
Particles on curved surfaces: A dynamic approach by a phase-field-crystal model

Rainer Backofen,* Axel Voigt,† and Thomas Witkowski‡

Department of Mathematics, Technische Universität Dresden, 01062 Dresden, Germany
�Received 7 October 2009; revised manuscript received 4 December 2009; published 25 February 2010�

We present a dynamic model to study ordering of particles on arbitrary curved surfaces. Thereby the
particles are represented as maxima in a density field and a surface partial differential equation for the density
field is solved to the minimal energy configuration. We study annihilation of dislocations within the ordered
system and premelting along grain-boundary scars. The obtained minimal energy configurations on a sphere
are compared with existing results and scaling laws are computed for the number of excess dislocations as a
function of system size.
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Problems related to optimal ordering of particles on
curved surfaces date back to the classical Thomson problem
�1� to find the ground state of N particles on a sphere inter-
acting with a Coulomb potential. A classic theorem of Euler
shows for a triangulation of the surface in which nearest
neighbors are connected that �i�6− i�vi=6�, with vi as the
number of vertices with i nearest neighbors and � as the
Euler characteristic of the surface. Thus for surfaces with the
topology of a sphere ��=2�, besides the expected triangular
lattice with sixfold coordination, which would give the opti-
mal packing in a plane, there must be at least 12 fivefold
disclinations present. With each disclination an extra energy
is associated �relative to a perfect triangular lattice in flat
space� which grows proportional to r2, with r as the radius of
the sphere. For a fixed lattice constant a we have
N��r /a�2. Thus for large N mechanisms are expected which
reduce this extra energy by changing the ground-state con-
figuration.

One mechanism is a buckling transition, which form
sharp corners and turn the sphere into a polygon. The tran-
sition depends on Young’s modulus Y and bending rigidity b
via the Foppl–von Karman number Yr2 /b and is intensively
studied for viral capsids where protein subunits play the role
of the particles �2,3�. In cases where large surface tension
limits significant buckling the energy can be reduced by in-
troducing grain-boundary scars. Realizations are for example
water droplets in oil, which are coated with colloidal par-
ticles �4�. Such coated droplets are potential drug delivery
vehicles �5,6�. Similar configurations occur if a jammed
layer of colloidal particles separates two immiscible fluids
forming a so-called bijel �7�, which has potential applications
as an efficient microreacting media. A large number of or-
dered particles on curved surfaces is also required for fabri-
cation of nanostructures on pliable substrates, e.g., to make
foldable electronic devices �8�.

For all these applications a detailed understanding of the
grain-boundary scars is of interest as they may be sources of
leaks, influence mechanical properties, or lead to failure in
electronic devices. We introduce an efficient way to compute

the dynamics of these grain-boundary scars and dislocations
associated with them and provide an approach to compute
optimal ordering of many particles on arbitrarily curved sur-
faces. As the grain-boundary scars belong to the thermal and
mechanical equilibrium our approach is based on energy
minimization with the geometric frustration resulting from
the curved surface incorporated.

For 2�N�100 there is agreement of all numerical and
theoretical methods for the Thomson problem, suggesting
that the global minimum configuration has been found. How-
ever, for large N, owing to an exponential growth in local
minima �9�, finding global minima becomes extremely diffi-
cult. Grain-boundary scars are expected for N�360. Nu-
merical approaches to solve such problems are typically
based on genetic algorithms, steepest decent minimization,
or coarse grained approaches, in which the elasticity field
between grain-boundary scars is solved �10,11�. All ap-
proaches are devoted to finding the ground state. Dynamic
models have been considered �12� which allow us to describe
experimentally observed dislocation glide within the grain-
boundary scars �13,14�.

We will introduce an approach without any coarse grain-
ing by directly addressing the dynamic evolution and rear-
rangement of the particles on an arbitrary curved surface.
Our approach is based on a free energy functional for a num-
ber density. In the plane such free-energy functionals have
been used to characterize patterns. The simplest possible
form of a free energy which produces periodic structures in a
domain � reads

F��� = �
�

− ����2 +
1

2
����2 + f���d� , �1�

with � as the number density and f���= 1
2 �1−���2+ 1

4�4 as a
potential with a parameter �. The equilibrium state for
�=R2 has a perfect sixfold symmetry. Evolutional laws
associated with this energy are the L2-gradient flow
�t�=−	F /	�, the Swift-Hohenberg model �15�, and the H−1

gradient flow �t�=�	F /	�, the phase field crystal �PFC�
model �16�. The evolutions naturally contain elastic energy,
as an expansion of the free energy around the equilibrium
period spacing results in the potential energy of a spring, i.e.,
Hooke’s law. As the energy is rotationally invariant arbitrary
orientations of periodic structures can emerge. Furthermore
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the model allows the formation of dislocations, which occur
when two periodic structures of different orientation collide
or when it is energetically favorable for them to nucleate.
The PFC model has been used to simulate various crystal-
growth phenomena including epitaxial growth, nucleation,
commensurate-incommensurate transitions, and plastic de-
formations. In �17� is shown how the model can be derived
from a microscopic Smoluchowski equation via dynamical
density-functional theory.

Formulating the energy in Eq. �1� on a curved surface 

leads to

F
��� = �



− ��
��2 +
1

2
��
��2 + f���d
 , �2�

with � as the number density on 
, as well as �
 and �
 as
the surface gradient and surface Laplacian, respectively. We
will use the H−1 gradient flow of this energy to solve the
generalized Thomson problem and to analyze the dynamics
of rearrangements of particles on a curved surface. The equa-
tion, written as a system of three second order equations,
reads as

�t� = �
u , �3�

u = �
v + 2v + f���� , �4�

v = �
� . �5�

The stable finite element discretization for the PFC model in
the plane introduced in �18� can be adapted to solve Eqs.
�3�–�5� on a surface triangulation using parametric finite el-
ements. The key idea is to use the surface operators on the
discrete surface which consists of triangles T. To do the in-

tegration on these triangles a parametrization FT : T̂→T is

used, with T̂ as the standard element in R2. These allow us to
transform all integrations onto the standard element using the
finite element basis defined also only in R2. The parametri-
zation FT is given by the coordinates of the surface mesh
elements and provides the only difference between solving
equations on surfaces and on planar domains. For a surface
we have to allow FT :R2→R3, whereas for a planar domain
FT :R2→R2. With this tiny modification any code to solve
partial differential equations on Cartesian grids can be used
to solve the same problem on a surface, providing a surface
triangulation is given. The computational cost is the same as
solving the problem in a planar domain. Within an efficient
implementation this does not even require to recompile a
running two-dimensional �2D� code, but only a change in a
parameter file, as e.g., done in AMDIS �19�. With this ap-
proach all available tools to solve partial differential equa-
tions on planar domains, such as adaptive refinement, multi-
grid algorithms, or parallelization approaches are available
also to solve equations on surfaces.

The approach is used to evolve a randomly perturbed con-
stant initial configuration �=�0 toward an energy minimum.
With the possibilities to use adaptive time stepping and the
efficiency of parallelization of the finite element method
problem sizes of 1�106 particles can be addressed. The

simulation for Fig. 1 with 6.064 particles required 1 day
computing time on a single processor.

In order to validate our approach we compute minimal
energy configurations for various numbers of N. We system-
atically compute the minimal energy configuration for all
N� �12,2790�. In our configuration N=2790 corresponds to
r=100. The numerical results indicate that the obtained mini-
mal energy configurations are only sensitive to the defined
lattice spacing and insensitive to a large extent to the other
parameters. This might explain why triangular tessellations
on spherical surfaces occur in very distinct occasions, for
which the interactions involved may differ a lot. In the fol-
lowing we use �0=−0.3 and �=0.4, which together with the
radius r of the sphere determines N. For all N the type and
number of disclinations, as well as the computed energy is in
agreement with known analytical or other numerical results.
For N�112 the configurations and energies coincide with
the known equilibrium values. The maximal deviation from
the minimal energy for larger N is less than 0.1%. Table I
shows computed configurations for selected N. For N�360
we obtain additional defects in the ground state, which are
pairs of fivefold and sevenfold coordinated particles �dislo-
cations� and chains of alternation fivefold and sevenfold co-

TABLE I. Comparison with known results for small N. In order
to compute the energy we identify the position of the maxima in the
density field and compute the Coulomb energy according to these
positions.

N v4 v5 v6 v7 v8 Energy

63 0 12 51 0 0 1708.87968150

99 0 12 87 0 0 4357.13916313

130 0 13 116 1 0 7632.16737891

185 0 12 173 0 0 15723.72346397

222 0 13 208 1 0 22816.07553076

363 0 14 347 2 0 62066.53633167

684 0 33 630 21 0 224048.60512144

846 0 38 782 26 0 344267.84965308

1073 0 45 995 33 0 556250.19927822

1403 0 54 1307 42 0 955173.65896550

2726 0 78 2584 64 0 3636897.41372145

(b)(a)

FIG. 1. �Color online� Local minimal energy configuration for
6.064 particles on a sphere. �Left� Density profile, �right� color
coded number of neighbors, 5–black, 6–red �gray�, and 7–yellow
�white�.
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ordinated particles �grain-boundary scars�. Since dislocations
have vanishing total disclination charge there can be an ar-
bitrary number of them in any spherical lattice configuration
without violating the topological constraint on the total dis-
clination charge discussed above. The grain-boundary scars
found are unlike any grain boundaries found in flat space as
they terminate freely inside the crystal at both ends. Due to
the importance of dislocations and grain boundaries in bulk
materials in determining material properties similar roles can
be expected on surfaces. In �13� the motion of dislocations is
observed experimentally. Dislocation motion can be sepa-
rated into glide and climb, where glide is motion parallel to
the dislocation’s Burger vector and requires only local rear-
rangement of the lattice, and climb is motion perpendicular
to the Burger’s vector and requires the presence of vacancies
and interstitials. In agreement with the observations in �13�
and the computational results based on elasticity in �12�, we
also observe only glide motion which leads to significant
shape changes of the scars. Figure 2 shows a local rearrange-
ment of a dislocation.

In �14� the question is asked which effect a raising of
temperature has on the spherical crystal. For bulk polycrys-
talline material there is indirect experimental evidence for
the occurrence of grain-boundary premelting, which could
directly be visualized for colloidal crystals in �20�. As a liq-
uid film at grain boundaries will alter macroscopic properties
and especially will lead to a drastically reduced resistance to
shear stresses which can lead to material failure it is not only
of theoretical interest if grain-boundary premelting is also
present in spherical crystals. As grain-boundary scars belong
to the equilibrium state it would be even more severe as it
would be a general property of crystalline materials on
curved surfaces. PFC models have already been used to
study grain-boundary premelting in flat space �21,22�. For

high-angle grain boundaries an uniformly wetting is ob-
served below the melting temperature in these studies. Rais-
ing the temperature �increasing �� but keeping it below the
melting temperature according to the phase diagram indeed
leads to melting of the grain-boundary scars, see Fig. 3.

We use the premelting of the dislocations to improve the
local minima our evolution settles in. Within an iterative pro-
cedure we evolve the system according to Eqs. �3�–�5� until
we reach a minimal state, increase the temperature and run
the system until liquid layers have replaced all dislocations
and start the evolution again with the original temperature.
The algorithm is terminated if the total energy does not fur-
ther decrease. Typically this is achieved after 2–3 iteration
cycles. In Fig. 4 we plot the excess dislocations in a scar as
a function of the system size 	N=r /a.

As already pointed out the method is not restricted to
spherical geometries. Indeed the algorithm works for arbi-
trary surfaces with the only requirement that an appropriate
surface mesh is needed on which the computation can be
done. As an example we use toroidal crystals, which can be
found, e.g., in self-assembled monolayers of micelles and
vesicles �24� or carbon nanotori �25�. We compute low-
energy configurations for various toroidal lattice configura-
tions and reach good comparison with results reported in
�26�.
Figure 5 shows a typical configuration for aspect ratio
R1 /R2=2.78.

In computations on more complicated surfaces, with con-
vex and concave regions, we observe isolated fivefold and
sevenfold disclinations which arrange according to the local
curvature of the surface. Thereby fivefold disclinations are
preferably found in convex regions, whereas sevenfold dis-
clinations are present in concave regions, which is in accor-
dance with the theory discussed in �23�. The ability of the

(b)(a) (c)

FIG. 2. �Color online� Annihilation of dislo-
cation by local rearrangement of 5–7 defect. The
gray lines indicate the formation of a new neigh-
bor at an intermediate state.

(b)(a) (c)

(d) (f)(e)

FIG. 3. �Color online� Time sequence show-
ing premelting at grain-boundary scars. The
simulations indicate an initiation of the melting at
the ends of the scars.
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approach to work on arbitrary surfaces will also allow us to
consider ordering on evolving surfaces. As discussed above
for low surface tensions a buckling transition of the disclina-
tions can turn the sphere into a polygon in order to reduce
the energy. The question arises if such a transition can inter-
vene with grain-boundary scar formation. In �27� it is specu-
lated that grain-boundary scars could be formed on capsids at

an intermediate stage of their evolution and that the release
of the bending energy present in these scars into stretching
energy could allow for shape changes. To model such shape
changes requires us to evolve the surface. Appropriate con-
tinuum models which account for bending and surface ten-
sion are discussed in the mathematical review papers
�28,29�. Different concepts have been developed to solve dif-
ferential equations on evolving surfaces, �30� in the context
of parametric finite elements �as considered here� and �31�
within a phase field context. The coupling of the surface
evolution with the evolution of the number density on it and
with it the question if grain-boundary scars can initiate a
buckling transition however remains open and requires fur-
ther developments.

This work was supported by German Science Foundation
Grants No. VO899/6-1 and No. VO899/6-2.
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FIG. 4. Excess dislocations as a function of system size. The
obtained slope is 0.388�0.020, which is in excellent agreement
with the experimental measured data in �4�, which give
0.404�0.062, and the theoretical value of 0.41 from �10�.
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FIG. 5. �Color online� Minimal energy configuration on torus
with N=239, there are 13 fivefold disclinations and 13 sevenfold
disclinations, 5–black, 6–red �gray�, and 7–yellow �white�.
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