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A Parallel Communication Structure for the Multilayer
Shallow Water Equations

Jörg Wensch and Peter Gottschling

TU Dresden, Inst. f. wiss. Rechnen, 01062 Dresden, Germany

Abstract. We propose a horizontal discretization of the multilayer shallow water equations by the Hamiltonian particle mesh
method. The equations of motion are derived by Hamiltons principle applied to the discrete energies. The structure of the
particle mesh method allows a convenient parallelization. There is no communication between particles in different layers,
only the data on the Eulerian mesh have to be communicated. A straightforward parallelization results in a broadcast of all
layer heights. This is circumvented by a butterfly-type communication structure to keep communication at O (logN), N being
the number of layers.
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THE MULTILAYER SHALLOW WATER EQUATIONS

In geophysical processes, hydrostatic balance plays an important role for the dynamics of air and water. The strongly

stratified atmospheric flow suggests using a layer model. We assume here that flow proceeds in layers of constant

density, thus relative volume α = 1/ρ serves as a monotonically increasing vertical coordinate - the isopycnal

coordinate. For a discussion of different vertical coordinate systems, see [1], [2] [3] or [4]. In order to derive the

balance law for mass, a corresponding density η is defined via ρdz = ηdα . Together with hydrostatic balance we

obtain in vertical columns

∂ z

∂α
=αη ,

∂Φ

∂α
=p,

∂ p

∂α
=−gη . (1)

The geophysical height z, pressure p and the Potential Φ of isopycnal motion are obtained by integration if the modified

density η is known and appropriate boundary conditions on top and bottom of the model are provided. At the bottom

geophysical height zB is fixed: Φ−αΦα = gzB. A typical boundary conditions on top is the rigid lid approach where

height at the surface zT is prescribed: Φ+αΦα = gzT . A free surface requires pressure pT on top to be described,

where the corresponding boundary condition is Φα = pT . The potential Φ is equivalently given by

Φ =gz+ pα or
∂ 2Φ

∂α2
=−gη . (2)

Note, that the gradient evaluates to the sum of the gradient of geopotential (potential for vertical p-coordinate) and the

gradient of the potential in z-coordinates.

The dynamics of motion are described by the balance laws of momentum and mass in a rotating coordinate system

D

Dt
u− f v =−Φx (3)

D

Dt
v+ f u =−Φy, (4)

D

Dt
η +η∇ ·u =0 (5)

where u = (u,v)T are the velocities, f = 2Ω is the Coriolis parameter where Ω is the angular velocity. In this

presentation we use an f-plane setting, i.e. f is assumed to be constant.

In the multilayer shallow water equations fluid motion is approximated by a finite number of horizontal layers of

constant density. Euklidean coordinates in the layer are x = (x,y)T , the quantities η ,u are assumed to be independent
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of α in each layer. The modified density η is replaced by the more meaningful layer height h = ∆z = ηα∆α which

obeys the same conservation law.

We use N layers, layer 1 being the top layer. Layer i has fixed density ρi = 1/αi. Physical upper, lower z-

coordinates are Zi−1/2(t,x)andZi+1/2(t,x), layer height is denoted by hi = Zi−1/2 − Zi+1/2, average height is Zi :=
(Zi−1/2+Zi+1/2)/2. Bottom height (orography) is given by ZN+1/2(t,x) = zB(x), and whenever top height is prescribed

we have Z1/2(t,x) = zT (t,x).
The multilayer shallow water equations are given by

D

Dt
ui − f vi =−

∂

∂x
Φi (6)

D

Dt
vi + f ui =−

∂

∂y
Φi (7)

D

Dt
hi +hi∇ ·ui =0 (8)

Φi =gzB +g
N

∑
j=1

min(1,ρ j/ρi)h j + pT/ρi. (9)

The orography value zB is incorporated in the Potential Φ. The boundary conditions on top are applied as follows: For

a free surface we have pT prescribed. For the rigid lid setting, an additional constraint ∑i hi = const serves to determine

the unknown value pT .

A HAMILTONIAN APPROACH TO FLUID MOTION

The equations of motion can be derived from the principle of least action (Hamiltons principle). The state variables

are particle positions X – from these state variables we can derive density η or layer height hi, kinetic energy EKin and

potential energy EPot of the model. The Lagrangian L = EKin −EPot is set up and the equations of motion are derived

from the variational principle of least action

δ

∫ te

t0

Ldt =0. (10)

This procedure can be applied for the vertically continuous system (3), (4), (5) as well as for the vertically discrete

system (6), (7), (8). The Hamiltonian particle-mesh method [5] is obtained when this principle is applied to a particle-

mesh discretization in the horizontal. Thus, a finite number of particles in a finite number of layers is utilized as a

spatial discretization that describes the state of the system. Expressions for kinetic and potential energy are derived,

the principle of least action is applied to derive an ODE for the particle positions.

HORIZONTAL DISCRETIZATION

The particle-mesh method (see [5]) is based on layer depth values hi,mn on an Eulerian grid with grid points xmn and

particles in layer i with position ak at time t = 0 and position Xi,k(t) at time t. For sake of completeness, we repeat the

crucial ingredients here.

In order to distinguish between particle departure points a and their actual positions X, we denote the space of the

departure points by L (the Label space) and the space of the actual positions by R (the Eulerian space), although both

spaces coincide for various settings, especially on closed spatial domains like the sphere or periodic channels.

Denote the layer height in layer i at t = 0 by hi,0. The particle-mesh method is based on the Lagrangian formulation

of the balance of mass

hi,mn(t) = =
∫

L
h0,i(a)δ (xmn −Xi(t,a))da. (11)

Thus, we need an integration formula on the label space and an approximation of the Dirac-δ function. From hi,mn(t)
the potential Φi,mn at the Eulerian grid points is evaluated. An interpolation procedure extends Φmn to the space R,

where its gradient at the particle positions can be evaluated.
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In Eulerian space interpolation and integration is based on a partition of unity Nmn(x) to extend grid values fmn to

the Eulerian space R:

f (x) =∑
mn

fmnNmn(x),
∫

R
fmn :=

∫

R
f (x)dx =∑

mn

γmn fmn where γmn :=
∫

R
Nmn(x)dx. (12)

In Lagrangian space we use a partition of unity N̂k(a) based on the the departure points ak of the particles to derive

similar formulas for particle functions fk:

f (a) =∑
k

fkN̂k(a),
∫

L
fk ≈∑

k

γ̂k fk where γ̂k :=
∫

L
N̂k(a)da. (13)

Finally, we approximate the delta-function centered in xmn by

δ (x−xmn)≈Ψmn(x) :=
1

γmn

Nmn(x) (14)

We apply our discretization to equation (11) to obtain Eulerian grid point values hi,mn(t), where the initial layer heights

h0,i,k := h0,i(ak) have to be approximated from the initially given profile

hi,mn(t) =∑
k

γ̂kh0,i,kΨmn(Xi,k(t)). (15)

DISCRETE HAMILTONIAN PRINCIPLE

By the principle of least action the variation of the integral over the Lagrangian L = Ekin −Epot vanishes. The kinetic

energy is derived by applying the integration formula in label space (13) to the continuous energy expression. With

particle masses mi,k = ρiγ̂kh0,i,k the kinetic energy and the variation of its contribution to the action is given by

EKin =
1

2
∑
i,k

mi,kẊi,k(t)
2, δ

∫ te

0
EKindt =−

∫ te

0
∑
i,k

mi,kẌi,k ·δXi,kdt (16)

The potential energy is derived from the continuous energy expression in the Eulerian system where the integration

formula in Eulerian space (12) and the Lagrangian form of mass conservation (15) are applied

EPot =
∫

R
∑

i

∫ Zi−1/2

Zi+1/2

gρizdz+ pT zT dx = ∑
i

∑
mn

γmnmi,kΨmn(Xi,k)(gZi,mn + pT,mn/ρi). (17)

The variation of potential energy evaluates to

δEpot =∑
i,k

mi,k ∑
mn

Φi,mn∇Ni,mnδXi,k, where Φi,mn =
N

∑
j=1

min(1,ρ j/ρi)h j,mn + pT,mn/ρi. (18)

Extending the Eulerian grid values Φi,mn by the interpolation formula (12) to Eulerian space via Φi(x) :=
∑mn Φi,mnNmn(x), the Hamiltonian particle mesh method for the multilayer shallow water equations is derived

D

Dt
Ẍi,k − f k× Ẋi,k =−∇Φi(Xi,k) (19)

Note, that the Hamiltonian approach results in a natural approach of the continuous equations of motion and the

potential. The result is a system of second order ODEs, where the different layers are coupled by the potential Φ.

For temporal discretization a symplectic method is recommended because of its conservation properties [6], e.g., the

Störmer-Verlet discretization. For details, see [7], [5].
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A PARALLEL COMMUNICATION STRUCTURE FOR THE COMPUTATION OF THE

POTENTIAL

We define the communication structure for the case where the number of layers N and the number of processors K are

both powers of two. Whenever we have more layers then processors, some of the communication steps can be omitted.

On the other hand, when we have more processors than layers, the particles of a layer will be distributed to several

processors resulting in layers with the same density parameter ρi – thus we can be apply the same procedure as in the

case N = K. In the following we assume N = K = 2n.

Let [i, i+ l) := {i, i+1, . . . , i+ l−1}. Our communication structure consists of n cycles of pairwise communication.

It is designed such that in cycle i the processors form groups Mi,l , l = 0, . . . ,2n−i of 2i consecutive processors that

all have computed the same intermediate values to be distributed in succeeding cycles. The first processor in group

Mi,l has number M−
i,l = 2i+1l, the last is M+

i,l = 2i+1(l + 1))− 1. In cycle i all processors in group Mi,l compute both

D = ∑ j∈Mi,l
h j and U = ∑ j∈Mi,l

ρ jh j. During that cycle processor k communicates with the unique processor k′ with

|k− k′| = 2i being in the same group, exchanging the D- and U-values. We denote the set of processors with lower

numbers in these pairs by P−
i , the processors with higher numbers by P+

i , and the pairs by (k,k+i ) resp. (k−i ,k). The

communication is then accomplished by the following algorithm:

k = getProcID()
U = ρkhk,D = hk

Φ = gzB + pT/ρi

for i = 1 : n do

if k ∈ P−
i then

send U,D to k+i
receive U+,D+ from k+i
U =U +U+,D = D+D+

Φ = Φ+U/ρi

else

receive U−,D− from k−i
send U,D to k−i
U =U +U+,D = D+D+

Φ = Φ+D

end if

end for

The communication structure is just the one that is used for the FFT, the butterfly structure. Note, when layers are

distributed to 2l processors, it suffices to communicate only D in cycles i = 0, . . . , l − 1. On the other hand, when

several layers reside on one processor, we can use the same principle to reduce the operation count to O
(

l2l
)

.

SUMMARY

We have presented a communication structure to avoid broadcast operations for the computation of the potential of the

multilayer shallow water equations. The largest impact of the communication procedure is obtained when the number

of processors equals the number of layers, but it is applicable as well when there is an imbalance between the number

of processors and the number of layers.
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