae in the
electronic supplementary material. Both energies are non-increasing in time and
there is excellent agreement between the new phase-field (solid curve) and the
sharp-interface (dashed curve) results.

Next, we compare the new phase-field model results near equilibrium with the
sharp-interface Wulff shape and the regularized Wulff shape near the corner
(Spencer 2004). To emphasize the effects of anisotropy, we consider here aZ0.3.
The initial shape is a circle and the domain and all other parameters are the same
as in figure 3. We also compare the results of the new phase-field model
(figure 5a) with previous phase-field models resulting from the classical
anisotropy model equation (3.5) combined with either the Willmore regulariz-
ation (3.11) (figure 5b) or the linear regularization (3.10) (figure 5c). Observe
that the linear regularization not only affects the corner angle but also results in
sides that are more curved than the Wulff shape and the Willmore regularization.
The 4Z0.5 level curve is plotted at time tZ200 where the corresponding energy
profile in figure 6 suggests that the shapes are nearly equilibrated. The Wulff and
regularized shapes are shown as the black and grey dashed curves, respectively.
Near the corners, in contrast to the Wulff shape, both the phase-field models with
Willmore regularization yield interfaces with smoothed corners, which match the
Proc. R. Soc. A (2009)
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Figure 3. (i) The snapshots of the evolving interface, 4Z0.5 level set, at (a) tZ10, (b) tZ50 and
(c) tZ100 (solid curve) in comparison with the sharp-interface result (dashed curve). (ii) Close-up,
(iii) mesh snapshot of the diffuse-interface model showing two levels of refinement (finest
hZ0.025). The parameters are given in the text; the initial shape is a circle (equation (5.1)).
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regularized Wulff shape. This is the first time we are aware of that such a
comparison has been performed in the phase-field/diffuse-interface context. For
the new model, away from the corners, there is very good agreement between
the numerical results and Wulff shape. But there is a mismatch between the
numerical results from previous phase-field models and Wulff shape away from
the corners. It seems that the angle between the two sides is larger in these
models than that in the Wulff shape. This deviation is real and is not due to the
possibility that the shape is still evolving since the energy (shown in figure 6)
indicates that the shape is very close to equilibrium. To quantify the deviation, in
figure 7, we examine the orientation angle q (tangent angle) as a function of arc
length s near the corner. Observe that the new and previous phase-field models
with Willmore regularization match the regularized Wulff shape (Spencer 2004)
at the corner, where qZ0, but away from the corner only the new model matches
the asymptotic solution and hence the Wulff angle. The previous phase-field
model with the linear regularization gives a different result both near and away
from the corner. Note that the (Wulff ) angle between the two corner sides in the
shapes from figure 5 is equal to pK[max(q)Kmin(q)]. The deviation between
the previous models and the Wulff angle is apparent.
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Figure 4. Energy as a function of time for the new phase-field model (solid curve) and the sharp-
interface model (dashed curve), for the simulation reported in figure 3. The energy graph suggests
that the systems are very close to equilibrium by time tZ100.

1.6 3.2 4.8 6.4 0 1.6 3.2 4.8 6.4 0 1.6 3.2 4.8 6.40

1.6

3.2

4.8

6.4(a) (b) (c)

4.8

3.23.2 3.2

Figure 5. (Top row) The snapshot of the 4Z0.5 level set at tZ200, the near-equilibrium solution
based on the energy profile given in figure 7, (a) for the new phase-field interface model (solid
curve), and the previous phase-field models with (b) Willmore and (c) linear regularizations (solid
curves). The models are also compared with the Wulff shapes (black dashed curve) and regularized
Wulff shape (Spencer 2004) near the corner (grey dashed curve). (Bottom row) Corresponding
close-ups. The parameters are given in the text.
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In figure 6, the energy is shown for the new (solid curve) and previous phase-
field models with Willmore (dashed curve) and linear (dot-dashed curve)
regularizations. The total energy for all the models is decreasing. At tZ40, the
decrease in energy becomes very small and after some time the energy is almost
constant. Thus, we consider tZ200 to be very close to equilibrium. Also note
that the energies for the previous models are larger than that of the new model,
with the linear regularization being quite a bit larger. It is interesting to look at
Proc. R. Soc. A (2009)
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Figure 6. (a) Energy profiles for the new (solid curve) and the previous phase-field models with
Willmore (dashed curve) and linear (dot-dashed curve) regularizations. The parameters are given
in the text. The energy plot suggests that the system is very close to equilibrium by time tZ200.
(b) A close-up, with arrows indicating times where energy decrease is slow.
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Figure 7. The orientation angle q is plotted as a function of arc length s at the top corner from the
shapes in figure 5 at time tZ200. The results from the new and previous phase-field models are
plotted together with the sharp-interface asymptotic solution for the regularized corner (Spencer
2004). The parameters are given in the text. Grey solid curve, new model; dot-dashed curve,
regularized Wulff result; dashed curve, previous model with Willmore regularization; black solid
curve, previous model with linear regularization.
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the energy at early times (figure 6b) where the energies for the models with
Willmore regularization are shown. As indicated by arrows, there is a short
period of time where the rate of decrease in energy is fairly small. Right before
this time, there is a rapid drop in the energy. This phenomenon occurs in all the
phase-field models so we focus only on the new model here. As we show, this
rapid decrease is associated with the morphological evolution of the shape.
In figure 8, snapshots from the evolution of the initially circular shape are shown
at early times. By time tZ1.5, a three-hill/two-valley structure is formed.
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Figure 8. The early time evolution of the initially circular shape towards the equilibrium shape
shown in figure 5a. (a) The shapes, (b) a close-up of the top corner region and (c) the orientation
(tangent angle) as a function of arc length for the top corner region of the shape. (i) TimeZ0.5,
(ii) timeZ1.5, (iii) timeZ2.5 and (iv) timeZ3.5.
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This is seen clearly in the close-up and orientation plots shown in figure 8b,c.
Note that the hills and valleys correspond to the points where qZ0; in our
orientation vsq!0 at qZ0 corresponds to a hill. This hill–valley structure
emerges because the strong thermodynamic driving force to remove the high-
energy orientations on the circular interface creates instability, manifest by the
hill–valley structure, which is mediated by the (Willmore) regularization. The
drop in the energy seen in figure 6b before the arrow corresponds to the formation
of the hill–valley structure. Next, the hill–valley structure further evolves to form
the single hill structure seen at tZ3.5; the energy decreases slowly during this
process. To characterize this in more detail, we plot in figure 9 the x coordinates
of the hills (circles) and valleys (pluses) at different times. A single hill forms first
by tZ0.4. Then, by tZ0.8, the three-hill/two-valley structure emerges. Then,
shortly after tZ1.5, the hill and valley located around xz2.8 merge leaving a
two-hill/one-valley structure remaining. The hill and valley located near xz3.6
then merge just after tZ1.9 leaving the single hill located at xz3.2.

We now investigate the effect of the Willmore regularization parameter b on
the equilibrium interface morphologies using the new phase-field model. We
consider three different values, bZ0.004, 0.01 and 0.018. The other parameters
are aZ0.1 and eZ0.03. The mesh and time step are the same as in the previous
simulations. Using the energy as a guide (not shown), we use the time tZ100
shapes as approximations of equilibrium. The near-equilibrium 4Z0.5 level
curves at tZ100 are shown in figure 10a. The evolution from an initially circular
shape to these shapes is similar to that shown in figure 8, but as b decreases
sharper and smaller corners form in the equilibrium morphologies. This is further
Proc. R. Soc. A (2009)
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Figure 9. The x coordinates of the hills (circles) and valleys (pluses) shown in figure 8 at
different times.
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Figure 10. The effect of Willmore regularization b on the corner shape (timeZ200). (a(i), (ii))
Near-equilibrium 4Z0.5 level curves for the new phase-field model corresponding to the three
values of bZ0.004 (solid curve), 0.010 (dot-dashed curve) and 0.018 (dashed curve); (b(i), (ii))
interface orientation (tangent angle) near the top corner for the different b. (ii) Close-ups of each
corresponding quantity are shown.
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quantified by the plot of the interface orientation angle in figure 10b. Away from
the corner, the corresponding three interfaces merge to a shape that matches the
sharp-interface Wulff shape.
Proc. R. Soc. A (2009)

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


1.2
1.4
1.6
1.8
2.0

1.2
1.4
1.6
1.8
2.0

1.2
1.4
1.6
1.8
2.0

1.2
1.4
1.6
1.8
2.0

0 1 2 3 4 5 6

1 1 1

22

(a)

(b)

(c)

(d )

Figure 11. The early time evolution of the 4Z0.5 level curves for open, periodic two-dimensional
interfaces ((a) timeZ0.0, (b) timeZ0.5, (c) timeZ2.0, (d ) timeZ3.0). The arrows show the
sequence in which the hills disappear.

S. Torabi et al.1352

 on December 4, 2013rspa.royalsocietypublishing.orgDownloaded from 
In figure 11, we consider the evolution of a two-dimensional model of a thin
film geometry using the new phase-field model. In particular, the evolution of an
open, initially flat interface with periodic boundary conditions is shown. The
initial geometry is given as

4ðx; yÞZ 1

2
1Ktanh

yK1:6

2
ffiffiffi
2

p
e

� �� �
: ð5:2Þ

The domain is UZ(0, 6.4)!(0, 3.2). The fourfold anisotropy parameter is aZ0.5,
the regularization parameter is bZ0.01 and the interface thickness parameter is
eZ0.03. The mesh parameters are the same as in previous simulations.

In figure 11, the 4Z0.5 level curves are shown at early times during the
evolution. Initially, the flat interface decomposes into a hill–valley structure as
the interface tries to rid itself of high-energy orientations. This corresponds to a
rapid decrease in energy as seen in figure 12 and this process is similar to that
described earlier for closed shapes. As the system evolves, the hill–valley
structure begins to coarsen as hills and valleys are removed from the system. The
arrows in figure 11 indicate the sequence in which the hills and valleys are
removed. As seen from figure 12b, these coarsening events are associated with
rapid drops in the energy. To investigate the coarsening process in more detail,
we consider the interface orientation angle q. In figure 13, we observe that the
hill–valley structures with the smallest [max(q)Kmin(q)] disappear first, i.e.
those with wider corner angles. In particular, the hills marked by 1 at tZ0.5
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disappear earlier than the other hills. Next, the hills marked with 2 at time tZ2.0
disappear. At longer times, the coarsening process is shown in figure 14 where the
x coordinates of the hills (circles) and valleys (pluses) are shown at different
times. As seen in the figure, the coarsening process may occur symmetrically by
either two hills merging with a valley to produce a hill or by two valleys merging
with a hill to produce a valley. As the interface coarsens, both the hills and the
Proc. R. Soc. A (2009)
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valleys tend to match the regularized Wulff shape (Spencer 2004). This
symmetry (e.g. the shape of a hill is the inversion of that of a valley) is seen
in figure 15a where the orientation angle for the new phase-field model is shown
at a late time tZ350 (solid curve) together with the asymptotic form of the
sharp-interface Willmore regularization (dashed curve) from Spencer (2004).
Note that three of the hill–valley structures have smaller [max(q)Kmin(q)]
values than the others. These are the next to coarsen, although the process takes
a very long time. The corresponding interface morphology is shown in figure 15b.
We further note that symmetry in both the coarsening process and the
shapes of the hills and valleys may be broken when additional effects are
considered, such as deposition or elastic forces (e.g. Hausser & Voigt 2005b; Zhou
et al. 2008).

We next turn to three dimensions. In figure 16, the evolution of an initially
spherical shape towards the Wulff shape is shown, using the new phase-field
model with aZ0.3, bZ0.01 and eZ0.03. Observe that the Wulff shape resembles
a double-sided pyramid. The computational domain is UZ(0, 3.2)!(0, 3.2)!
(0, 3.2). The simulation is performed with a root-level grid of 32!32!32 (with
mesh size hZ0.1) and there are two levels of refinement. The resolution on the
finest mesh is hZ0.025 and the time step size sZ0.001. As in two dimensions,
there are approximately six or seven mesh points across the interface during the
Proc. R. Soc. A (2009)
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Figure 15. A late-time (tZ350) open, periodic interface continued from that shown in figure 11.
(a) The orientation angle as a function of arc length for the new phase-field model (solid curve)
and the asymptotic solution for the Willmore regularization (Spencer 2004; dashed).
(b) The corresponding 4Z0.5 level curve.
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simulation. In figure 16a, the 4Z0.5 surface is plotted. In figure 16b, the yZ1.6
slice is shown together with the corresponding slices of the bounding boxes of the
three-dimensional adaptive mesh. Each box contains a mesh that is one-half of
the size of that in the box that contains it.
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corresponding yZ1.6 slices together with the slices of the bounding boxes from the three-
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In figure 17, we compare the yZ1.6 slice (solid curve) at tZ20 with the
corresponding slice of the three-dimensional Wulff shape (dashed curve; which
also corresponds to the two-dimensional Wulff shape since the slice is through the
centre of the three-dimensional shape), and also with the asymptotic Willmore
regularized solution (dot-dashed curve; Spencer 2004). As in two dimensions,
away from the corner, there is excellent agreement between the Wulff shape and
the result from the new phase-field model. Near the corner, there is excellent
agreement with the asymptotic solution.
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In figure 18, we present a final three-dimensional example corresponding to
an open, periodic three-dimensional interface, which serves as a model for a
thin film. The new phase-field model is used with aZ0.3, bZ0.01 and eZ0.024.
The computational domain is UZ(0, 3.2)!(0, 3.2)!(0, 3.2). The simulation is
performed with a root-level grid of 16!16!16 (with mesh size hZ0.2). There
are three levels of refinement. The finest resolution is hZ0.025 and the time step
size sZ0.001. There are approximately six mesh points across the interface
during the simulation. In figure 18a, the 4Z0.5 surface is plotted at time tZ40;
in figure 18b, the corresponding yZ1.6 slices are shown together with the slices of
the bounding boxes of the three-dimensional adaptive mesh. As in two
dimensions, the slightly perturbed initial interface rapidly decomposes into a
hill–valley structure that coarsens leaving a central smoothed pyramid
surrounded by a periodic hill–valley structure. A comparison (not shown)
indicates that the yZ1.6 slices of the hills and valleys match the sharp-interface
theory of Spencer (2004).
6. Conclusion

We have presented a new phase-field model for strongly anisotropic crystal
growth using regularized, anisotropic Cahn–Hilliard-type equations. A new
formulation was used for the anisotropic surface energy and the regularization
was performed using a phase-field/diffuse-interface approximation of the
Willmore energy (square of the mean curvature). A key feature of our approach
was that the interface thickness is independent of orientation. This removed an
incompatibility between the anisotropy and the Willmore regularization
proposed and used in earlier phase-field models. An asymptotic analysis
presented in the electronic supplementary material demonstrates the conver-
gence of the new phase-field model to the sharp-interface model. We presented
two- and three-dimensional numerical results using an adaptive, nonlinear
multigrid finite-difference method. We found excellent agreement between the
new phase-field and the sharp-interface dynamics. The computed equilibrium
shapes using the Cahn–Hilliard approach also match a recently developed
analytical sharp-interface theory that describes the rounding of the sharp corners
by the Willmore regularization.

In the future, we will extend the model described here to simulate
heteroepitaxial thin film growth. We will incorporate deposition, misfit strain,
a substrate and wetting effects. Through continued improvements in the
efficiency of the numerical algorithm, we plan to study the long-time coarsening
of thin film systems. In addition, one of the important problems we seek to
address is the control of the formation and coarsening of nanoscale structures
to achieve desired spatial orderings.

It is a pleasure to thank Katsuyo Thornton and Peter Voorhees for their valuable discussions.
We especially thank Shuwang Li for assistance with the sharp-interface simulations. It is a
pleasure to thank Andreas Rätz. We gratefully acknowledge the financial support of the
National Science Foundation, Divisions of Materials Research (DMR) and Mathematical Sciences
(DMS), the European Union through EU grant no. STRP 016447 ‘MagDot’ and the German
Science Foundation.
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