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Motivated by recent experimental results on anomalous spiral step motion on Si�001� surfaces, we use a
phase-field model to understand the observed growth mode. The developed phase-field model allows simula-
tion of step motion and surface phase switching for growth and sublimation. Our simulated results reproduce
the anomalous spiral step motion on the Si�001� surfaces. Furthermore, we investigate the step dynamics in
terms of the steady-state spiral shape for possible strain distributions and a large range of deposition rates. The
obtained scaling law of the step spacing as a function of the deposition rate is different from earlier results for
conventional spiral step growth, and indicates a crossover toward the local step dynamics due to the strain field
of the screw dislocation on the Si�001� surfaces.
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I. INTRODUCTION

Spiral step growth is a typical growth mode on atomically
flat surfaces with screw dislocations. A step emerges from
the exposed screw dislocation which cannot be removed by
growth or evaporation. Under deposition the step turns
around the exposed screw dislocation and forms a character-
istic Archimedes spiral. Burton et al.1 developed the earliest
theory of spiral growth at the limit in which the step motion
is controlled by local supersaturation of adatoms near the
spiral ridge. In this limit the spiral step growth evolves into
an Archimedes spiral with a steady-state spacing between
two successive steps.2 A scaling law of the steady-state step
spacing l versus the deposition rate F can be found, describ-
ing the spiral step growth dynamics. In the presence of an
Ehrlich-Schwoebel barrier, the spiral step growth deviates
from the uniform step spacing and forms a typical mound
shape with steep edges.3 Both regimes can be found in prac-
tical applications; the models however neglect the influence
of the strain field resulting from the screw dislocation. Tak-
ing these effects into account might lead to anomalous spiral
step motion as recently found on a Si�001� surface.4,5 The
anomalous behavior was attributed to interaction between the
surface structure and the strain field of the screw dislocation
on the Si�001� surface. The screw dislocation breaks two
single atomic-height steps. At each step, the surface phase
switches between �1�2� and �2�1�. The strain field of the
screw dislocation causes an asymmetry of the two phases,6,7

i.e., one phase is more energetically favored than the other.
The step growth is coupled with the asymmetric phase
switching between �1�2� and �2�1�, causing the anoma-
lous spiral profile. Even if a basic interpretation of the
anomalous spiral step motion is available, the related dynam-
ics still needs to be investigated further, especially at large
time and space scales.

In this paper, we investigate the anomalous step motion
on the Si�001� surface by using a phase-field model. Phase-
field approach has already been applied to conventional spi-
ral growth, surface phase transition, and island growth,
where complex factors such as anisotropy, attachment kinet-

ics, Ehrlich-Schwoebel barrier, and nucleation kinetics are
incorporated successfully.2,3,8–13 Here, we extend the phase-
field description of the step motion by considering the sur-
face phase switching between �1�2� and �2�1� during the
surface growth and sublimation. Our simulations reproduce
the anomalous spiral motion on the Si�001� surface. The
steady-state spiral profile is investigated for possible strain
distributions and a large range of deposition rates. A scaling
law l�F−0.41 is obtained for the anomalous spiral growth,
which deviates from the prediction l�F−1/3 for the general
Archimedes spiral growth.2 This indicates a crossover toward
local step dynamics due to the strain field of the screw dis-
location on the Si�001� surface.

The remaining part of this paper is organized as follows.
In Sec. II we shall present our phase-field model and com-
putational details. In Sec. III we shall present our simulated
results and a discussion. In Sec. IV we shall give our main
conclusion.

II. PHASE-FIELD MODEL

In the phase-field model we use a variable � to describe
the surface height. Sharp transition zones of � describe steps
between different terraces. The phase-field model is set on a
square x-y domain, where x and y are the horizontal and
vertical axes. The initial substrate is defined as

�s = �1 − 2
�arctan�y�/x���/2,

where

x� = x cos��� + y sin��� − r cos��0� ,

y� = − x sin��� + y cos��� ,

and

r = �x2 + y2

with �=200° and �0=60°. Figure 1�a� shows the substrate
image. Two steps emerge from the center of the x-y domain
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�i.e., the core of the screw dislocation�. The blue step �de-
noted by the black arrow� locates in the lower part of the x-y
domain, and the red step �denoted by the white arrow� lo-
cates in the upper part of the x-y domain. Two terraces are
exposed, being terminated by the �2�1� and �1�2� phases,
respectively. In Fig. 1�b�, we explain the � field around the
blue step �denoted by the black arrow� for the surface growth
and sublimation. The step direction in the case of surface
growth is chosen opposite to that of surface sublimation. We
choose �s=0 as the downside terrace and �s=1 as the up-
side terrace in the case of surface growth while we choose
�s=0 as the upside terrace and �s=−1 as the downside ter-
race in the case of surface sublimation. Thus, for the two
cases of surface growth and sublimation, the directions of
step motion are identical �clockwise, denoted by the arrows�,
and the corresponding phase switching are the same, being
�2�1�→ �1�2�.

Besides, we define the dimensionless adatom density as
u= �c−ceq��, wherein c is the adatom density �in units of
atom /cm2�, ceq is the equilibrium adatom density at a straight
step, the atomic area �=a2, and a is the atomic lattice con-
stant. As a starting point, the dimensionless free-energy func-
tional is formulated as

H =� dV�1

2
W�2��r���2 + f���/� + �g���u/�	 , �1�

where �=�−�s. Initially, �=0 indicates the substrate. In
the case of surface growth � tends to increase for the posi-
tive driving force of the adatom density, i.e., u�0, and �
=1,2 ,3 , . . . describe the grown overlayers whose atomic-
layer heights starting from the substrate are one, two, three
�atomic layers�, and so on. In the case of surface sublimation
� tends to decrease for u	0, and �=−1,−2,−3, . . . describe
the thickness of the atomic layers that are removed from the
substrate. The surface is terminated alternatively by �1�2�
and �2�1� for neighboring atomic-layer heights. In the x-y
region where the terrace is initially terminated by �2�1�, as
denoted by the bright field in the inset of Fig. 1�a�, �=0
corresponds to �2�1�, and then �
= 
1, 
3, 
5, . . . , 
2n+1 corresponds to �1�2� while
�= 
2, 
4, . . . , 
2n corresponds to �2�1�. In the x-y re-
gion where the terrace is initially terminated by �1�2�, as
denoted by the dark field in the inset of Fig. 1�a�, �=0 cor-
responds to �1�2�, and then �= 
1, 
3, 
5, . . . , 
2n
+1 corresponds to �2�1� while �= 
2, 
4, . . . , 
2n cor-
responds to �1�2�.
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FIG. 1. �Color online� �a� The image of the initial substrate on a square domain of area �450�450�a2. The gray denotes the surface
height, and the sharp change in gray indicates the position of the step. Two steps emerge from the center along the red line �denoted by the
white arrow� and the blue line �denoted by the black arrow�. Two terraces are exposed, terminated by the �2�1� phase �denoted by bright
in the inset� and the �1�2� phase �denoted by dark in the inset�, respectively. The change in contrast from bright to dark in the inset also
indicates the position of the step. �b� The step structure described by the phase-field variable. �c� The phenomenological free-energy density
functions. �d� The distribution of �� that describes difference in the surface energy of the �2�1� and �1�2� phases. �e� The magnitude of
��, being taken as a0 log�r� /r according to the distance to the center of the domain. Here, f���, g���u, ��, and r are dimensionless
quantities after normalization.
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The functions f��� and g��� are written as

f��� = − cos�2��� 
 �� cos���� , �2�

g��� = sin�2��� − 2�� 
 �� cos���� , �3�

where we use the parameter �� to describe the difference in
the surface energy of �2�1� and �1�2�, i.e., ��=�2�1
−�1�2. The distribution of �� corresponds to the strain field
of the screw dislocation. The sign of the �� term in f��� and
g��� has two options. In the case of surface growth, “+” is
chosen in the x-y region where the terrace is initially termi-
nated by �2�1�, and “−” is chosen in the x-y region where
the terrace is initially terminated by �1�2�. In the case of
surface sublimation, the sign of �� term in g��� is changed
into “” in order to consider that the step direction chosen
for the surface sublimation is opposite to that for the surface
growth �as illustrated in Fig. 1�b��. Here, − refers to the x-y
region where the terrace is initially terminated by �2�1�,
and + refers to the x-y region where the terrace is initially
terminated by �1�2�.

Figure 1�c� demonstrates f��� /� and g���u /� with u
=1, −1, and ��=0, 0.732, −0.732. The red �dark gray� solid
lines correspond to ��=0. The green �light gray� dashed
lines correspond to +�� with ���0 or −�� with ��	0
while the black dotted lines correspond to −�� with ��
�0 or +�� with ��	0. The green �light gray� dashed lines
indicate that �= 
1, 
3, 
5, . . . , 
2n+1 are the energy-
preferred growth points, i.e., f��� /� is of lower minimums
and g���u /� is of steeper potential variations at �
= 
1, 
3, 
5, . . . , 
2n+1 than those at �
=0, 
2, 
4, . . . , 
2n. In contrast, the black dotted lines
illustrate that �=0, 
2, 
4, . . . , 
2n are the energy-
preferred growth points. According to the specific surface-
termination meanings of � in the different regions of the
simulation domain, f��� and g��� describe the energetically
favored growth of �1�2� when ���0 as well as the ener-
getically favored growth of �2�1� when ��	0 on the
whole domain. In Fig. 1�c�, the right half corresponds to the
surface growth for u�0, and the left half corresponds to the
surface sublimation for u	0. Figure 1�c� is bilateral sym-
metrical, indicating that f��� and g���, as formulated by
Eqs. �2� and �3�, can describe both cases of surface growth
and sublimation.

The basic equations for surface growth are then written as

��
��

�t�
= −

�H

��
= W�2�r�

2
� − �2 sin 2�� 
 �� sin����

− �u�2 cos 2��� − 2  �� sin����� , �4�

�u

�t�
= D�r�

2 u −
��

�t�
+ F , �5�

where r� represents the spatial coordinates, and t� is the time;
W� represents the width of the phase-field transition zone, ��
is the characteristic time of attachment of adatoms at steps,
and � is a dimensionless coupling constant; D is the diffu-
sion rate of the dimension � /s, and F is the deposition rate
of adatoms of the dimension monolayer �ML�/s �i.e., 1 /� s�.

By using the expressions defined by

r� = �x,y� =
r��

�
, t =

t�

�/D
,

W =
W�

a
, � =

��

�/D
, �6�

the dimensionless governing equations are further rewritten
as

�
��

�t
= W2�r

2� − �2 sin 2�� 
 �� sin����

− �u�2 cos 2��� − 2  �� sin����� , �7�

�u

�t
= �r

2u −
��

�t
+

F

D
. �8�

To better describe the actual deposition of adatoms, we
restore its randomness on the surface and discreteness in
time by modifying the F /D term, and hence re-express Eq.
�8� as

�u

�t
= �r

2u −
��

�t
+ ��r� − ri����t − ti� , �9�

where ri� is chosen randomly on the simulation domain of the
dimensionless size S, and ti is discretized by the time inter-
val, �td=D / �FS�. The effect arising from the third term on
the right-hand side of Eq. �9� is equivalent to F /D in the
simulations of large deposited coverages. With the sign of
the last term in Eq. �7� being 
 and the sign of the last term
in Eq. �9� being −, the governing equations are changed to
describe surface sublimation.

By following the thin-interface asymptotic analysis,14 we
determine the phase-field model parameters according to

� = a1
W

d0
, � = a1a2

W3

d0
, �10�

where a1=0.36, a2=0.51, and the dimensionless capillary
length is defined as d0=�aceq� /kBT. Here, � is the step
stiffness, kB is the Boltzmann constant, and T is temperature.
In the phase-field simulation, a value of W is first inputted in
the limit that W is thin, and then the other model parameters
are determined according to Eq. �10�.10

In our simulations, W=3, �=8�103, and �=3�104 are
chosen referring to d0=10−4 for the qualitative simulation of
the Si�001� system. The growth conditions are chosen as D
=104 � /s and F=0.0002–0.04 ML /s, whose ratio, F /D, is
inputted into the dimensionless time interval, �td, in Eq. �9�.
Usually epitaxy occurs at room temperature or above, where
diffusion of adatoms is active, i.e., D is far larger than zero.
Generally speaking, F /D can be taken as finite value. Here,
F /D is chosen around 2�10−8–4�10−6, indicating the non-
equilibrium growth conditions. Referring to the distribution
of �� used in the literature,4 we choose �� as shown in Fig.
1�d�, where �� is negative, taken as −a0 log�r� /r, in the third
quadrant �left lower quadrant� and turns positive, i.e.,
a0 log�r� /r, in the first, second, and fourth quadrants �the
other quadrants� across the thin smoothing areas, where r is
the distance to the center of the simulation domain. We ad-
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just the value of �� in terms of the coefficient a0 phenom-
enologically. With a0 being 2.2 and 2.6, Fig. 1�e� illustrates
the values of �� used in our simulation. The anisotropy of
Si�001� surfaces is neglected in our model with the effect of
�� being considered.

Equations �7� and �9� are solved on the domain of S
=450�450 using a second-order finite difference method on
uniform Cartesian grids with a first-order finite difference
approximation for the time. The spatial grid spacing �x
=1.5 and time step �t is chosen as �t	min���x�2 /5,�td�,
and is small enough to ensure that variation in � is less than
one in one time step. We use Neumann boundary condition
in all directions. The simulated � field demonstrates the step
profile, where the sharp transition zone of � indicates the
position of the step. Besides, the � field also represents the
image of the surface termination according to the specific
surface-termination meaning of � or � on the simulation
domain. In the experiment,4 the step profile on the Si�001�
surfaces is obtained using low-energy electron microscopy
�LEEM�, where the �2�1� phase appears bright, whereas the
�1�2� phase appears dark, and thus the position of the step
is indicated by the change in contrast from bright to dark.
Referring to the LEEM imaging, we also check the step pro-
file in terms of the surface-termination phase.

All simulations are conducted for large coverages so that
the spiral growth approaches the steady state. The deposited
coverage, �, is around 5–200 ML for F
=0.0002–0.04 ML /s. When the characteristic step spacing
almost keeps constant with increasing coverage of adatoms,
or when the characteristic step spacing from the center is
only a few percent smaller than the asymptotic step spacing
far from the core, we can judge that the spiral growth has
already reached the steady state. The step spacing is mea-
sured directly on the visual image of the simulated step mor-
phology. Besides, the height-height correlation function of
the simulated step morphology is calculated, where the cor-
relation length also indicates the step spacing.

III. RESULTS AND DISCUSSION

Our simulations reproduce the anomalous step motion on
the Si�001� surface. First, as shown in Figs. 2�a�–2�c�, the
step growth is suppressed near the core because both the
�1�2�→ �2�1� switching at the red step �denoted by the
white arrow in the inset� and the �2�1�→ �1�2� switching
at the blue step �denoted by the black arrow in the inset� are
unfavored, which causes the S-shaped profile having positive
curvature near the core, as denoted by the arrows in Fig. 2�c�.
Next, as shown in Figs. 2�d�–2�f� the step growth turns to
speed up when the two steps enter into their energy-favored
areas. The blue step �denoted by the black arrow in the inset�
grows fast in the first, second, and fourth quadrants where
���0, and the red step �denoted by the white arrow in the
inset� grows fast in the third quadrant where ��	0. In Fig.
2�f�, one cycle is completed, and the step profile exactly
repeats the pattern in Fig. 2�a�. The simulation for the surface
sublimation represents the same profile but with the opposite
step direction.

The spiral step growth is simulated for different distribu-
tions of ��. The case of zero �� corresponds to Si�111�,

nonreconstructed semiconductors, and metal surfaces. Here,
the step represents the conventional Archimedes spiral shape
with regular arrangement of �1�2� and �2�1�, as shown in
Fig. 3�a�. In the case of nonzero ��, as shown in Figs. 3�b�
and 3�c�, the spiral growth is anomalous, representing the
wavy step ridges with a positive curvature near the center. In
spite of the irregular spiral profile, the width of one couple of
�1�2� and �2�1� almost keeps constant with the increasing
polar angle. Therefore, we can define the average width of
one couple of �1�2� and �2�1� as the step spacing l. In
Fig. 3�b�, l is about 120�x �i.e., 180a, where �x corresponds
to 1.5a�, being far larger than that, about 60�x �i.e., 90a�, in
Fig. 3�a�. In Fig. 3�c�, the positive curvature near the center
becomes deeper, and larger l, about 190�x �i.e., 285a�, is

FIG. 2. �Color online� Images of the spiral growth simulated for
�=3.3, 3.7, 4.3, 4.5, 4.9, and 5.3 MLs in �a�–�f� using nonzero ��,
where a0=2.0, F=0.0002 ML /s, and the domain area is �450
�450�a2. The lightest gray corresponds to the highest surface
height, being around 5 atomic layers �ALs� in �a�–�c�, 6 ALs in �d�,
and 7 ALs in �e� and �f�. The sharp change in gray indicates the
position of the step. The corresponding simulated images of the
surface terminations are shown in the insets, where the �2�1� and
�1�2� phases are denoted by bright and dark, respectively, and the
position of the step is indicated by switching between bright and
dark.

FIG. 3. Images of the spiral growth at the steady-state regime
simulated using zero �� in �a� and nonzero ��, a0=2.0 in �b� and
a0=2.6 in �c�, where F=0.001 ML /s, �=22 ML s, and the domain
area is �450�450�a2. The lightest gray corresponds to the highest
surface height, being around 24 ALs. The sharp change in gray
indicates the position of the step. Inset: the corresponding simulated
images �segment� of the surface termination, where the �2�1� and
�1�2� phases are denoted by bright and dark, respectively, and the
position of the step is indicated by switching between bright and
dark.
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obtained for the larger �� magnitude with a0=2.6. This in-
dicates that the nonzero �� tends to reverse the curvature of
the spiral ridge near the core and enlarge the step space. This
effect is equivalent to a force that is opposite to the driving
force of the step growth.

In Fig. 4, the spiral growth is further investigated for F
=0.005, 0.02, and 0.04 ML/s. For all cases of F, the anoma-
lous spiral profiles represent larger l than the general
Archimedes ones. For the general Archimedes spiral growth,
the step curvature remains negative along the whole step
ridge. For the anomalous spiral growth, the step curvature
near the core changes with F, being positive for F
=0.005 ML /s but being negative for F=0.02 and 0.04
ML/s. This positive curvature indicates that the force arising
from �� prevails against the driving force of the step growth
for the cases of small F, such as 0.005 ML/s, while the
negative curvature indicates that the force arising from �� is
not prominent for the cases of large F, such as 0.02 and 0.04
ML/s.

The scaling law of l�F−� is presented in Fig. 5. The
scaling exponent � describes the step dynamics. For ex-
ample, when desorption is fast and only adatoms deposited
near a step are incorporated, �=1 was predicted, indicating
the local step dynamics.1 Given the negligible desorption,
�=1 /3 was predicted, indicating the nonlocal step dynamics
in the diffusion field of adatoms on the whole surface, and
�=1 /2 was predicted for the limited atomic attachment ki-
netics at the step.2 As illustrated in Fig. 5, �=0.32 is ob-
tained in the simulations of zero ��, which is in agreement
with the global diffusive dynamics, �=1 /3, of the general
Archimedes spiral step growth. The scaling exponent, �
=0.41, is obtained for the anomalous spiral growth simulated

in the case of nonzero �� values of a0=2.0. The force aris-
ing from nonzero �� enlarges l greatly for the cases of small
F but has weak effects on l for the cases of large F. This is
consistent with the variation in the curvature near the core,
being positive for F=0.000–0.005 ML /s but being negative
for F=0.02–0.04 ML /s.

In the simulation of nonzero ��, the spiral step profile is
dependent on the magnitude of �� near the core but recovers
the diffusion-dominant growth far from the core. A certain
locality enters into the anomalous spiral step growth, which
results in the deviation of � from the global diffusive dynam-
ics. Since this locality is weak, it seems difficult to achieve a
strong local step dynamics, such as �=1 /2, in our simula-
tions. On the other hand, it seems unlikely to rule out the
deviation of � because the effect of nonzero �� that enlarges
l is deepening with the decreasing F for the anomalous step
motion. Therefore, Fig. 5 indicates a crossover tendency to
local dynamics of anomalous spiral step growth on the
Si�001� surface. Further works are needed in the future to
check quantitatively if the crossover tendency changes with
the magnitude and distribution of the strain field of the screw
dislocation on the Si�001� surface.

Spiral step growth on Si�001� surfaces is checked further
for other stress cases. As compared with Fig. 3�b�, the spiral
growth is simulated in Fig. 6�a� for a �� distribution oppo-
site to that shown in Fig. 6�d�, i.e., ��	0 in the first, sec-
ond, and fourth quadrants, and ���0 in the third quadrant,
which is another possible stress distribution caused by the
different slip direction of the screw dislocation on the
Si�001� surface.4,15 The spiral step growth represents the
same profile as that shown in Fig. 3�b� but with the upside-
down arrangement of �1�2� and �2�1�. The different slip
direction of the screw dislocation may cause the different
initial configuration. Our simulations show that, being inde-
pendent of the initial step configuration, there is always one
type of anomalous spiral profile, as shown in Fig. 6�a�, but
the arrangement of �1�2� and �2�1� is dependent on the

FIG. 4. Images of the spiral growth at the steady-state regime
simulated using F=0.005 ML /s �left�, 0.02ML/s �middle�, and
0.04 ML/s �right� for nonzero �� with a0=2.0 in �a�–�c� and zero
�� in �d�–�f�, where �=105 ML �left�, 187 ML �middle�, and 224
ML �right�, and the domain area is �450�450�a2. The lightest gray
corresponds to the highest surface height, being around 109, 193,
231, 111, 200, and 233 ALs in �a�–�f�. The sharp change in gray
indicates the position of the step. Inset �enlarged�: the correspond-
ing simulated images of the surface termination, where the �2�1�
and �1�2� phases are denoted by bright and dark, respectively, and
the position of the step is indicated by switching between bright and
dark.

100

0.001 0.01

l(
a)

F (ML/s)

α=0.41

α=0.32

200

50

FIG. 5. The step spacing l as a function of F obtained for zero
���+� and nonzero �� with a0=2.0 �� �. The lines are the best fits
for the power-law exponents �=0.32 �solid� with the fitting error of
0.009 and �=0.41 �dash� with the fitting error of 0.007.
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slip direction. In Figs. 6�b� and 6�c� spiral step growth is
simulated for a uniform distribution of ��. The uniform mis-
fit stress is dominant in heteroepitaxy, such as Ge/Si epitaxy.
In these cases, one of �1�2� and �2�1� is always favored.
Our simulations represent the persisting step bunching,
which forms double-atomic-layer steps and
�2�1�-terminated terraces �in Fig. 6�b�� or
�1�2�-terminated terraces �in Fig. 6�c��. Here, the spiral
step growth retrieves to the general Archimedes spiral pro-
file.

The step motion that deviates from the general
Archimedes spiral is also observed on other surfaces such as
KH2PO4�KDP�, p-nitrophenyl nitroxyl nitroxide, BaNO3,
SiC, GaN, and so on,16–20 where the strain energy field near
the screw dislocation leads to the positive step curvature near
the dislocation outcrop as well as the hollow dislocation
core.21 We can find similarity between the anomalous spiral
growth on the Si�001� surface and the growth of the hollow
dislocation core. For example, the anomalous spiral motion

on the Si�001� surface causes the vacancy terrace at the dis-
location core, as shown in Fig. 2�d�, which resembles the
experimental image of the hollow dislocation core that was
shown in Fig. 1b of Ref. 14. In our simulations the vacancy
terrace disappears soon, as accompanied by aggregation of
the surrounding atomic overlayer. If the adatom density is
low at the core, which may be caused by limited diffusion of
adatoms to the core or strong desorption of adatoms, the
vacancy terrace may survive or aggregate further to form the
macrosteps of the hollow dislocation core.

IV. CONCLUSION

In summary, we extend a phase-field model of spiral step
growth by considering surface phase switching between �1
�2� and �2�1� on the Si�001� surface, and investigate spi-
ral step motion on the Si�001� surface for possible strain
distributions and a large range of deposition rates. Our simu-
lations reproduce experimentally observed anomalous spiral
step motion on a Si�001� surface. A scaling law l�F−0.41 is
obtained for the anomalous spiral step growth. This scaling
law deviates from the earlier result for conventional spiral
step growth, indicating the crossover toward the local step
dynamics due to the strain field of the screw dislocation on
the Si�001� surfaces. The phase-field model is advantageous
and favorable in including other complex factors such as
anisotropy, limited atomic attachment kinetics, and Ehrlich-
Schwoebel barriers, which may further affect the spiral step
growth on the Si�001� surfaces.
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FIG. 6. Images of the spiral growth at the steady-state regime
simulated for the possible �� distributions, such as �a� ��	0 in
the first, second, and fourth quadrants, and ���0 in the third quad-
rant, �b� uniform distribution of ��	0, and �c� uniform distribution
of ���0, where F=0.001 ML /s, �=22 ML s, and the domain
area is �450�450�a2. The lightest gray corresponds to the highest
surface height, being around 24, 27, and 27 ALs in �a�–�c�. The
sharp change in gray indicates the position of the step. Inset: the
corresponding simulated images of the surface termination, where
the �2�1� and �1�2� phases are denoted by bright and dark, re-
spectively, and the position of the step is indicated by switching
between bright and dark.
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