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this contribution we focus on the numerical detection and approximation of transport bar-
riers in dynamical systems. Starting from a set-oriented approximation of the dynamics we
combine discrete concepts from graph theory with established geometric ideas from
dynamical systems theory. We derive the global transport barriers by computing the local

g’gﬁs&_ a expansion properties of the system. For the demonstration of our results we consider two

05.60.cd different systems. First we explore a simple flow map inspired by the dynamics of the glo-

02.60.—x bal ocean. The second example is the planar circular restricted three body problem with

05.45.—a Sun and Jupiter as primaries, which allows us to analyze particle transport in the solar
system.
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1. Introduction

The transport of material constitutes an important aspect of many natural systems. During the last two decades different
mathematical concepts have been developed to get a better understanding of the mechanisms of particle transport and to
estimate transport rates and probabilities, in particular in the context of Hamiltonian systems, see e.g. [1-7] and references
therein as well as [8] for a recent review on perturbation theory. Areas of application cover many scientific fields, such as
fluid dynamics, ocean dynamics, molecular dynamics, physical chemistry, and astrodynamics (e.g. [7,9-11]).

The mathematical analysis of transport phenomena is characterized by a high complexity. Generally, the approximation
of barriers to transport is only possible by numerical methods, often even involving heuristic concepts. The different ap-
proaches fall roughly into two classes, geometric and probabilistic concepts, see [12] for a recent discussion and comparison.

An established geometrical approach for the analysis of transport phenomena relies on the approximation of stable
and unstable manifolds of hyperbolic objects such as fixed points, periodic orbits, or, possibly, cantori. Their transversal
intersection gives rise to complicated dynamical behavior and explains transport in terms of lobe dynamics [3,1], i.e.
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transport over the manifold-related boundaries can be quantified by estimating enclosed volumes in the homoclinic or
heteroclinic tangle.

In this context finite-time Lyapunov exponents (FTLE) [4,13-15,6] are increasingly used (especially in nonautonomous
systems) for the approximation of transport barriers and invariant manifolds. This quantity measures how much a small ini-
tial perturbation evolves under the (linearized) dynamics and it is expected to be large in the vicinity of invariant manifolds
of hyperbolic objects. This way, local maxima or ridges in the scalar FTLE field typically define boundaries between regions
that are characterized by a minimal exchange of particles [6].

From a probabilistic point of view almost invariant sets of a dynamical system are an important characteristic for analyz-
ing questions related to transport. An almost invariant set is a subset of state space where typical trajectories stay for a long
period of time before they enter other parts of the state space. It is important to find out the number as well as the positions
of the almost invariant sets, i.e. regions that do not communicate freely with each other in terms of particle transport.

Based on a set-oriented approach the solution to this problem can be reduced to analyzing a finite-state Markov process,
see e.g. [16-21]. In this setting the dynamics is approximated by a transition matrix. Its entries are the transition probabil-
ities between small compact disjunct sets (boxes), which form a set-oriented discretization of the region of interest (e.g. a
covering of the global attractor of the dynamical system). Note that the transition matrix is a finite approximation of the
respective transfer (or Frobenius-Perron) operator that describes the evolution of densities or measures. Its spectral prop-
erties provide useful means for the approximation of almost invariant sets and thus for barriers to particle transport.

The discretized dynamical system induces a weighted directed graph in a very natural way, with vertices corresponding
to boxes and edges to non-zero entries in the transition matrix. The search for almost invariant sets in the dynamical system
can now be translated into finding vertex partitions in the graph which exhibit a small number (or sum of weights) of cutted
edges, i.e. of edges connecting the different sets (see e.g. [20,22,7]). For this task we can rely on graph partitioning algorithms
as there has been a high research activity in this field to solve problems from several applications like e.g. the efficient use of
parallel and distributed computers, VLSI-design, data mining and many others. Although most graph partitioning problems
are NP-complete, there are a number of theoretical upper and lower bounds, as well as many heuristics of different back-
ground. Furthermore, several software tools for graph partitioning are available.

Set-oriented numerical methods in combination with graph algorithmic techniques have thus been successfully applied
for the identification of the number and location of almost invariant sets in state space [20,22,7]. The concept of almost
invariant sets provides a partition of phase space that does not explicitly use the geometrical template of invariant mani-
folds. The focus of the almost invariant sets is the separation of the center regions of each set with the boundaries between
them as a by-product. Furthermore, the almost invariant sets do not provide us with information about the quality of the
boundaries such as a quantification of how strongly they repel particles. This is a motivation for us to look at other charac-
teristics of transport barriers in order to get this additional information.

Typically the boundaries between the almost invariant sets coincide with invariant manifolds of hyperbolic periodic
points as demonstrated in [7,12]. Our new idea is therefore to approximate these manifolds by calculating local expansion
properties, i.e. we exploit that the system typically has a high expansion close to a barrier and a low expansion further away
from a barrier. The values of the expansion then give us information about quality or strength of the barriers. There exist
different basic concepts of expansion properties in dynamical systems theory as well as in graph theory. However, here
we will use them in the set-oriented setting in order to compute the invariant manifolds and, thus, the transport barriers.

In order to exhibit the local expansion we consider and combine several techniques for the mathematical treatment of
transport processes — using both continuous concepts from dynamical systems theory (e.g. invariant manifolds, finite-time
Lyapunov exponents) and discrete ideas from graph theory (e.g. local subgraph expansion values). The resulting techniques
are an extension of the ideas described in [7,23,24].

The paper is organized as follows: first we present a short mathematical description of transport and the related concept
of almost invariant sets. Section 3 contains a brief overview of the set-oriented approach which forms the basis for our con-
cepts. The notion of almost invariant sets can be transformed into the set-oriented setting and further translated into a graph
formulation. Thus, we are able to apply graph partitioning techniques for the approximation of almost invariant sets.
Section 4 is devoted to the local expansion concepts for the detection of invariant manifolds and transport barriers. We first
describe the expansion rate based on the finite-time Lyapunov exponent approach. We then continue with the description of
the graph based local expansion rate. It is calculated for each vertex in the graph by using the expansion property of a local
neighborhood of the vertex. Finally, we exploit the multilevel structure of the underlying set-oriented ansatz for the devel-
opment of adaptive techniques. These allow us to obtain a high numerical accuracy while keeping the computational costs
acceptable. After having presented the theory and numerical background of our approach we demonstrate the application of
our results in Sections 5 and 6. In Section 5 we consider a Poincaré map in the Double Gyre Flow [6], a simple periodically
forced system inspired by the dynamics of the global ocean. In Section 6 we analyze transport in the solar system by means
of a first return map in the Planar Circular Restricted Three Body Problem (PCRTBP) with the Sun and Jupiter as the primaries.
We conclude with a discussion of our results and of future research directions.

2. Transport and almost invariant sets

A continuous map f : M — M on a compact subset M C R" defines a discrete dynamical system
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Often this system is given in terms of a time-T map or a Poincaré return map of some ordinary differential equation. Then fis
even a diffeomorphism, which we assume to be the case in the remainder of this contribution.

Generally, the analysis of particle transport is a question about the macroscopic dynamics of f. One is interested in the
evolution of sets or, more precisely, densities or measures on M rather than in single trajectories. The evolution of measures
v on M can be described in terms of the transfer operator (or Perron-Frobenius operator) associated with f. This is a linear
operator P: .4 — M,

(Pv)(A) = v(f~'(A)), A measurable, (1)

on the space .# of signed measures on M.
An invariant measure y is a probability measure that satisfies

W(A) = u(f~1(A)) = (Pu)(A) for all measurable A c M,

and thus is a fixed point of the transfer operator. In the following we assume that f is area and orientation preserving. Then
the natural invariant measure for f is the (normalized) Lebesgue measure.
For any two sets A;,A; ¢ M with A; N A; = 0 we can define the transition (or transport) probability p from A; to A; as

m(Ainf'(4))

PAAS =" )

whenever m(A;)#0, where m denotes Lebesgue measure. The transition probability p(A) := p(A,A) from a set A C M to itself
is called the invariance ratio of A. A set is called almost invariant if this quantity is very close to one [16]. For the analysis of
transport phenomena it is of interest to separate the compact subset M into several disjoint subsets such that each of them is
close to invariance. A reasonable measure for a good separation is the average invariance ratio of all subsets being close to
one, or, in other words, one seeks to maximize this quantity (denoted by “— max”). Formally the problem can be stated as
follows (cf. [20]):

Problem 1 (Almost invariant sets: continuous notion). For some fixed p € N* find a collection of pairwise disjoint sets
o ={Ar,...,Ap} with J;,Ar = M and m(A;) > 0, 1 <1< p, such that

p
p(A) :::—j > p(A) — max.

=1

However this set-valued optimization problem is very complex and can only be solved using heuristic approaches. In the
following section we describe a set-oriented approximation of the transfer operator. This forms the background for a graph
partitioning problem defined in Section 3.3, whose solution is an approximate solution to Problem 1.

3. Set-oriented methods for transport analysis
3.1. Discretization of the domain M

To be able to numerically deal with the continuous phase space as well as subsets of M we need a reasonable discretiza-
tion of our domain.

The subdivision algorithm [25] is the core of the set-oriented approach. Starting from an initial compact set %, := B > M
it generates a sequence %, %,, ... of finite collections of compact subsets (boxes) of R" such that for all k € N,

Q= |J B, withBnB =0 for BB € %

Besy,
is a covering of our set of interest M (e.g. relative global attractor, recurrent set, invariant set). Moreover, the diameter of the
boxes

diam(4;) = max diam(B)
Beay,

converges to zero as k — oo. The algorithm works in two steps, the subdivision (typically bisection in alternate coordinate
directions) and a selection step, see [25,26] for details.

3.2. Approximation of the transfer operator and almost invariant sets

Let B; € %4, i = 1,...,n, denote the boxes in the covering obtained after k steps in the subdivision algorithm. Following
Ulam [27], the most natural discretization of the transfer operator P is given by the stochastic matrix P, = (p;), where
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—1 a .
and m denotes Lebesgue measure. So the matrix entry p; gives the probability of being mapped from box B; to B; in one iter-
ate. Note that P, is a weighted, column stochastic matrix that is typically sparse and thus defines a finite Markov chain.
With the boxes B; being generalized rectangles, the denominator poses no problem. For the computation of
m(f~1(B;) N B;), that is, the measure of the subset of B; that is mapped into B;, one can use a Monte Carlo approach as de-
scribed in [28]:

m(f~'(B)) N B;) = KZXB (X))

where the x,’s are selected at random in B; from a uniform distribution and y, denotes the indicator function on B. Evaluation
of % (f(x«)) only means that we have to check whether or not the point f(x) is contained in B;. There are efficient ways to
perform this check based on a hierarchical construction and storage of the collection # (see [25]). Note that instead of choos-
ing an ensemble of uniformly distributed test points, we usually take points from a regular grid in order to obtain a good
discretization of the respective box. This approach is particularly useful in low dimension.

The computation of P, is fast because rather than considering the long term dynamics only one iterate of f per test point is
needed. An approximation of the natural invariant measure is then given as the eigenvector of P, corresponding to the
eigenvalue 1 and will be denoted by u. In the set-oriented setting the problem of finding almost invariant sets can now
be stated as follows:

Problem 2 (Almost invariant sets: box notation). For some fixed p € N* find a collection of pairwise disjoint sets
& ={S1,...,Sp} with U; 4,51 = % and p(S;) > 0, 1 <1< p, such that

7li (5)71 ; —ZBBCS’p” (B-)ﬁmax
p &P > g5, 14(By) '

=1 =1

Although discrete, this is still a complex optimization problem. However, the sign structure of the leading eigenvectors of the
transition matrix (with respect to eigenvalues very close to one) contains information about the number and location of al-
most invariant sets. On this spectral basis different algorithms have been derived to find good approximations to optimal
partitions with respect to Problem 2 (see e.g. [16,20,29,12]).

We note that the set-oriented algorithms are implemented in the software package GAIO [26], which provides a very effi-
cient data structure for the set-oriented discretization.

3.3. Graph formulation

The optimization problem 2 can be translated into the question of finding a specific edge-cut in a graph.
Let G = (V,E) be a graph with vertex set V = # and directed edge set

E=E(#) = {(B1.B,) € % x % : f(By) N B~} (3)

The function vw:V — R with »w(B;) = u(B;) assigns a weight to the vertices and the function ew:E — R with
ew((B;, B;)) = 1(Bi)p;; assigns a weight to the edges. Furthermore, let

E=E(#) ={{B1.B2} C #: (f(B1) N By) U (f(B2) N By)#0} (4)

be a set of undirected edges. This defines an undirected graph G = (V,E) with a weight function ew:E — R with
ew({B;,B;}) = u(B)p; + [(Bi)p;; on the edges. The difference between the graphs G and G is that in G the edge weight between
two vertices is the sum of the edge weights of the two directed edges between the same vertices in G. Thus, the sum of all
edge weights of both graphs are identical.

For a set S ¢ V we denote

Z(v,w)eE;v,w&Sew((U’ W)) _ Z{p7w}gE;y_wgSe7W({v7 W})

Zves UW( 1}) ZUES UW(V)
as the internal cost of S. Note that the internal cost is independent of the choice between the directed graph G or the undi-
rected graph G. Thus, we are allowed to operate on undirected graphs and we will do that in the following.

Clearly (with V = %) a partition of # corresponds to a partition of V and vice versa. For a partition ¥ = {S;,...,S,} we
denote

Cine(S) =

p
IS s )

i=1

"Bl'—‘



4180 K. Padberg et al./ Commun Nonlinear Sci Numer Simulat 14 (2009) 4176-4190

as the internal cost of . It is an easy task to check that p(%) = Cine (). Thus, solving Problem 2 is identical to the optimi-
zation of the internal costs of the partition .# in Eq. (5) written in graph notation. Therefore, we have established the follow-
ing graph partitioning problem.

Problem 3 (Almost invariant sets: graph notation). For some fixed p € N* find a collection of pairwise disjoint sets
& ={S1,...,Sp} with Uy 4,Si = V and 2w (S;) > 0, 1 < i < p, such that

Cine(¥) — max. (6)

The optimization problem 3 is known to be NP-complete (even for constant weights, see [30]), i.e. an efficient algorithm for
solving this problem is not known. It is left to say that the graph partitioning problem is NP-complete for most commonly
used cost functions.

However, efficient graph partitioning heuristics have been developed for a number of different applications, see e.g. [31].
There are several software libraries, each of which provides a range of different methods. Examples are CHACO [32], JOSTLE
[33], METIS [34], SCOTCH [35] or PARTY [31,36]. These libraries are originally designed to create solutions to the balanced
partitioning problem in which all parts are restricted to have an equal (or almost equal) volume of the underlying measure.
Therefore, we use parts of the library PARTY and extend them with some new code which is specially designed to address our
cost function of Problem 3. More precisely, we use the tool GADS (Graph Algorithms for Dynamical Systems) [37,38], which
efficiently interlocks the set-oriented methods of the software tool GAIO [26] with the graph partitioning library PARTY
[31,36].

4. Local expansion concepts

Recent work demonstrates that almost invariant sets are typically bounded by invariant manifolds of hyperbolic objects
[7,12]. We therefore briefly review the concept of expansion rates (finite-time Lyapunov exponents) for the approximation of
these structures within the set-oriented approach. Further on we describe the concept of local expansion in a graph based
setting.

4.1. Expansion rates based on finite-time Lyapunov exponents

We briefly review a method for the approximation of invariant manifolds of hyperbolic objects that is based on the con-
cept of expansion rates (i.e. finite-time Lyapunov exponents). This quantity measures the maximum relative exponential
divergence of small perturbations in the initial conditions over a finite time horizon. Its value is expected to be high in
the vicinity of hyperbolic periodic points and their stable manifolds. This is due to the fact that two points straddling the
stable manifold will experience exponential separation when approaching the hyperbolic point; likewise for the unstable
manifold, when the system is considered under time-reversal, see [24] for a detailed discussion. We note that this observa-
tion is the basis for the finite-time Lyapunov approaches (e.g. [4,6]). Expansion rates for given initial condition x, € R" and
number of iterations N are thus defined as

A(N,xo)z%log , NeN,

N-1
[1Dfxn)
n=0

where | - | denotes the spectral matrix norm (the Euclidean vector norm, respectively).

Often the derivative Df (x) is not given analytically (e.g. when fis given in terms of a Poincaré return map as in the exam-
ples we will consider). Therefore it is desirable to get an approximation of A(N, x) solely on the basis of f. Let ¢ > 0and N € N.
The direct expansion rate is given by

A¢(N, o) := % log ({x:&?ﬂ?\ig} w>

Note that 4,(N, -) is not necessarily continuous but for small ¢ it is a good approximation to the continuous function A(N, -)
[24]. Here we compute a set-oriented approximation of the scalar expansion rate field. Given a box collection %, that is a
covering of our region of interest we define the expansion rate for a box B € %, as

O(N,B) := max A(N, xo)
Xo€B

and in an analogous way the direct expansion rate for B as
0¢(N,B) := max A.(N, xo).
Xo€B

These quantities can be obtained by using an ensemble of test points in each box and taking the maximum expansion with
respect to this finite set of points. For a detailed treatment of the set-oriented expansion rate approach we refer to [24].
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4.2. Expansion rates based on subgraphs properties

Solutions to the graph partitioning problem as described in Section 3.3 give us some insight about the transport barriers.
Graph partitioning focuses on calculating the important almost invariant sets whereas the positions of the boundaries be-
tween the parts come as a by-product. In contrast to this we would rather like to have more insight to the boundaries them-
selves and, thus, to get more information about the transport barriers. In order to find the transport barriers in terms of
invariant manifolds we explore the use of graph-expansion values, which is a well known notion in graph theory. As the
graph partitioning algorithms find almost invariant decompositions without any geometric information we also restrict our-
selves to the analysis of graphs as defined above.

Graph expansion, roughly speaking, measures how much a set of vertices expands or connects to the rest of the graph. As
a dynamical system has a high expansion close to an invariant manifold, the underlying graph should also have a high expan-
sion close to the invariant manifold. Intuitively, structures in the graph (for example, a set of vertices) that correspond to
stable manifolds in the underlying dynamical system are expected to be characterized by high stretching. Therefore, to de-
tect the structures of interest, we calculate a local expansion for each vertex by analyzing a small neighborhood subgraph for
each vertex. Roughly speaking, if this neighborhood, which forms a small subgraph, is elongated, the vertex is likely to be a
part of or at least close to a stable manifold. We measure this stretching by a set of different expansion values of the sub-
graph like e.g. (i) the number or weights of vertices in the subgraph or (ii) the number or sum of weights of the edges con-
necting the subgraph with the rest of the graph.

As before (see Section 3.3), let G = (V, E) be a graph with vertex set V and edge set E, let vw : V — R be a weight function
on the vertices and let ew : E — R be a weight function on the edges. For some S c V let W(S) := 3, _cow(v) and for some
FC Elet W(F) := Y, .rew(e). For some S c V letS:= V \ S. For some S, T c V let Es7 := {{u, v} € E;u € S, v € T}. In the follow-
ing statement, different definitions for the expansion of a vertex v are given.

The basis for our calculations of expansion values for each vertex are the properties of the subgraphs induced by the
neighborhood of each vertex. For each vertex we consider the set of neighboring vertices U4(7). This set is comprised of
all vertices that can be reached from » by a path of maximum length d, where d is a small positive integer. As such paths
can be seen as pseudo-solutions with respect to the initial value », we expect that they exhibit similar qualitative character-
istics as the respective trajectories in the underlying dynamical system. We therefore expect that the use of measures related
to the size or weight of Uy(v) can pinpoint areas of high stretching in the graph and, thus, in the underlying dynamical
system.

Definition 1 (Expansion of a vertex). For a vertex v € V let U(v) := Uy(v) be the set of vertices from V with a fixed distance of
at most d from ». We consider the following definitions A4, 4 (v) for the expansion of a vertex v:

Aag(v) = [U(V)] Aaa (V) = W(Euw)uw)

Aaa(¥) = WD) Awa(2) = WE, @)

0T
Aqn ¢ (v) considers the number of vertices in the subgraph with the expectation that vertices in areas of high stretching typ-
ically span a large subgraph. A4 4(v) is the sum of the vertex weights of the subgraph, 44 (7) the sum of the edge weights
of edges within the subgraph, whereas 444, (v) measures the weights of edges connecting the subgraph with the rest of the
graph.

If the graph is derived from a volume-preserving dynamical system with equally sized boxes being the vertices, i.e.
V =% = {By,...,B,} then these four definitions are very closely related. In this case, we obtain y(B)A 4 (B) = Aq(B) for
all B € #, where u denotes the volume measure. Moreover, large A ¢(B) result in a large sum of edge weights and hence
in a high value of A 4,(B). One can also expect that from a large subgraph one can find many edges connecting to the rest
of the graph and thus a large 444 (B). Therefore, in our context, for equally sized boxes all four heuristics should give very
similar results. Different box sizes can, for instance, result from an adaptive scheme and will be discussed later.

How does graph expansion relate to almost invariant sets and barriers to transport? From a dynamical systems point of
view we can compare graph expansion to the direct expansion rates as described in Section 4.1. Via the results in [24] we can
then relate high graph expansion to invariant manifolds and transport barriers. We now derive some estimates in order to be
able to compare the two expansion concepts.

Proposition 1 (cf. [24]). Let X be the center point of a box B, N € N and ¢ > 0. Then
A¢(N,X) < (N, B)

and
lBiE; 3:(N,B) = A(N,X)

that is when the box size goes to zero reducing to its center point.

So we can assume that for reasonably small boxes A4.(N,X) will be a good approximation to J.(N, B) [24].
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Lemma 1. Let f : R™ — R™ and % be a box covering of M c R™ consisting of equally sized boxes B;, i = 1, ...,n with equal side
lengths 2r (e.g. square or cubic boxes). Let X be the center point of a box B and N € N. Define

N(x) — fN
nN )= max [FEZTL

Note that A,(N,x) =} logy,.(N,X). Then
max(1, [7,(N,X)]) < Aqn(B).

For N =1 we get an upper bound by
Aan(B) < [7,(1,%) + 11"

Proof. 7,.(N,Xx) gives the factor by which an inscribed ball in the box is stretched under one iteration of the map. As fis con-
tinuous the images of B will be connected, intersecting at least C = max(1, |y,(N,X)]) boxes. So C < |Uy(B)|, where Uy(B) is
the graph of radius N induced by the vertex (box) B. For N = 1 the image of the ball with radius r and center X is contained in a
ball of radius r - ,(N, X). Thus, ([7,(N,X)] + 1)™ is the maximum number of boxes needed to cover this ball, where m refers to
the dimension of phase space. O

Lemma 1 gives coarse bounds on the graph expansion. If a box has a high expansion rate then we can conclude that it will
also have a high graph expansion. Moreover, for N = 1 the graph expansion has an upper bound related to the box expansion.
For N > 1 there is no such estimate on an upper bound. This is because a path in Uy(B) does typically not correspond to a true
trajectory of f. Nevertheless we can get an estimate of the local graph expansion for N > 1 by considering the expansion of
the vertices contained in the subgraph.

Lemma 2. Set Uo(B) := B and Uy(B), k € N, as defined previously. For [ =1,...,k — 1 define X;(B) := Uj_;(B) \ U_¢41)(B). Then

k-1
A (B) < Aqk-n(B)+ > Aan(B) < AanyB)+ Y Y Aa1(B)

BeXiB =1 BeX;(B)

fork = 2.

Proof. Getting the new graph Uy(B) from Uy_;(B) is by adding direct neighbors to the existing graph, i.e.

UB = J U(B.

BeUy1(B)

More strictly only the U; neighbors of new vertices in U,_;(B) have to be considered, i.e.

UB) = Ui (B)U | Ui(B)

Eexl (B)
where X;(B) = Uy_1(B) \ Ux_2(B).
Hence, with A j(B) = |Ux(B)| we obtain
Aai(B) < A (B)+ Y A (B).
EEXI (B)

So we obtain

by iteration. O

These estimates are summarized in the following

Theorem 1. Let k € N, X; := U_(B) \ Uy_(41)(B) for [ =1,...,k — 1, and denote by X, the collection of center points of X;. Then

1

max(1, [7:(N.%)]) < Aaw (B) < (L] + 1"+ > ([7,(1L.1)]+1)"
1 Xe;(\,

=~
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The proof follows immediately from Lemmas 1 and 2. Theorem 1 relates graph expansion (i.e. the first version) to expansion
rates. In particular, the box valued concept may provide a lower bound for the graph based one. The upper bound contains
local expansion information about the boxes contained in Uy(B). Both bounds are of course very pessimistic, but are meant to
show that regions of high graph expansion are candidates for regions of high (box) expansion rates for which theoretical
results with respect to invariant manifolds and transport barriers are available [24].

In the example Sections 5 and 6 we will compare expansion rates and graph expansion numerically and also consider the
results of graph partitioning algorithms. Note that for all experiments we will consider the undirected graph G = (%, E) with
vertex weights u(B;) (i.e. normalized volume of box B;) and edge weights as defined in Eq. (4). This allows us to obtain the
boundaries formed by both stable and unstable manifolds simultaneously.

4.3. Adaptive graph-expansion approach

As the set-oriented discretization scheme exhibits a multilevel structure, we shortly describe a heuristic adaptive graph-
expansion approach that allows us to obtain finer details of the transport barriers while keeping the computational costs at
an acceptable level.

Let # be the box covering of M consisting of n boxes B;, i = 1,...,n. Denote by D the depth of the box covering, i.e. the
number of subdivision steps to obtain 4.

For the given box covering we compute the associated transition matrix P, and an approximation to the natural invariant
measure u, which in the examples considered here will correspond to the normalized box volumes. Based on this we can
form the undirected graph G = (%, E) with vertex weights 1(B;) and edge weights as defined in Eq. (4). For a given heuristic
z=1,...,4 and a given distance d we can compute the graph expansion A4 (B;) for each B; € #,i = 1,...,n. In the next step
we subdivide those boxes which expansion exceeds a certain value val, here we use val = ‘?WZBE%A(M) (B), i.e. the average
graph expansion.

These ideas are summarized in the following algorithm:

Algorithm 1.

Initialize 4 ={By,...,Bs}, steps,z,d and A q(Bi),i=1,...,n
For k=1...steps
compute val =157 A4 (B))
subdivide all boxes B with Agq(B;)) > wval,i=1,...,n
obtain Hpew consisting of Npeyw boxes
B = Brnew, N := Npew
compute Py, p
form G = (%,E)
d=d+1
compute Agq(B;) foralli=1,...,n
end

This approach refines the box covering in regions of high expansion and it is thus expected to provide in each step an
increasingly detailed approximation of the dominant transport barriers. By increasing the radius d by 1 after each subdivi-
sion step larger parts of the graph can be reached, ensuring robust results.

5. The Double Gyre flow
5.1. The model

We consider the periodically forced system of differential equations [6]

Xx = —mAsin(7f (x, t)) cos(my),

. . df (8)

y = mAcos(mtf (x,t)) sin(my) ax (x,1),
where f(x, t) = esin(wt)x? + (1 — 2esin(wt))x, (x,y) € M =[0,2] x [0,1], € > 0. Note that the boundary of M is invariant.

We fix parameter values A = 0.25, € = 0.25 and w = 27 and obtain a flow of period T = 1. Furthermore, we fix the initial

time to = 0 and consider the time-1 flow map f : M — M. f corresponds to a global Poincaré map of the periodically forced
system and preserves area and orientation. The Poincaré map f possesses six hyperbolic fixed points, four of which can be
found in the corners of M, with invariant manifolds located in the boundaries of M. Two other fixed points are located at
X<10) ~ (1.08,0) and x(zo) ~ (0.92,1). These nontrivial hyperbolic fixed points and the heteroclinic tangle formed by their invari-
ant manifolds gives rise complicated dynamics: one obtains a mixed phase space structure exhibiting a chaotic sea and fam-
ilies of tori as shown in Fig. 1(a).
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0
0 02 04 06 08 1 12 14 16 18 2
X

Fig. 1. Poincaré map of the Double Gyre flow. (a) Mixed phase space structure exhibiting regular and chaotic regions. (b) Expansion rate approach
highlights the heteroclinic tangle and thus the major transport barriers. Dark regions correspond to high stretching whereas light regions highlight nearly
no expansion in this area.

5.2. Results

The set-oriented approach as described in Section 3 is used for the numerical approximations. First we compute the
expansion rate field (see Section 4.1). For this we use a box covering of M on depth D = 18, consisting of n = 262, 144 equally
sized boxes. We choose N = 10, ¢ = 4 x 10~* and compute 5,(N, B) for all boxes B using 20 pairs of test points in each box. In
addition we compute the expansion rate field 5.(N, B) for the time-reversed system. In fact, regions of high values in 6,(N, -)
are found to be in the vicinity of the stable manifold of x{y, d:(N, -) highlights the unstable manifold of x(zo). Fig. 1(b) shows
both fields via max(s,(N, B), 6:(N, B)). Note that the major transport barrier is formed by a heteroclinic connection of these
manifolds and divides M into two halves.

For the graph based investigation we start with a box covering of the rectangle M = [0, 2] x [0, 1] on depth D = 14 with
16,384 boxes. For the computation of the transition matrix P, (see Eq. (2)) we employ a uniform inner grid of 10 x 10 points
in each box. We compute p (here normalized box volumes) and form the undirected graph G as described previously.

Fig. 2 shows a decomposition of our relevant region into five and 10 sets. The partition into five sets matches very well the
decomposition into regular and chaotic regions as visible in Fig. 1(a) but misses the transport barrier built by the invariant
manifolds.

The decomposition into 10 sets discloses more structure in the regular regions but also picks up the relevant transport
barrier related to the invariant manifolds. So using the graph partitioning approach we are able to detect the important
structures of the underlying system without using any geometric information of the dynamics. In this specific partition
we have an average internal cost of approximately 0.97 (see Eq. (5)). That means that on average 97% of the particles initial-
ized in one of the sets will stay in the respective set after one iteration of the map f.

While as demonstrated above the graph partitioning technique finds the dynamically interesting transport barriers only
after decomposition into at least 10 sets, the graph based expansion finds this boundary immediately, see Fig. 3. For the com-
putation of the graph based expansion we used the four heuristics described in Definition 7. In accordance with the obser-
vations when applying expansion rate approach (see [24]), also in graph expansion one obtains the more structure the longer
the distance d is chosen. As expected all methods give very similar results. Because the values of A 4 and A, 4) are equal up
to a constant factor, we only show A, 4.

a 1 b 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6

> 05 > 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
00 02 04 06 08 1 12 14 16 18 2 00 02 04 06 08 1 12 14 16 18 2

X X

Fig. 2. Partition of the phase space into five (a) and 10 sets (b) using one of the graph partitioning heuristics implemented in PARTY [31].
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Aa) ) Ag)

Fig. 3. Graph based expansion for the Double Gyre with respect to a box covering on depth D = 14 (16,384 boxes). The results for the different heuristics
Aq for z=2,3,4 and d = 2,4,6,8 are shown. Dark colors correspond to areas of high stretching and indicate the location of transport barriers. The
heteroclinic tangle formed by the invariant manifolds of the hyperbolic fixed points is clearly visible.

Again, dark colors indicate regions of high expansion whereas light colors correspond to low expansion (i.e. regular
behavior). The heteroclinic tangle formed by the invariant manifolds of the hyperbolic fixed points can be well seen in all
plots and compares well to the expansion rate results in Fig. 1, especially for large diameters d.

Already this simple example illustrates that the graph formulation retains the relevant dynamical information of the
underlying system. Moreover, graph expansion appears to compare very well to the expansion rate approach and is thus able
to pinpoint the major transport barriers.

5.3. Adaptive approach

The adaptive approach introduced in Section 4.3 allows for highlighting the relevant transport barriers even more clearly.
We start with a box covering of M on depth D = 10 with 1024 boxes and fix z = 1, d = 2 and steps = 8. The graph expansion
values for the initial box collection are shown in Fig. 4(a), with the colors chosen as before. The result after four steps of the
algorithm is demonstrated in Fig. 4(b). Here the heteroclinic tangle is nicely highlighted and compares well to the respective
results in Fig. 3 (d = 6). Note that for the adaptive covering only 5504 boxes are needed compared to 16,384 for a regular
discretization. The graph expansion for the respective adaptive covering after eight steps is plotted in Fig. 4(c). Here we ob-
tain a very clear transport barrier that directly relates to the relevant heteroclinic connection. The covering contains only
38,152 boxes whereas a regular discretization on depth D = 18 consists of 262,144 boxes.

0 0 o
0 02040608 1 1214 16 18 2 0 02040608 1 121416 18 2 0 02040608 1 1214 16 18 2

(a) A2y, D = (10,10) (b) Ar6), D = (10,14) (¢) A1,10), D = (10,18)

Fig. 4. Adaptive graph based expansion for the Double Gyre starting with a box covering on depth D = 10. The results for the first heuristic 4 4) are shown.
Dark colors indicate high graph expansion.
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6. The Planar Circular Restricted Three Body Problem
6.1. The model

We consider the planar circular restricted three body problem (PCR3BP) with the Sun and Jupiter as main bodies, with
masses m; and m,, respectively. The mass ms of the third body - typically an asteroid, a comet, a spacecraft or just a particle -
is assumed to be negligible. The PCR3BP is a particular case of the general gravitational problem of the three masses
my, my, ms. The motion of all three bodies takes place in a common plane where the masses m; and m, move on circular
orbits about their common center of mass. Since the third body has zero mass it does not influence the motion of the main
bodies. Normalizing the total mass we obtain a nondimensional representation of the two masses as 1 — € (Sun) and € (Jupi-
ter), where € = m,/(m; + my). In our considered case that means € = 9.5368 x 107*. For a detailed derivation of the equa-
tions of motion we refer to [39] and restrict ourselves to the basics.

Choosing a rotating coordinate system so that the origin is at the center of mass, the Sun and Jupiter are on the x-axis at
the points (—€,0) and (1 — €,0), respectively. (x,y) will denote the position of the particle in the plane, then the equations of
motion for the particle in this rotating frame are given by

X-2=0Q, J+2%x=0Q, 9)
where

x2+yr 1- 1-
Q= Yy + 6+£+6( 6).
2 Bt D) 2

Here, the subscripts of Q denote partial differentiation in the respective variable, and ry, r, are the distances from the par-
ticle to the Sun and Jupiter, respectively.

Using a Legendre transformation the autonomous equations (9) can be put into Hamiltonian form. The system has a first
integral - the Jacobi integral — which is given by

C is also called the Jacobi constant.

Hence, the motion of the test particle takes place on a three-dimensional energy manifold (defined by a particular value of
C) embedded in the four-dimensional phase space, (x,y,,y). The value of the Jacobi constant is an indicator of the type of
global dynamics possible for a particle in the PCR3BP, see [40] for a discussion. We will focus on the case shown in Fig. 5(a)
and consider for all the following computations in this section a Jacobi constant given by C = 3.05. Here the particle is
trapped either exterior or interior to the planet’s orbit, or in the region around the planet.

Furthermore, we consider the Poincaré surface-of-section (s-o-s) defined by y = 0, y > 0. The coordinates of that section
are (x,x) - that means, we plot the x coordinate and the velocity of the test particle at every conjunction with the planet. Also,
we restrict ourselves to the motion of the test particles in the exterior region. For orbits exterior to the planet’s, the s-o-s is
crossed every time the test particle is aligned with the Sun and Jupiter and is on the opposite side of the Sun from the planet.
Thus, the s-0-s becomes the two-dimensional manifold M defined by

y=0, y>0, x<-1, (10)

Exterior
region

Forbidden
region

Interior region

OSun

7 ( _
Poincaré Particle

section

Planet

Fig. 5. (a) The Sun and planet are fixed in this rotating frame. Here, the particle is trapped either exterior or interior to Jupiter’s orbit, or around Jupiter itself.
It is energetically prohibited from crossing the forbidden region, shown in gray. As the energy E of the particle increases, the bottlenecks connecting the
regions open and, finally, the entire configuration space is energetically accessible. (b) The mixed phase space structure of the PCR3BP, exhibiting regular
and chaotic regions is shown on this s-o-s.
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reducing the system to an area and orientation preserving map f : M — M on a subset M of R?. Fig. 5(a) illustrates our choice
of the Poincare surface-of-section. Taking a sample of initial conditions on this s-o0-s and following their images under re-
peated iteration of the return map, gives a good indication of the mixed phase space structure consisting of regular regions
(e.g. KAM tori) embedded within a “chaotic sea” (see Fig. 5(b)). There is a hyperbolic fixed point approximately given by
(X,X) ~ (—2.0295796,0), whose stable and unstable manifolds form a major barrier to the transport of asteroids [7]. How-
ever, similar to the previous example, direct integration as in Fig. 5(b) cannot reveal these transport barriers within the cha-
otic sea. In order to detect these structures directly we will again employ the local expansion rate approaches.

6.2. Results

For the Poincaré map f:M — M we consider M to be the chain recurrent set within the rectangle
X =[-2.95,-1.05] x [-0.45, 0.55] in the sectiony =0, y > 0, x < —1. M is covered by a collection of 137,840 equally sized
boxes on depth D = 18.

Choosing N = 3 iterations of f the set-oriented expansion rate field in forward and backward time is computed and plot-
ted using the same set-up as in the previous example of the Double Gyre.

This approach detects the major transport barriers corresponding to stable and unstable manifolds of the hyperbolic fixed
point (%, X) of f. Moreover, the expansion rate approach highlights the complicated homoclinic tangles that provide the basis
for the transport mechanism (see Fig. 6(a)). Regions with low expansion are predominantly regular regions (tori) shown in
light color. Dark colored regions correspond to high expanding areas. In order to be able to compare the expansion rate re-
sults with the graph based concepts we numerically extract the major transport barriers for this example (see Fig. 6(b)).

To illustrate that these structures serve as transport barriers we follow a sample of points initialized in different almost
invariant sets under repeated iteration of the map f, see Fig. 6(c) and (d). We use initial conditions from two different sets,
depicted by the 400 black and 250 white dots (-). These points are mapped for one (Fig. 6(c)) and for five (Fig. 6(d)) iterations,
where the black diamonds (<) and white circles (o) mark the respective end points. As expected from the notion of almost
invariance there is hardly any transport between the two regions - even after five iterations.

dx/dt

28 -26 -24 22 -2 18 -16 14 -12

dx/dt

Fig. 6. (a) Approximation of transport barriers (here, the stable and unstable manifold of a hyperbolic fixed point) using a set-oriented expansion rate
approach. Dark areas correspond to high stretching, computed using three iterations of fin forward and backward time. The relevant region in phase space
is covered by a collection of small boxes. (b) Extraction of relevant barriers. (c + d) Direct integration of a sample of initial conditions in two different almost
invariant sets (marked by black and white dots (-)). White o and black ¢ mark the end points after one (c) and five (d) iterations of the map f. As expected,
nearly all sample points remain in their initial set such that there is hardly any transport between the two sets.
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Returning to the graph based concepts, we again use a uniform innergrid of 10 x 10 points for the computation of the
transition matrix P;. Dominant almost invariant regions in the Sun-Jupiter problem approximated via graph partitioning
techniques are shown in Fig. 7. The internal cost of this specific decomposition into seven sets is approximately 0.98.
Fig. 7(b) illustrates there is a very good agreement between part of the decomposition and the boundary extracted using
the expansion rate approach. So again the geometric information related to invariant manifolds and high expansion rates
appears to be well coded in the graph. Nevertheless, as in the previous example the graph partitioning approach first restricts
to decomposing M into regular and chaotic regions. Only when allowing a relatively high number of sets, a decomposition
related to the invariant manifolds of the hyperbolic fixed point of fis obtained - and thus the dynamically relevant transport
barriers we are interested in.

Fig. 8 shows computations of the graph based expansion approach for two different heuristics z = 2 and z = 4. Again, the
computation diameter varies between d = 2, 4, 6 and d = 8, and we colored each box (i.e. each vertex v) according to the
expansion value of the respective neighborhood subgraph of radius d induced by .

In this example, traces of the relevant transport barriers are already visible for a small choice of d. For larger values of the
radius d the approximated structures match increasingly better with transport barriers obtained via the expansion rate ap-
proach described above.

7. Conclusion and future directions

As demonstrated above the combination of geometrical and graph based methods provides a powerful tool for the qual-
itative and quantitative analysis of transport in dynamical systems. Both the set-oriented expansion rate approach and the
graph partitioning ansatz define consistent almost invariant regions. This is in good agreement with related work on almost

b 03

dx/dt
dx/dt

28 -26 -24 22 8 16 -14 -1 28 26 24 22 x—2 1.8 -16 -14 12

Fig. 7. Partition of the chain recurrent set into seven sets (a) without and (b) with parts of the boundary. The boundary is extracted using the results from
the expansion rate approach.

Az A

Fig. 8. Graph based expansion for the PCR3BP with respect to a box covering of the chain recurrent set on depth 18 (137,840 boxes). The results for the
different heuristics A4, for z=2, 4 and d = 2, 4, 6, 8 are shown. Here vertices that induce particularly expansive subgraphs are highlighted by dark
colors. The results compare very well to the expansion rate approach.
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invariant sets and invariant manifolds [12]. The application of graph based expansion compares well to the expansion rate
approach and confirms that the reduction of the dynamical system f to a discrete graph with a finite-state Markov process
retains all relevant information from the dynamics. Like the expansion rate approach graph based expansion reliably finds
the dynamically relevant transport barriers whereas graph partitioning first restricts to decomposing phase space into reg-
ular and chaotic regions.

In the astrodynamical application considered here, the results allow us to draw conclusions about transport of particles
between the Jupiter region and a neighborhood of the Sun. In particular, based on the approximation of the relevant sets we
can now compute transition probabilities and estimate for instance the risk of an asteroid impact, as discussed in Dellnitz
et al. [7,23].

Future research will be include the improvement of the so far very coarse analytical results as well as a comparison of
graph expansion to the notion of graph congestion [22]. Moreover, the graph based expansion ansatz is computationally
inexpensive compared to partitioning methods and it can probably be used to obtain an initial guess for the solution of graph
partitioning problems. In particular, for the analysis of dynamical systems graph based expansion appears to find the rele-
vant boundaries more reliably than graph partition. So a combination of these concepts will potentially improve the quality
of the resulting decomposition into almost invariant sets. In a more general context, graph expansion may also be applied to
define and find analogue structures to hyperbolic fixed points in graphs. Finally, future work may also include the detection
of other transport barriers such as cantori.
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