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Abstract. The detection of regions in the ocean that are co-
herent over an extended period of time is a fundamental prob-
lem in many oceanic applications. For instance such regions
are important for studying the transport of marine species and
for the distribution of nutrients. In this study we demonstrate
the efficacy of transfer operators in detecting and analysing
such structures. We focus first on the detection of the Wed-
dell and Ross Gyre for the four seasons spanning December
2003–November 2004 within the 3-D oceanic domain south
of 30◦ S, and show distinct seasonal differences in both the
three-dimensional structure and the persistence of the gyres.
Further, we demonstrate a new technique based on the discre-
tised transfer operators to calculate the mean residence time
of water within parts of the gyres and determine pathways of
water leaving and entering the gyres.

1 Introduction

The detection of regions in the ocean that are coherent over
an extended period of time is a fundamental problem in many
oceanic applications. Such coherent structures, for instance,
have considerable impact on the movement of heat around
the planet; they are important for the transport of marine
species and for the distribution of nutrients, and they can play
major roles in the mixing and redistribution of water masses.
In this study we focus on two such structures, namely the
subpolar gyres of the Southern Hemisphere. These gyres are
crucial for the physical and biogeochemical characteristics
of the region. For instance, water whose properties are mod-
ified in the Weddell Gyre, makes up approximately 70% of
the Antarctic Bottom Water that will form the abyssal wa-
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ters in the Southern Ocean (Carmack, 1977). The Weddell
Gyre also exports large quantities of carbon dioxide, formed
through the remineralisation of falling organic material, into
the deep ocean. As such, it plays a significant role in global
climate changes (Hoppema, 2004). Similar processes are
likely occurring in the Ross Gyre.

Coherent structures at the ocean surface can often be ob-
served by satellite altimetry (see e.g.,Fu, 2006). To assess
internal flow fields, indirect estimates can be made based on
the pressure fields within the ocean, derived from tempera-
ture and salinity measurements. However such observations
are generally sparse in both space and time making it hard
to identify in detail coherent structures in the deep ocean.
In general, to resolve the full three-dimensional flow field,
and subsequently deep coherent structures, we must resort to
ocean general circulation models that numerically solve the
equations of motion.

Given a vector field that describes the ocean flow we can
use techniques developed in the dynamical systems context
to detect and analyse the regions of interest. There are es-
sentially two approaches, the geometric and the probabilis-
tic approach, seeFroyland and Padberg(2009) for a detailed
comparison. The geometric approach aims at detecting bar-
riers to transport such as finite-time invariant manifolds via
finite-time Lyapunov exponents or related concepts. This
technique has been very successfully employed for analysing
transport in many applications (Shadden et al., 2005) and
was introduced inHaller and Yuan(2000) andHaller (2001).
However, in a previous study it was found to perform poorly
in the context of the Southern Ocean (Froyland et al., 2007).
In this contribution we will use the probabilistic approach,
which attempts to detect coherent regions directly via a trans-
fer operator. The two previous investigations of the Southern
Ocean (Froyland et al., 2007, 2008) have demonstrated the
efficacy of this method.
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This report attempts to expand the spatial scales used in
previous studies to cover the entire Southern Ocean in or-
der to identify coherent structures in the Weddell and Ross
Seas. In particular, we extend the domain of interest from
our previous studies of the surface circulation (Froyland et
al., 2007), and from the surface to a depth of 500 m (Froyland
et al., 2008), to include the full water column and study the
seasonal variance of the gyres. In addition, we use the tech-
nique to estimate residence times for water elements origi-
nating from within the gyre. We also show that our tech-
nique provides an efficient method for examining pathways
for transport. Such water mass tracking is commonly done
using Lagrangian particle or passive tracer experiments.

2 Input data and non-autonomous flow model

Our input data consists of monthly averaged output of the
ORCA025 global ocean model (Barnier et al., 2006). We
restrict ourselves to the period December 2003–November
2004. The ORCA025 model is integrated at 1/4◦ resolution
and so is classed as eddy permitting, meaning that it can re-
solve some of the larger mesoscale oceanic eddies that make
up an important component of ocean circulation. The output
consists of global 3-D discretised velocity fields and some
other important ocean properties likesea surface heightor
mixed layer depth. In the Southern Ocean, the model grid
follows a Mercator projection.

For our investigation of the Southern Ocean we work on
a subsetX of a solid annulusX = S1

× [−76◦,−48◦] ×

[−5750m,0m] with S1 parameterised in degrees from
−180◦ to 180◦. X is formed by the removal of continents,
islands, and sea floor topography. The extension of the do-
main in the depth direction compared to our previous inves-
tigations (Froyland et al., 2007, 2008) forces this restriction
in latitude to−48◦ S for numerical reasons. As the focus
is on coherent structures in the Ross and Weddell Seas this
constraint should not effect our results.

Considered as a non-autonomous dynamical system, the
ocean flow may be described by(x,t,τ ) 7→ φ(x,t;τ), where
φ : X̃×R×R → X̃ andφ(x,t;τ) is the terminal point inX̃
of a trajectory beginning inx ∈ X̃ at timet and flowing forτ
time units. The domaiñX is the oceanic domain that is cov-
ered by the output of the ORCA025 model and our domain
of interestX is a subset of̃X. A trajectoryx(t) := φ(x0,t0;t)

is a solution to the non-autonomous ODE

ẋ = f (x,t) (1)

with initial condition x(t0) = x0. Herex0 ∈ X̃ andf : X̃ ×

R → R3 is smooth. The vector fieldf is approximated by
the output of the ORCA025 model. For our computations we
concentrate on trajectories for which the initial and terminal
points are inX. However, some of these may pass intoX̃\X

and then reenterX.

3 Almost-invariant sets, coherent structures, and
transfer operators

Let µ denote the three-dimensional volume measure, nor-
malised so thatµ(X) = 1. The measureµ is invariant un-
der φ, i.e. for eachτ ≥ 0, µ(φ(A,t;−τ)) = µ(A). We
will say that a setA ⊂ X is φ-invariant over [t,t +τ ] if
A = φ(A,t +s;−s) for all 0 ≤ s ≤ τ . Coherent structures
obey an approximate invariance principle over short peri-
ods of time. We shall call a setA ⊂ X almost-invarianton
[t,t +τ ] if

ρt,τ (A) :=
µ(A∩φ(A,t +τ ;−τ))

µ(A)
≈ 1. (2)

The ratio in Eq. (2) is the proportion of the setA that remains
in A under the flow from timet to time t +τ . In the sequel,
we refer toρt,τ (A) as the coherence ratio of a setA. Clearly,
the closer this ratio is to unity, the closer the setA is to being
invariant. In order to discover coherent structures in the flow
φ, we seek dominant almost-invariant sets, i.e. we seek sets
for which the ratio in Eq. (2) is close to 1.

The notion of almost-invariance arose as a means of dis-
covering dominant macroscopic structures in general dynam-
ical systems (Dellnitz and Junge, 1999) and has been re-
fined and applied in a variety of settings, e.g.Dellnitz et
al. (2005); Froyland and Dellnitz(2003); Froyland(2005).
The framework introduced above can describe structures that
are almost-invariant and fixed in the state space. To han-
dle time dependent coherent regions i.e. coherent structures
that move in state space, extended transfer operator frame-
works are needed, such as those recently developed inFroy-
land et al.(2009); Santitissadeekorn et al.(2009). In the
present work, we are focusing on spatially fixed gyres, and
the time-independent framework is appropriate. In order to
locate these almost-invariant sets we introduce a transfer ope-
rator describing flows for short periods.

We define thePerron-Frobenius operatoror transfer
operatorPt,τ : L1(X,m) → L1(X,m) by

Pt,τg(x) =
g(φ(x,t +τ ;−τ))

|detDφ(φ(x,t +τ ;−τ),t;τ)|
, (3)

wherem denotes the normalised Lebesgue measure onX.
If there is a φ-invariant setA ⊂ X over [t,t +τ ], then
Pt,τχA = χA, whereχA is the characteristic function and de-
fined byχA(x) = 1 if x ∈ A and 0 otherwise. ThusχA is
an eigenfunction ofPt,τ with eigenvalue 1. SetsA that are
almost-invariant correspond to eigenfunctions ofPt,τ with
real eigenvalues very close to 1 (Dellnitz and Junge, 1999;
Froyland and Dellnitz, 2003).

To access these eigenfunctions numerically, we construct
a finite-dimensional Galerkin approximation ofPt,τ based
on a fine box-partition{B1,...,Bn} of X. Following Ulam’s
approach (Ulam, 1960) we form the transition matrix

Pt,τ,i,j :=
m

(
Bi ∩φ

(
Bj ,t +τ ;−τ

))
m(Bi)

. (4)
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The matrix Pt,τ is stochastic, i.e.
∑n

j=1Pt,τ,i,j = 1∀i ∈

{1,...,n}. The entryPt,τ,i,j may be interpreted as the proba-
bility that a point selected uniformly at random inBi at time
t will be in Bj at timet +τ . In our study we fix both starting
and flow time depending on the season we want to investi-
gate.

4 Numerical implementation

4.1 Oceanic domain and discretisation

To calculate the entries of the transition matrixPt,τ each par-
tition elementBi,i = 1,...,n, is filled with N uniformly dis-
tributed test pointsyi,l ∈ Bi,l = 1,...,N . For eachi = 1,...,n

we calculateφ
(
yi,l,t;τ

)
,l = 1,...,N , by numerical integra-

tion and approximatePt,τ by

Pt,τ,i,j ≈
#
{
l : yi,l ∈ Bi,φ

(
yi,l,t;τ

)
∈ Bj

}
N

, (5)

where # denotes the cardinality of a set. The box-
discretisation ofX and the construction ofPt,τ is carried out
efficiently using the software package GAIO (Dellnitz et al.,
2001).

4.2 Model interpolation and trajectory integration

The ORCA025 model velocity fields for each month are
given at a resolution of 1/4 degrees of longitude and latitude,
and 46 non-uniform depth layers. The velocity fieldf (x,t)

for non-grid points is produced by linear interpolation inde-
pendently in each direction. The calculation ofφ

(
yi,l,t;τ

)
is

carried out using a standard Runge-Kutta approach. The flow
timeτ and the box-size for each application is chosen in such
a way that a vast bulk of test points leave their starting box
within time τ .

4.3 Computation of ML mixing

The mixed layer (ML) refers to the near surface portion of the
water column that is subject to vigorous mixing. This results
from the action of the winds, waves and from surface cooling
which can lead to deep convection particularly during winter.
Mixing in the ML homogenises properties leading to near
constant temperature and salinity, and consequently density.
This layer extends from the surface down to the mixed layer
depth (MLD). The monthly mean MLD is a diagnostic output
of the ORCA025 model. It is defined as the depth at which
the density exceeds the surface density by 0.3 kg·m−3 ; see
Griffies et al.(2008). The shallowest simulated MLD in 2004
is −400 m in winter and−90 m in summer.

The ML mixing is not captured by the time-averaged ve-
locity field f and consequently must be parametrised dur-
ing the tracking of Lagrangian particles. We make a stan-
dard assumption that the ML is well mixed. In order to si-

mulate this with our sample trajectories, we proceed as fol-
lows. We writey ∈ X asy = (Lon(y),Lat(y),Dep(y)), and
let MLD(t,Lon(y),Lat(y)) denote the mixed layer depth for
the water column located at(Lon(y),Lat(y)) at timet . With
this notation we can simulate the ML mixing for a test point
yi,l at starting timet0, using the following algorithm:

1. Integrate the test pointyi,l for one month (τ = 1) to pro-
ducey′

:= φ
(
yi,l,t0;τ

)
.

2. If Dep(y′) ∈
[
MLD

(
t0+τ,Lon(y′),Lat(y′)

)
,0

]
:

Choosezpert randomly sampled from a uniform dis-
tribution on

[
MLD

(
t0+τ,Lon(y′),Lat(y′)

)
,0

]
and set

y′
=

(
Lon(y′),Lat(y′),zpert

)
.

3. Integratey′ for a further month, sett0 = t0 + τ and go
back to step 2.

4.4 Eigenvalue and eigenfunction calculation

Let A =
⋃

i∈I Bi , with I ⊂ {1,...,n}. Define

pi :=
V (Bi)

V (X)
, (6)

whereX =
⋃n

i=1Bi andV (Bi) denotes the physical volume
of a box in the oceanic domain. Then it is straightforward to
show that (Froyland and Dellnitz, 2003)

ρt,τ (A) ≈

∑
i,j∈I piPt,τ,i,j∑

i∈I pi

. (7)

In fact, in the limit asn → ∞ and the diameter of the boxes
{Bi}

n
i=1 approaches zero, one obtains equality.

We transform the matrixPt,τ into a “time symmetric” ma-
trix Rt,τ via

Rt,τ,i,j :=

(
Pt,τ,i,j + P̂t,τ,i,j

)
/2, (8)

where

P̂t,τ,i,j :=
pj Pt,τ,j,i

pi

(9)

is the transition matrix of the inverse Markov Chain.
The matrix Rt,τ is stochastic, has only real eigenval-

ues (Brémaud, 1999), and satisfies important maximisa-
tion properties (Froyland, 2005) related to almost-invariance.
FollowingFroyland(2005) we use the right eigenvectorsv(k)

of Rt,τ to detect almost-invariant sets. That is, we define sets

A+
c =

⋃
v

(k)
i ≥c

Bi or A−
c =

⋃
v

(k)
i <c

Bi (10)

for suitablec ∈ R, such that min
{
ρt,τ

(
A+

c

)
,ρt,τ

(
A−

c

)}
is

maximised. This heuristic approach is described in detail in
Froyland and Padberg(2009) (see alsoFroyland and Dell-
nitz, 2003).

The matrixRt,τ is typically very sparse and we are inter-
ested only in dominating spectral values close to 1, which
may be efficiently computed by Lanczos iteration methods.
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5 Numerical investigation of the Southern Ocean

For our numerical investigations we approximate the oceanic
domain by 141 426 boxes. This is done by first creating a
box partitioning of the whole domainX and then deleting
all boxes which are not in the oceanic domain, i.e. we re-
moved all continents and islands. For this we chooseM

points
(
zl,i

)
l=1,...,M

for every boxBi and set

X =

⋃
i:‖f (zl,i ,t0)‖>10−6

∀l∈{1,...,M}

Bi . (11)

As in our preceding investigations the individual boxes have
a size of 1.4◦ in both longitude and latitude. The vertical
extent of boxes is non-uniform corresponding to the 46 non-
uniform depth levels of the ORCA025 model grid, varying
from 6.2 m near the surface to 250 m at the bottom of the
ocean.

In order to obtain results for the four seasons in the South-
ern Hemisphere we compute transition matrices witht0 equal
to the first day of December, March, June, and September for
the summer, autumn, winter and spring seasons, respectively.
The flow time in each season is chosen to beτ = 90 days,
compared to 60 days in our previous studies. This longer
flow time is not only necessary in order to be able to study a
whole season but also to guarantee that, as the box size has
been increased, most of the particles will leave their initial
box within timeτ . For each box we useN = 512 uniformly
distributed test points and a 3-day time step for the Runge-
Kutta integration to compute (5). The integration step size
is chosen in such a way that the vast bulk of trajectories will
flow only to a neighbouring grid set in the ORCA025 veloc-
ity grid. The simulation of the ML mixing is done as de-
scribed in Sect.4.3.

For each season we calculate the 40 largest eigenvalues
and the corresponding eigenvectors. Unlike in our previous
studies (Froyland et al., 2007, 2008) the Ross and Weddell
Sea gyres are typically not captured by a single eigenvector.
This may be due to substructures within the gyres. For the
numerical investigation of the gyres we consider the union
of such substructures. As almost all of the eigenvalues we
use range from 0.98 to 0.99, we will have similar coherence
values for the joined substructures. The eigenvalue rankings
are given in Table1. As the Weddell and Ross Sea features
occupy a relatively small fraction of the Southern Ocean, the
eigenvalues corresponding to these structures appear some
way down the spectrum.

An important quantity for describing the coherence of the
identified structures is the mass flux of water through the
boundary of the structures. A boxB is on the boundary of
a structure when it has a neighbour box outside the struc-
ture. LetA=

⋃
i∈I Bi be a coherent structure andJ⊂I the

index set of boxes on the boundary of the structure. The flux
flux

(
Bj

)
through a boundary boxBj , with j∈J , can be cal-

Table 1. Eigenvectors that identify the coherent structures with the
corresponding coherence ratio for each season.

Weddell Sea Ross Sea

Season Eigenvectors ρt,τ (AW ) Eigenvectors ρt,τ (AR)

Summer v(11) 0.9265 v(7) 0.9235
v(16)

Autumn v(11) 0.9112 v(5) 0.9179
v(17)

Winter v(13) 0.9106 v(4) 0.8865
v(39) v(12)

Spring v(13) 0.9190 v(2) 0.9042
v(13)

culated as follows. We define the flux through a boundary
boxBj out ofA by

fluxout
(
Bj

)
:= V

(
Bj

) ∑
k∈{1,...,n}\I

Pt,τ,j,k (12)

and the flux through the boxBj from outsideA by

fluxin

(
Bj

)
:=

∑
k∈{1,...,n}\I

V (Bk)Pt,τ,k,j . (13)

This leads to

flux
(
Bj

)
= fluxout

(
Bj

)
−fluxin

(
Bj

)
. (14)

For visualisation we define flux
(
Bj

)
also for inner boxesBj

of a coherent structureA by setting flux
(
Bj

)
:= 0. Obviously

the flux of a boxBj is bounded above byV
(
Bj

)
and below

by −V
(
Bj

)
, respectively.

5.1 Coherent structures in the four seasons

In this section we present the results of our computations.
Table1 lists the eigenvectors that we have manually identi-
fied as coherent structures within the Weddell and Ross Seas,
respectively. Other eigenvectors, not listed in Table1, rep-
resent coherent features outside these regions. The values
ρt,τ (A

W ) andρt,τ

(
AR

)
are the coherence ratios of the union

of the identified substructures in each sea and season. The
coherence ratioρt,τ

(
AW

)
= 0.9265 for the Weddell Sea in

summer means for instance, that 92.65% of the water mass
is retained in the identified structure after three months of
flow. The transfer operator approach is able to detect co-
herent structures in the Weddell and Ross Seas during each
season; these structures can be identified with the respective
subpolar gyres.

Figure1 shows a three-dimensional view of the gyres de-
tected in summer. The colour scale indicates fluxes at the
boundary of the gyres and gives an indication of regions
where water enters or escapes from the gyre. Figure2 shows
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Fig. 1. Detected gyres in the Weddell and Ross Seas in summer. Colouring shows the volume flux of water through boundary boxes over
summer.

the boxes of the detected gyres on the surface. The contour-
ing indicates, for example, that most of the water escaping
from the Weddell Gyre does so at the poleward limits of the
structure. Considerable differences are evident in the shape
of the gyres over the four seasons. For example, between au-
tumn and winter, the extent of the Ross Gyre shrinks consid-
erably and the Weddell Gyre’s northern boundary contracts
southwards while its eastern boundary extends considerably
further east. The seasonal changes in structure of the Wed-
dell Gyre can be seen in Fig.3, which shows a zonal section
along−64◦ S. During spring and summer the Weddell Gyre
extends from the surface to depths exceeding 4000 m, while
in autumn and winter the main structure of the gyre is subsur-
face and extends to much shallower depths. These seasonal
changes are also manifest in the volume of the gyres in the
different seasons (Table2), which suggests greater seasonal
variability for the Weddell than the Ross Gyre. The colour
scale in Fig.3 indicates the mean residence time of water
in the Weddell Gyre which is explained in detail in the next
section.

Finally we remark that it would require an analysis span-
ning multiple years in order to test how robust these seasonal
differences are to interannual variability. As such our anal-
ysis demonstrates a proof of concept and future work would
need to consider longer time frames.

5.2 Transfer operator based analysis of coherent
structures

To further illustrate the strength and variability of the transfer
operator approach we analyse the summer Weddell Gyre in
more detail.

The transfer operator approach can also be used to calcu-
late the variability in the residence time of water within the
Weddell GyreAW

=
⋃

i∈I Bi for each season respectively.
For example for the summer season we define a transition
matrix P := PSummer

t,τ · PAutumn
t,τ · PWinter

t,τ · PSpring
t,τ which repre-

Table 2. Volume of the detected coherent structures for each season.

Weddell Gyre Ross Gyre

Summer 1 484 272 km3 1 279 044 km3

Autumn 856 851 km3 1 645 748 km3

Winter 986 105 km3 1 286 165 km3

Spring 1 049 534 km3 1 800 793 km3

sents the dynamics over one year from the start of summer.
We may assume that the restrictionP|AW of the transition

matrix to the setAW satisfies limk→∞

(
P|AW

)k
→ 0. Thus,

the mean residence timeti of a particle inBi is given by the
solution of the linear equation(
Id −P|AW

)
t = (1,1,...,1)T , (15)

where Id denotes the identity matrix; see e.g.Froyland
(2001). Figure3a shows a zonal section along−64◦ S lat-
itude which bisects the core of the coherent structure that we
identify as the summer Weddell Gyre. The colouring indi-
cates the average time that a particle originating at different
locations of the gyre will remain within the gyre. The gyre’s
core lies at−1250 m, with water from this region remaining
within the structure for an average of about nine years. To-
wards the ocean surface the residence time drops off sharply
as water upwells in this region, driven by surface divergence
and is advected away from the gyre.

The pathway of water exiting or entering the gyre can be
further investigated by sequentially applying the transition
matrix for each season to the Weddell Gyre or sub-regions
of it. By repeating this multiple times we can simulate the
spreading out of water from any given region over multi-
ple years. Again, this repeated application means that we
are neglecting year-to-year variations in the flow field. Once
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Fig. 2. Boxes on the surface of the Southern Ocean of the detected gyres during(a) summer,(b) autumn,(c) winter, and(d) spring. Colouring
shows the volume flux of water through boundary boxes over a season.
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Fig. 3. Section of Weddell Gyre during(a) summer,(b) autumn,(c) winter, and(d) spring along−64◦ S. Boxes are coloured according to
the mean residence time of water in the Weddell Gyre in years.
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⋃
i∈I Bi is assigned

an initial densityq = (q1,...,qn) with qi =
1
|I |

if i ∈ I andqi = 0
otherwise.

the transition matrices have been calculated, this approach
has the advantage of being numerically efficient for detect-
ing such circulation pathways. The time-stepping of large
numbers of Lagrangian particles forward (or backwards) in
time can be effectively achieved through a number of matrix-
vector multiplications. Only the initial calculation of the
transition matrices needs significant computation time. Si-
milar techniques to identify pathways of water are described
in Khatiwala(2007); Khatiwala et al.(2005). They use a dis-
cretisation of the advection-diffusion operator, which leads to
matrix equations describing the transport of passive tracers
in the ocean. In low-diffusion settings, a drawback of us-
ing discretisations of advection-diffusion operators directly
is the addition of artificial diffusion from the discretisation;
this is noted inKhatiwala et al.(2005). Our approach of com-
puting discretisations of transfer operators representing flow
over short times reduces this artificial diffusion.

We examine two examples of watermass tracking us-
ing transfer matrices. For an initial region situated
within the gyre between−65◦ S and−60◦ S and−30◦ E
and −20◦ E and a depth ranging from 0 m to−2712 m,
the tracer primarily leaves the gyre near the surface
and spreads northwards via Ekman transport, and east-
wards swept along within the Antarctic Circumpolar
Current (Figs. 4 and 5 and supplementary animation
ForwardEvolutionDepth.gif and ForwardEvolutionLon.gif,
see http://www.nonlin-processes-geophys.net/16/655/2009/
npg-16-655-2009-supplement.zip). A portion of the tracer
can be seen exiting across the northern edge of the domain in
the eastern Pacific as part of the eastern limb of the subtropi-
cal gyre.
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Fig. 5. Horizontal surface section of the final state of an initial
density after 50 years forward evolution by 50 iterations of the tran-
sition matrix. Boxes are coloured according to the logarithm of the
normalised density. The initial regionA and initial density are as in
Fig. 4.

Using the transfer operator approach we can also reverse
the iteration process. A similar approach is commonly used
in oceanographic Lagrangian studies, where particles are
backtracked from a specified region to identify the origins
of water in that region. To demonstrate this we first cal-
culate the inverse process of the Markov Chain induced by
the transition matrices (4) for each season. For a given tran-
sition matrix Pt,τ the inverse Markov Chain is induced by
P̂t,τ as defined in (9). In our example, we start with an
initial region outside the gyre between−55◦ S and−50◦ S
and−5◦ E and 5◦ E and a depth ranging from−2500 m to
−1500 m. The water arrives, at this region, via three dis-
tinct routes. The first route is through the Drake Passage,
the second originates from the eastern side of South Amer-
ica and the third pathway originates from the Weddell Gyre
(see Fig.6 and supplementary animation BackwardEvo-
lution.gif, seehttp://www.nonlin-processes-geophys.net/16/
655/2009/npg-16-655-2009-supplement.zip). This last route
has been previously identified as an important pathway for
transporting large quantities of natural CO2 generated within
the gyre, into the deep ocean (Hoppema, 2004).

6 Conclusions

In this investigation we extended previous work by studying
the full 3-D domain of the Southern Ocean. In particular we
focused on the detection of the subpolar gyres whose struc-
ture extends from the surface to abyssal depths. We applied
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Fig. 6. Horizontal section at−1561.8 m depth of the final state of
an initial density after 10 years backward evolution by 10 iterations
of the reverse time transition matrix. Boxes are coloured according
to the logarithm of the normalised density. The initial regionA and
initial density are as in Fig.4.

well known transfer operator techniques on this large-scale
domain and showed that coherent structures, identified with
the Ross and Weddell Gyres, are present during each season.
Significant changes in the structure of the gyres are evident
during the different seasons, although the robustness of this
result to interannual variability has not yet been assessed.

We have also demonstrated the ability to use the trans-
fer operators to investigate circulation pathways. Lagrangian
particle studies (see e.g.,Döös, 1995) and passive tracer ex-
periments (see e.g.,Sen Gupta and England, 2004, 2007)
are commonly used to investigate ventilation pathways and
timescales. The transfer operator technique provides a new
and efficient means for conducting such experiments. We
demonstrate both forward tracking of tracer away from the
central Weddell Gyre, and the backtracking of tracer to in-
vestigate the origins of water in a given interior region. Thus,
once our transfer operators have been computed, we can use
it to analyse the underlying dynamical system via a number
of different approaches.
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Brémaud, P.: Markov Chains: Gibbs fields, Monte Carlo simula-
tion, and queues, Springer, 1999.

Carmack, E. C.: Water characteristics of the Southern Ocean south
of the Polar Front, A Voyage of Discovery, George Deacon 70th
Anniversary Volume, edited by: Angel, M., Pergamon Press, Ox-
ford, 15–41, 1977.

Dellnitz, M. and Junge, O.: On the approximation of complicated
dynamical behavior, SIAM J. Numer. Anal., 36, 491–515, 1999.

Dellnitz, M., Froyland, G., and Junge, O.: The algorithms behind
GAIO – Set oriented numerical methods for dynamical systems,
Ergodic Theory, Analysis, and Efficient Simulation of Dynami-
cal Systems, edited by: Fiedler, B., Springer, 145–174, 2001.

Dellnitz, M., Junge, O., Koon, W. S., Lekien, F., Lo, M. W., Mars-
den, J. E., Padberg, K., Preis, R., Ross, S. D., and Thiere, B.:
Transport in dynamical astronomy and multibody problems, Int.
J. Bifurcat. Chaos, 15, 699–727, 2005.
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