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Transport phenomena are studied in a large variety of dynamical systems with applications
ranging from the analysis of fluid flow in the ocean and the predator-prey interaction in jelly-
fish to the investigation of blood flow in the cardiovascular system. Our approach to analyze
transport is based on the methodology of so-called transfer operators associated with a dy-
namical system since this is particularly suitable. We describe the approach and illustrate it
by two real world applications: the computation of transport for asteroids in the solar system
and the approximation of macroscopic structures in the Southern Ocean.
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1 Introduction

Over the last years set oriented numerical methods have been developed in the context of
the numerical treatment of dynamical systems. The basic idea is to capture the objects of
interest – for instance invariant manifolds or invariant measures – by outer approximations
which are created via adaptive multilevel subdivision techniques. These schemes work very
much in the spirit of cell mapping techniques (see [15, 21]) but in addition they allow for an
extremely memory and time efficient discretization of the phase space. Moreover they have
the flexibility to be applied to several problem types, and in this contribution we will show that
they are particularly useful in the analysis of transport processes in real world applications.

Today transport is a widely studied phenomenon in dynamical systems [13, 14, 16, 25,
30]. The applications range from the analysis of fluid flow in the ocean [10, 11] and the

∗ Corresponding author: e-mail: dellnitz@math.uni-paderborn.de, Phone: +49 5251 60 2649, Fax:
+49 5251 60 4216

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



48 M. Dellnitz et al.: On the Approximation of Transport Phenomena

consideration of predator-prey interaction in jellyfish [24] to the investigation of blood flow
in the cardiovascular system [26].

There are essentially two different mathematical concepts for studying transport. First
there is a geometric approach where the transport phenomena are captured by Lagrangian
coherent structures (LCS). In this case transport barriers are identified via the approxima-
tion of time-dependent invariant manifolds, for instance using finite-time Lyapunov exponents
(FTLEs) [13, 14, 22, 25]. The second approach is based on the analysis of properties of trans-
fer operators. This method is more measure theoretic in nature and it is therefore suitable for
the application of set oriented numerical techniques. In this contribution it is our purpose to
provide an insight into the set oriented approximation of transport phenomena; we base our
exposition mainly on the publications [5, 6, 10, 11].

A more detailed outline of this article is as follows. In Section 2 we define the basic notions
concerning the background on transfer operators, and in Section 3 we show how to approxi-
mate transfer operators and transport rates numerically in our set oriented framework. In Sec-
tions 4 and 5 we present examples from two real world applications, namely the computation
of transport for asteroids in the solar system and the approximation of macroscopic (almost-
invariant) structures in the Southern Ocean. While persistent ocean features such as gyres
and eddies may be observed and tracked by satellite altimetry [12], detecting and tracking the
regions that act as barriers to flow pathways is more ambiguous. These almost-invariant struc-
tures have a significant ecological impact including the trapping of material such as nutrients,
phytoplankton and pollutants.

2 Preliminaries

We are interested in studying transport phenomena of a dynamical process described by an
ordinary differential equation of the form

ẋ = f(t, x), (1)

where x ∈ X ⊂ R
� and f : R × X → R

� is smooth. We assume that the temporal
evolution of the system takes place inside the state space X and that the solution operator
φ : X × R× R → X is well defined, i.e. φ(x0, t0; ·) is the solution of (1) starting at the ini-
tial state x0 at time t0 on R. A set A ⊂ X is φ-invariant over [t, t+ τ ] if A = φ(A, t+ s;−s)
for all 0 ≤ s ≤ τ .

Coherent structures obey an approximate invariance principle over short periods of time.
We call a set A ⊂ X almost-invariant with respect to a probability measure μ on X if
μ(A) �= 0 and

ρt,τ (A) =
μ(A ∩ φ(A, t + τ ;−τ))

μ(A)
≈ 1. (2)

The meaning of ”≈ 1” has to be made precise in the actual application. The ratio in (2) is the
proportion of the set A that remains in A after flowing from time t to time t + τ , with respect
to the measure μ. Clearly, the closer this ratio is to unity, the closer the set A is to being
invariant. In order to discover coherent structures in the dynamics, we seek to find dominant
almost-invariant sets.
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An important quantity indicating the magnitude of transport w.r.t. μ between sets A1,
A2 ⊂ X over the time τ is given by

TA1,A2,t(τ) = μ(A1 ∩ φ(A2, t + τ ;−τ)). (3)

In fact, TA1,A2,t(τ) provides the transport rate by determining the measure of the subset of
points flowing from A1 to A2 in time τ starting at time t.

Our approach is to use a transfer operator Pt,τ : M → M on the space of bounded
complex valued measures to encode these transport quantities of the underlying dynamical
system (see [4, 5, 6, 10, 11]). The transfer operator is defined by

(Pt,τν)(A) = ν(φ(A, t + τ ;−τ)), A ⊂ X measurable, ν ∈M. (4)

This operator describes the evolution of bounded complex valued measures induced by the
underlying dynamical system, i.e. if ν describes the distribution of particles at time t, then
Pt,τν describes their distribution at time t + τ .

3 Numerical Approximation

We now describe how to approximate the different quantities numerically. We begin with the
transfer operator itself. Then we describe how to approximate transport rates directly, since
we are going to use this technique in the computation of transport for asteroids in the solar
system. Finally we indicate how to approximate almost-invariant sets and how to use them
for the identification of transport phenomena.

3.1 Approximation of the Transfer Operator

In order to be able to analyze the properties of the infinite-dimensional transfer operator
Pt,τ we need an approximation of Pt,τ by a finite dimensional linear operator. Let B =
{B1, . . . , Bn} denote a partition of X into connected compact boxes. Following Ulam [29],
an approximation of the transfer operator Pt,τ is given by the stochastic matrix

Pt,τ ;i,j =
m(Bj ∩ φ(Bi, t + τ ;−τ))

m(Bj)
, (5)

where m represents normalized Lebesgue measure. The entry Pt,τ ;i,j may be interpreted as
the probability that a point selected uniformly at random in Bj at time t will be in Bi at time
t + τ . Note that Pt,τ is typically sparse and that PT

t,τ defines a finite Markov chain.
In numerical applications we proceed as follows: First we choose N uniformly distributed

test points yj,l ∈ Bj , l = 1, . . . , N , for each box Bj . Then, for each j = 1, . . . , n, we
calculate φ(yj,l, t; τ), l = 1, . . . , N , via numerical integration and approximate Pt,τ ;i,j by

Pt,τ ;i,j ≈
#{l : yj,l ∈ Bj , φ(yj,l, t; τ) ∈ Bi}

N
. (6)

Such a box-discretization of X and the construction of Pt,τ is carried out efficiently using the
software package GAIO [3]. From now on we will assume that the state space X is covered
by a box-collection B.
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3.2 Transport Rates

For an approximation of the transport rates w.r.t. Lebesgue measure m – this is the situation
we will be interested in in our first application – between two sets A1 and A2 (see (3)) we
define mA1(A2) = m(A1 ∩A2) and observe that

(Pt,τmA1)(A2) = mA1(φ(A2, t + τ ;−τ))

= m(A1 ∩ φ(A2, t + τ ;−τ))

= TA1,A2,t(τ).

In our application in Section 4 the underlying dynamical system is autonomous and we will
consider a suitable Poincaré map for the transport calculations. In this case we denote by P
the corresponding transfer operator and by TA1,A2(k) the transport rate for k iterates of this
map. Then we can compute transport rates as follows: For a subset C ⊂ X we define the
vectors eC , uC ∈ R

n – recall that the cardinality of B is n – by

(eC)j =

{
1, if Bj ⊂ C,

0, otherwise
, (uC)j =

{
m(Bj), if Bj ⊂ C,

0, otherwise
. (7)

Denote by P the discretization of the transfer operator P . Then the transport between the sets
A1 and A2, which are assumed to be the unions of boxes of B, can be approximated via

TA1,A2(k) ≈ eT
A2

P
kuA1 . (8)

For a sequence (Br)r of partitions such that

max
B∈Br

diam(B) → 0 as r →∞, (9)

where r ∈ N, we can make this statement more precise with the following theorem:
Theorem 3.1 ([5]) If Ai ⊂ X, i = 1, 2 are chosen such that for i = 1, 2

m

⎛
⎜⎜⎝ ⋃

B∈Br

B∩∂Ai �=∅

B

⎞
⎟⎟⎠ → 0 as r →∞, (10)

then for every fixed k,

eT
A2

P
k
Br

uA1 → TA1,A2(k) as r →∞. (11)

Here, PBr
denotes the approximation of the transfer operator with respect to the partition

Br. For more details on this construction see [5, 6].

3.3 Almost-Invariant Sets

In this section, we relate the almost-invariance property (2) to real eigenvalues λ �= 1 of Pt,τ

and corresponding real valued (signed) eigenmeasures ν, that is,

Pt,τν = λν. (12)

We temporally fix both the initial time t and the time of integration τ . It is well known that
spectral properties of the transfer operator can be related to almost-invariance in the under-
lying dynamics. For instance, in [4] the following result has been shown in the situation where
the underlying dynamical process is perturbed by small random perturbations:
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Theorem 3.2 Suppose that the eigenmeasure ν of Pt,τ corresponding to the eigenvalue
λ �= 1 is scaled so that |ν| is a probability measure, and let A ⊂ X be a set with ν(A) = 1

2 .
Then

ρt,τ (A) + ρt,τ (X \A) = λ + 1, (13)

where ρt,τ is measured with respect to |ν|.
Remark 3.3

(a) Observe that (13) implies that both A and X \ A are almost-invariant w.r.t. |ν| if the
eigenvalue λ is close to one.

(b) The eigenmeasure ν satisfies ν(X) = 0. This follows from

ν(X) = ν(φ(X, t + τ ;−τ)) = (Pt,τν)(X) = λν(X)

since λ �= 1. Combining |ν|(X) = 1 and ν(X) = 0, we can guarantee the existence of a
set A ⊂ X with ν(A) = 1

2 .

Now we show how to compute ρt,τ (A) numerically. For this we assume the existence of
a “natural” invariant measure μ (cf. [4]). Let B = {B1, . . . , Bn} be a partition as defined
previously. For A ⊂ X we define

μn(A) =

n∑
i=1

m(A ∩Bi)

m(Bi)
pi, (14)

where p ∈ R
n is the normalized fixed left eigenvector of PT

t,τ . So the invariant density p of the
induced Markov chain is used to provide an approximation of the natural invariant measure μ.
From now on let A be a union of boxes, i. e. A = ∪i∈IBi where I ⊂ {1, . . . , n}. Then it is
straightforward to show [8] that

ρt,τ (A) =

∑
i,j∈I piPji∑

i∈I pi
, (15)

where ρt,τ is measured with respect to μn. For convergence results we refer to [8].
Transforming the matrix Pt,τ into a “time symmetric” matrix Rt,τ yields

Rt,τ ;i,j =

(
Pt,τ ;j,i +

pjPt,τ ;i,j

pi

)
/2. (16)

The matrix Rt,τ is stochastic, has only real eigenvalues (see [2]) and satisfies important maxi-
mization properties related to almost-invariance. For instance, denote by λ2 the second largest
eigenvalue of Rt,τ . Then, for A ⊂ X as above, Froyland showed in [7] that

1−
√

2(1− λ2) ≤ max
0≤μn(A)≤1/2

ρt,τ (A) ≤
1 + λ2

2
. (17)

Observe that the matrix Rt,τ ;i,j is typically sparse and the focus lies only on the large spectral
values near to 1, which may be efficiently computed by Lanczos iteration methods.
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4 Transport of Asteroids in the Solar System

In this first application (see [6]) we study the transport rates (3) for the movement of asteroids
in the solar system. We are particularly interested in transitions between the so-called quasi-
Hilda region and a region beyond the Mars-crosser line. For details on the astronomical
background we refer to [27, 28] and for more applications of studying transport phenomena
in the solar system we refer to [18, 19, 20].

4.1 The Dynamical System

For our computations we use as the dynamical model the planar circular restricted three-body
problem (PCRTBP) with Sun and Jupiter as the primaries. Let us briefly summarize the main
properties of this dynamical system (for a more detailed description we refer to [17, 28]): The
Hamiltonian for the motion of a particle in the field of the Sun and Jupiter is given by

H = E =
1

2
(p2

x + p2
y)− (xpy − ypx)−

mS

rS
−

mJ

rJ
−

1

2
mSmJ , (18)

where E is the energy, rS and rJ are the distances between the particle and Sun and Jupiter,
respectively. The quantities mS and mJ are the (normalized) masses of Sun and Jupiter. In
the PCRTBP the coordinate system rotates about the common center of mass. In this rotating
frame (x, y) is the position of the particle relative to the positions of Sun and Jupiter, and
px = ẋ − y, py = ẏ + x are the conjugate momenta. Thus, the motion of the particle takes
place on a three-dimensional energy manifold embedded in the four-dimensional phase space
with coordinates (x, y, ẋ, ẏ).
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Fig. 1 (online colour at: www.gamm-mitteilungen.org) The mixed phase space structure
of the PCRTBP is shown on the Poincaré section. The bright line corresponds to a line of
constant periapse. In this case the periapse is equal to the semi-major axis of Mars’ orbit
around the Sun.

We choose a Poincaré section by y = 0 and ẏ < 0. The coordinates on the section are
(x, ẋ). As a further restriction, only the motion of particles in the interior to the orbit of the
planet Jupiter are considered. For these orbits the Poincaré section is crossed every time the
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test particle is aligned with Sun and Jupiter, along x < 0. That is, our section becomes the
two-dimensional manifold M defined by y = 0, ẏ < 0, x < 0, reducing the system to an area
and orientation preserving map f : M → M on a subset M of R

2. In Figure 1 we show a
mixed phase space structure on this Poincaré section.

4.2 Numerical Results

The energy considered in this paper, E = −1.52, is just below that of the equilibrium point
(Lagrange point) L1 in the PCRTBP, and is a good starting point for understanding the dy-
namics related to the Hilda resonance (i.e. the 3:2 resonance with Jupiter). In Figure 1, the
sideways “U”-shaped (or horseshoe shaped) region on the left indicates this resonance island,
which contains the Hilda group of asteroids. The Hilda asteroids owe their longevity to the
invariance of this resonance island. However, this island is surrounded by other orbits which
give rise to interesting dynamical phenomena that have been noted in previous work. For
example, comets known as quasi-Hildas, such as Oterma and Gehrels 3, appear for a time to
have Hilda-type orbits until perturbed by Jupiter into a new orbit [27]. The regions of interest
are given by a decomposition into almost-invariant sets, which is done in [6] with a graph
partitioning algorithm (see Figure 2). The quasi-Hilda asteroid region is denoted by R and the
region beyond the Mars-crosser line by Q.
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Fig. 2 (online colour at: www.gamm-mitteilungen.org) Decomposition of the Poincaré sec-
tion including the quasi-Hilda region R and the region beyond the Mars-crosser line Q as
used for the transport computation.

Here we are interested in computing the transfer rates between these regions by using (8),
that is,

TR,Q(k) ≈ eT
QP

kuR. (19)

For this computation we consider M to be the chain recurrent set within the rectangle
X = [−0.95, 0.15]× [−2.5, 2.5] in the section y = 0, ẏ < 0, x < 0. M is covered by a
collection of 30431 equally sized boxes and in each box we used a uniform grid of 18 × 18
points. In Figure 3 we show the dependence of the approximated transition probability given
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by TR,Q(k) divided by m(R), on the number of iterates k. According to this figure, the
probability for a typical particle to leave the quasi-Hilda region is around 6% after 200 iterates
of the map, which corresponds to a transit time between 2000 and 6000 Earth years, depending
on the location of the particle within the quasi-Hilda region.
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Fig. 3 Transition probability for an asteroid from the quasi-Hilda region to the Mars-crosser
region as a function of the number of iterates of the return map.

5 Detection of Coherent Structures in the Southern Ocean

In this section we present two investigations of transport phenomena in the Southern Ocean
based on the transfer operator approach described above. In fact, now we are interested in the
approximation of almost-invariant sets as a means of detecting coherent structures [25, 14] in
the Southern Ocean. These structures are difficult to identify as they are not revealed by the
underlying Eulerian velocity fields.

In [10, 11] transfer operator techniques have been applied to identify two key coherent
structures in the Southern Ocean, namely the Weddell and Ross Gyres. In a first investigation
[10], the transfer operator approach identified gyre regions on the ocean surface with 10%
greater coherence than standard oceanographic techniques based on sea surface height mea-
surements. The less direct method of finite-time Lyapunov exponents was also studied in [10]
and was found to perform extremely poorly.

The first study was restricted to surface ocean flow and in [11] these techniques have been
extended to the full three-dimensional flow. The study [11] demonstrated that the surface gyre
features reported in [10] in fact extend deep below the surface to control particle transport
over large regions of the Southern Ocean. In the following we describe these investigations in
more detail.

5.1 Input Data and Non-Autonomous Flow Model

In [10] only the surface of the Southern Ocean is considered. Accordingly, the domain X of
the flow we are using is a subset ofX = S1×[−76◦,−36◦], with S1 parameterized in degrees

www.gamm-mitteilungen.org c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 32, No. 1 (2009) 55

from −180◦ to 180◦. In the three-dimensional study in [11], X was extended to a subset of a
solid annulus X = S1 × [−76◦,−36◦]× [−500 m, 0 m].

In order to use our transfer operator methods described in Section 2 we have to compute
trajectories of test points (see (6)). The flow of the ocean may be described by (x, t, τ) �→
φ(x, t; τ) as in Section 2, where the vector field f : R × X → R

� in (1) is obtained from
the output of the ORCA025 model [1]. This is a global ocean model, which consists of a dis-
cretization of the velocity field of the ocean and some further important ocean properties like
the sea surface height or the mixed layer depth, which are explained below. The discretization
is given by 3D velocity fields averaged over a month. In our computations we use data from
the period January 1 to February 29, 2004.

5.2 Vertical Transport Associated with the Mixed Layer
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Fig. 4 (online colour at: www.gamm-mitteilungen.org) The mixed layer depth in meters on
X during January 2004.

In our simulation, vertical transport of particles is dealt with in a specific way. Vertical
transport associated with subduction is already included as vertical particle velocities in the
ORCA025 vector field. These vertical velocities accurately represent vertical particle trans-
port in the deep ocean. Nearer to the ocean surface, however, the mixing of particles due
to wind-driven currents and the breaking of surface waves is very high. The region near the
surface where this more rapid mixing occurs is called the mixed layer (ML). It extends from
the surface down to the mixed layer depth (MLD). The ORCA025 model provides a monthly
integrated MLD field. Within the ML, temperature and salinity are almost constant. The depth
of the ML varies from day to day and from season to season.

In our three-dimensional computations we simulate mixing in the ML by assigning a new
depth to each particle within the ML after one month. These new depth assignments are
chosen uniformly at random within the interval between MLD and the surface.
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5.3 Numerical Implementation

In both the two- and the three-dimensional case the domainX is partitioned via a uniform grid
of boxes {B1, . . . , Bn}. In our computational studies we use only a subset X of X where the
landmass consisting of part of the continents and islands is removed.

5.3.1 Model Interpolation and Trajectory Integration

The 3D velocity fields provided by the ORCA025 model are given at a resolution of 0.25 de-
grees of longitude and latitude with 46 non-uniform depth layers. Velocity field values for
x ∈ X lying between grid points are affinely interpolated independently for the longitude,
latitude and depth directions respectively. The velocity field f(t, x) for t between grid points
is produced by linear interpolation. Finally, a standard Runge-Kutta approach is used to cal-
culate φ.

5.3.2 Ocean Surface Analysis

For our analysis of transport on the surface of the Southern Ocean we used the velocity
field directly. We approximate the domain X by a uniform box covering {B1, . . . , Bn} of
n = 24534 boxes in longitude-latitude coordinates. Each box has side lengths 0.7 degrees in
longitude and 0.7 degrees in latitude. The approximation in (6) is done with N = 400 test
points and the stepsize for the chosen Runge-Kutta approach is 1 day over a period of 60 days
(τ = 60). For the initial time t0 we chose January 1, 2004.
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Fig. 5 (online colour at: www.gamm-mitteilungen.org) The ninth eigenvector v(9) calcu-
lated for a period of τ = 60 days. Coherent surface structures are highlighted in the
Weddell and Ross Seas. The boundary of the regions AWeddell = {v(9) > 0.01} and
ARoss = {v(9) < −0.01}, is indicated by black lines.

Following the procedure in [7] the right eigenvectors v(k), k = 1, . . . , K , corresponding to
the K largest eigenvalues of Rt0,τ (see (16)) are used to detect almost-invariant sets. Boxes
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corresponding to large absolute values in each v(k) are selected. That is,

A = ∪
v
(k)
i

≥c
Bi or A = ∪

v
(k)
i

<c
Bi (20)

for a suitable c ∈ R. In [11], the ninth eigenvector v(9) (corresponding to λ9 = 0.905)
identified two coherent structures in the Weddell and Ross Seas; see Figure 5. Larger coherent
features were identified by the eigenvectors v(k), k = 2, . . . , 8.
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Fig. 6 (online colour at: www.gamm-mitteilungen.org) Mean SSH from ORCA025 model
averaged over January 1 - February 29, 2004. The boundary of the regions AWeddell,SSH =

{SSH < −1.75 m in the Weddell Sea} and ARoss,SSH = {SSH < −1.6 m in the Ross Sea}
is indicated by black lines.

These results can be compared with those obtained from a standard technique in oceanog-
raphy, the detection of gyres and eddies based on the mean sea surface height (SSH). Figure 6
shows the 60 days mean SSH over January 1 - February 29, 2004. One finds that the sur-
face structures we located by our transfer operator approach are not precisely aligned with
the locations of the Weddell and Ross Gyres as defined by the SSH computations shown in
Figure 6. Indeed, there is a significant difference in the Ross Sea, confirming that our method
picks up different structures to those defined simply by the SSH field of Figure 6.

We now quantify the coherence and non-dispersiveness of the structures shown in Figure 5
and 6 via equation (2). Evaluating (15) with respect to the volume of the boxes in the oceanic
domain, yields ρt0,τ (AWeddell) = 0.91 versus ρt0,τ (AWeddell,SSH) = 0.80 and ρt0,τ (ARoss) =
0.85 versus ρt0,τ (ARoss,SSH) = 0.75. For example, the calculation ρt0,τ (AWeddell) = 0.91
states that 91% of the surface water mass in AWeddell remains (is trapped) in AWeddell at time
t0 + τ .

Thus the above calculations demonstrate that the regions detected by the transfer operator
approach are more coherent over the 60 day period considered than those determined by sea
surface height.

Remark 5.1 We remark that for comparison purposes we also employed a second tech-
nique for the detection of Lagrangian coherent structures in fluid flows, which uses finite-time
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Lyapunov exponents. However it turned out, that this method is not able to identify the Wed-
dell and Ross Gyre nearly as clearly as by our set oriented approach (see [10]).

5.3.3 Extending to Three Dimensions

For our three-dimensional analysis we extend the state space X to a subset of X = S1 ×
[−76◦,−36◦] × [−500 m, 0 m]. This time this domain has been approximated by a uniform
three-dimensional covering by n = 92518 boxes. Each box has side lengths of 1.4 degrees in
longitude, 1.4 degrees in latitude and 31.25 meters in depth. In this case N = 512 test points
and a step size of 3 days has been chosen over a period of τ = 60 days to calculate the matrix
in (6). As in the 2D computations the starting time t0 for the computations is January 1, 2004.
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Fig. 7 (online colour at: www.gamm-mitteilungen.org) Coherent structures in the Weddell
and Ross Seas are highlighted by large values of w = v(4)

+ v(6). The corresponding
eigenvalues are λ4 = 0.9910 and λ6 = 0.9884.

Among the 20 largest eigenvalues of Rt0,τ (ranging from λ2 = 0.9933 to λ20 = 0.9796)
and the corresponding right eigenvectors, the fourth eigenvector identifies a coherent structure
in the Weddell Sea and the sixth eigenvector identifies a coherent structure in the Ross Sea.
In order to illustrate both structures simultaneously, a linear combination w = v(4) + v(6) of
the two eigenfunctions is considered; see Figure 7 where w is restricted to the surface. These
computational results indicate that the coherent structures observed in the two-dimensional
computations are indeed related to a three-dimensional phenomenon.

In order to extract the coherent structures we define sets A+
c and A−

c for w as in (20) and
choose c in such a way that min{ρt0,τ (A−

c ), ρt0,τ (A+
c )} is maximized. This leads to three

subsurface structures as part of the set A+
c (where c = 0.0035): two in the Weddell and Ross

Seas respectively and another smaller one in the Southern Pacific Ocean, see Figure 8.
A coherence value of ρt0,τ (A+

c ) = 0.93 is obtained which implies that 93% of water mass
is retained in A+

c after two months of flow. Concentrating on the Weddell and Ross regions
only one finds that ρt0,τ (A+,W

c ) = 0.93 for the Weddell and ρt0,τ (A+,R
c ) = 0.90 for the Ross

region.
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Fig. 8 (online colour at: www.gamm-mitteilungen.org) Three-dimensional coherent structures in the
Weddell and Ross Seas and in the South Pacific are highlighted by large values of w. Boxes Bi with
wi < c = 0.0035 have been removed.
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