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Colloids that are partially wetted by two immiscible fluids can become confined to fluid-fluid

interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may

crystallize. Examples include bicontinuous interfacially jammed emulsion gels (bijels), which were

proposed in this study by Stratford et al. [Science 309, 2198 (2005)] as a hypothetical new class of

soft materials in which interpenetrating, continuous domains of two immiscible viscous fluids are

maintained in a rigid state by a jammed layer of colloidal particles at their interface. We develop a

continuum model for such a system that is capable of simulating the long-time evolution. A

Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase flow system is combined with a

surface phase-field-crystal model for the microscopic colloidal system along the interface. The

presence of colloids introduces elastic forces at the interface between the two immiscible fluid

phases. An adaptive finite element method is used to solve the model numerically. Using a variety

of flow configurations in two dimensions, we demonstrate that as colloids jam on the interface and

the interface crystallizes, the elastic force may be strong enough to make the interface sufficiently

rigid to resist external forces, such as an applied shear flow, as well as surface tension induced

coarsening in bicontinuous structures. VC 2011 American Institute of Physics.

[doi:10.1063/1.3584815]

I. INTRODUCTION

Like surfactants, colloidal particles that are partially

wetted by two immiscible fluids tend to adsorb at the inter-

face between the fluids to minimize the overall free energy

of the system. However, there are important differences

between the behavior of interfaces covered with surfactants

and those covered with colloids. In the case of surfactants, if

the interface area is changed, surfactants adsorb to and

desorb from an interface and try to maintain an equilibrium

surface tension. However, in the case of colloids, the desorp-

tion energy is typically much larger than the thermal energy,

and thus the adsorption process of the colloids at the inter-

face is practically irreversible. Therefore, a decrease in inter-

facial area leads to an energy increase because colloids have

to desorb from the interface. On the other hand, an increase

in interfacial area also leads to an overall increase in energy

as the interface becomes more exposed by reducing the sur-

face colloid fraction. Because the surface tension is the vari-

ation of the free energy with respect to interfacial area, this

suggests that surface colloids are better described using an

interfacial elasticity model rather than a surface tension

model that is more suitable for surfactants (see, for example,

Refs. 1 and 2).

As the colloid density at an interface increases, e.g.,

through the adsorption of colloids or through a reduction in

interface area, the colloids may crowd and become immobi-

lized forming a jammed colloidal monolayer. The crystallized

interface can be solid-like with mechanical rigidity. This abil-

ity to impart rigidity and surface elasticity is an important dif-

ference between surface colloid and surfactant systems. In

particular, unlike surfactants, colloid jamming can lead to

interfaces with unusual shapes such as nonspherical bubbles3

and unusual fluid configurations such as stabilized (Pickering)

emulsions2,4–7 and bicontinuous morphologies.2,8 Stable

bicontinuous morphologies in which interpenetrating, contin-

uous domains of two immiscible fluids are maintained in a

rigid state by a jammed layer of colloidal particles at their

interface were discovered several years ago by Chung et al.9

experimentally for thin films of polymeric fluids and by Strat-

ford et al.10 numerically for viscous fluids. Stratford et al.
referred to such configurations as bicontinuous interfacially

jammed emulsion gels (bijels) and proposed that bijels form a

new class of soft materials with potentially remarkable prop-

erties with elastic moduli and yield stress tunable over a very

wide range. Such structures have wide variety of potential

applications including barrier materials,11 solar cells,12 food

systems,7 crossflow microreactors,10 and as template scaf-

folds for colloidal gels.13 Experiments recently performed by

Herzig et al.14 have demonstrated the ability to produce three

dimensional bijels using viscous fluids that are stable for sev-

eral months. Bijels have also been recently produced using

biopolymers.15

As mentioned above, bijels were first discovered using

numerical simulations by Stratford et al.10 for equal volume

fractions of the two fluid components. Later simulations

were performed by Kim et al.16 to determine the effect of

varying volume fraction. These authors used a lattice Boltz-

mann method (LBM) with colloids undergoing Brownian

motion. The wide range of spatiotemporal scales makes this
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problem very difficult to solve. The spatial scales that need

to be resolved range from the inter-colloid forces in the

jammed layer on the interface to the mesoscopic bicontinu-

ous domain structures that characterize the bijel. The time

scales range from those associated with the Brownian motion

of the colloids to the macroscopic arrest of the structure,

which can last up to several months.14 In the LBM, resolving

this range of time scales is particularly problematic since the

simulation time is limited by the Brownian diffusion time

making it difficult to perform long-time simulations. Hore

and Laradji,17 using another approach based on dissipative

particle dynamics (DPD), confirmed the results of Stratford

et al. and predicted that bijels are thermodynamically meta-

stable with smaller colloids being more easily desorbed

which destabilizes the structure. In the DPD approach, col-

loids are modeled by arranging DPD particles on a sphere

and connecting them by rigid bonds taking care that fluid

particles cannot penetrate. This limits the size of the colloids

and the range of spatial scales that can be simulated.

Here, we develop an alternative modeling approach,

which combines the atomistic processes along the interface

with the continuum processes in the bulk phases, that has the

potential to simulate large domains for long times. In partic-

ular, we develop a continuum model that combines diffuse-

interface (phase-field) modeling for multiphase flow with

approximations to dynamic density functional theory

(DDFT) to study colloid jamming at interfaces. DDFT is a

time-dependent extension of classical (equilibrium) density

functional theory and describes the time evolution of the

density of interacting Brownian particles through an integro-

differential equation (e.g., see Refs. 18 and 19). Classical

density functional theory has been previously used for deter-

mining equilibria in one dimension of mixtures of amphi-

philic particles (e.g., see Refs. 20 and 21) and for modeling

colloidal fluids (e.g., see Refs. 18 and 22). In the DDFT, the

dynamic integro-differential equations for the particle den-

sity can be derived from Newton’s equations of motion with

and without inertial effects. In recent work, van Teeffelen

et al.23 derived a local higher order partial differential equa-

tion for the colloid particle density by approximating the

integro-differential equation of the DDFT model. The result-

ing partial differential equation is the so-called phase-field-

crystal (PFC) model, which was previously introduced by

Elder et al.24,25 in the context of crystal growth. As the

model resolves each particle as a density peak, it requires

sub-particle resolution. However, the model operates on dif-

fusive time scales, which enables the approach to resolve the

long term behavior of the system. The PFC model has been

used to describe various solid state phenomena (see, for

example, Refs. 26 and 27). In very recent work, Backofen et
al.28 modified the PFC model to describe crystallography on

fixed, curved surfaces which is related to the ordering of

colloids on fluid-fluid interfaces. However, Backofen et al.
did not consider interfacial motion or interactions with the

bulk fluids. Here, we develop a surface phase-field-crystal

(SPFC) model that accounts for these additional effects to

model the jamming of colloidal particles on fluid-fluid inter-

faces. We also develop a model for attachment of colloids to

the interface. A concentration equation for a colloidal

density in one fluid phase is used with attachment/detach-

ment boundary conditions along the fluid-fluid interface.

These surface and bulk equations are reformulated using the

diffuse interface and diffuse domain approaches introduced

in Refs. 29–31 for solving partial differential equations on

surfaces and complex domains and coupling surface and

bulk problems. These techniques were recently used to simu-

late the effect of soluble surfactants on interfacial flows.32

To model the fluid flow, the incompressible Navier-

Stokes equations used together with a diffuse interface

(phase-field) approach. This method has a long history dating

back to van der Waals and has been used for a wide variety

of applications involving drop coalescence and break-up,

spinodal decomposition, electrowetting, viscoelasticity, sur-

factants, etc. See, for example, the reviews33–35 and the

references therein. In this approach, an auxiliary phase-field

(PF) function is introduced, which approximates the concen-

tration of one of the fluid components. Interfaces are

replaced by narrow diffuse layers across which the PF func-

tion varies from zero to one. Extra stresses in the fluid arise

due to the presence of interfaces and colloids.

The governing equations, and extra stresses, are

derived using an energy variation approach accounting for

surface energy, modeled by a Cahn-Hilliard (CH)-type

energy,36 and the energy associated with surface colloids

from the SPFC model. It is seen that the latter introduces

elastic forces in the fluid. The resulting Navier-Stokes-Cahn-

Hilliard-Surface-Phase-Field-Crystal (NSCHSPFC) equations

are discretized using adaptive finite elements in space and a

semi-implicit time-discretization. Using a variety of flow con-

figurations in two dimensions, we demonstrate that as colloids

jam on the interface and the interface crystallizes, the elastic

force may be strong enough to make the interface sufficiently

rigid to resist external forces, such as an applied shear flow, as

well as surface tension induced coarsening in bicontinuous

structures.

The paper is organized as follows. In Sec. II , we derive

the model using an energy variation argument. In Sec. III,

the numerical method is briefly described, and in Sec. IV, we

show simulation results. Conclusions are drawn in Sec. V.

II. MODEL

A. Model derivation

In this section, we derive the governing equations using

an energy variation approach. We do this in nondimensional

variables where time and space are nondimensionalized by

t0 ¼ t=sr and x0 ¼ x=L where sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�qL3=r

p
is the character-

istic time associated with surface tension relaxation, with r
being the surface tension and �q the density of the fluid,

which is assumed to be constant. The parameter L is a mea-

sure of the characteristic size of the fluid domain (e.g., drop

radius, etc.). We refer the reader to the Appendix for details.

Hereafter, we drop the prime notation.

We begin by briefly reviewing the PFC model for bulk

systems. Let q denote the nondimensional colloid density.

Then the PFC model describes the conserved dynamics

arising from a Swift-Hohenberg (SH)-like energy37
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@q
@t ¼ r � Mr dESH

dq

� �
where M is a mobility, dESH

dq denotes

the variational derivative of the SH-like energy ESH with

respect to q. In nondimensional form, ESH is given by

ESH ¼ El�1

ð
fpfcðq;rq;r2qÞ dx; fpfcðq;rq;r2qÞ

¼ q4

4
þ q2

2
ð1þ rÞ � d2jrqj2 þ d4

2
jr2qj2; (1)

where El is an elasticity number which measures the relative

strength of the elastic energy (to the surface energy), fpfc is

the colloid energy density, r is a nondimensional parameter

that arises from the structure factor for the colloidal system,

and d ¼ Lc=L is the ratio of the characteristic length scales

of the colloid and fluid systems. Again, we refer the reader

to the Appendix for details. The energy ESH is different from

the standard Cahn-Hilliard types of energies (e.g., see Eq.

(9) below) in that in addition to constant states, ESH admits

periodic solutions as equilibria, courtesy of the negative term

involving the gradient of q. These periodic solutions describe

the arrangement of colloids in the crystallized (ordered)

state. For example, taking r ¼ �0:4 the crystal state occurs

when q � 0 The constant states describe the disordered or

liquid states.

Next, we introduce Espfc to be the localization of ESH on

a surface C using the diffuse interface formulation29,31 as fol-

lows. To describe the position of the fluid-fluid interface C
and of the two fluid phases, we use a phase field variable w
such that w ¼ 0 and 1 denote the fluid phases and w ¼ 0:5
denotes the interface location CðtÞ ¼ fx 2 X : wðx; tÞ ¼ 0:5g
with X � I R2;3. For example, one may take

wðx; tÞ ¼ 1

2
1� tanh

dðx; tÞffiffiffi
2
p

�

� �� �
(2)

where � determines the interface thickness and dðx; tÞ
denotes the signed distance function from the fluid-fluid

interface to x at time t. For this choice of w a calculation

shows that the function

BðwÞ ¼ w2ð1� wÞ2; (3)

when scaled by 6
ffiffiffi
2
p

=� approximates the surface delta func-

tion dC

6
ffiffiffi
2
p

�
BðwÞ � dC: (4)

As discussed below, rather than using Eq. (2) to define w we

determine w by solving an advective Cahn-Hilliard equation

whose solution near C approximates Eq. (2) for small �. The

localized PFC energy on the surface, e.g., the SPFC energy,

can then be written as

Espfc ¼
El�1

�

ð
X

BðwÞf ðq;rq; mÞ dx; (5)

where f ðq;rq; mÞ is the SPFC energy density given by

f ðq;rq; mÞ ¼ 1

4
q4 þ 1þ r

2
q2 � d2jrqj2 þ d4

2
m2; (6)

m ¼ 1

B
r � ðBrqÞ: (7)

We now suppose that the total energy of the system consists

of the SPFC energy, the surface energy Es and the kinetic

energy Ekin

E ¼ Espfc þ Es þ Ekin; (8)

where in nondimensional form the surface energy is approxi-

mated by the Cahn-Hilliard energy

Es ¼
1

�

ð
X

BðwÞ þ �
2

2
jrwj2 dx; (9)

where we do not enforce Eq. (2), and the kinetic energy is

Ekin ¼
1

2

ð
X
juj2dx; (10)

where we have assumed that the density of the fluid is con-

stant and the velocity is nondimensionalized by U ¼ L=sr

(see the Appendix).

We now derive the equations for the two-phase system

with colloidal particles starting with an energy variation

argument. We take the time derivative of the energy E which

is equivalent to varying w and q simultaneously. This gives

_E ¼
ð

X
u _uþ _w

dE

dw
þ _qB

dE

dq
dx (11)

where the overdot denotes the time derivative and

dE

dw
:¼ El�1

�
B0 f � d4rm � rq� d4m2
	 


þ 1

�
B0 � �2Dw
	 


(12)

dE

dq
:¼ El�1

�
q3 þ ð1þ rÞqþ 2d2mþ d4

B
r � Brmð Þ

� �
: (13)

We suppose the fluid motion is governed by the Navier-

Stokes equations which, in the nondimensional variables

introduced here, is given by

_u ¼ �u � ru�rpþ 1

Re
Duþ F;r � u ¼ 0; (14)

where p is the pressure and Re ¼ �qLU=g with g the viscos-

ity, is the Reynolds number, and the force F is as yet unspe-

cified. Note that if Re is small, the Stokes equations could be

used instead of the Navier-Stokes equations and the analysis

below remains valid.

The functions w and q are assumed to satisfy the conser-

vation equations

_w ¼ �u � rw�r � Jw (15)

@

@t
ðBqÞ ¼ �r � ðBquÞ � r � Jq (16)
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where the fluxes Jq and Jw have also not yet been specified.

Note that Eq. (16) is the diffuse interface form of the surface

mass conservation equation.29,31 Using the incompressibility

of the fluid and Eq. (15), Eq. (16) can be rewritten as

_q ¼ �u � rqþ B0

B
qr � Jw �

1

B
r � Jq : (17)

Next, we determine F, Jw and Jq to ensure that the energy is

nonincreasing in time ensuring thermodynamic consistency.

Inserting Eqs. (14), (15), and (17) into Eq. (11) and integrat-

ing by parts, the time derivative of the energy becomes

_E ¼ � 1

Re

ð
X
ru : ru dxþ

ð
u � F� dE

dw
rw� B

dE

dq
rq

� �
dx

þ
ð

Jw � r
dE

dw
� B0q

dE

dq

� �
dxþ

ð
Jq � r

dE

dq
dx:

In the above, we have assumed natural (or periodic) bound-

ary conditions and dropped all the boundary terms. By

taking

F ¼ dE

dw
rwþ B

dE

dq
rq; (18)

Jw ¼ �Pe�1
w �Br dE

dw
� B0q

dE

dq

� �
; (19)

Jq ¼ �Pe�1
q Br dE

dq
; (20)

where Pew and Peq are Peclet numbers, we obtain _E � 0

If the flux Jw as defined in Eq. (19) is used in the conser-

vation equation (15), the resulting w does not provide a good

description of the interface layer because of the contributions

of Espfc to the variational derivatives. In particular, unlike the

hyperbolic tangent function in Eq. (2), the interface thickness

is non-uniform, which can introduce spurious Marangoni-

like velocities. Since the primary purpose of w is to track the

two-phase interface, we simplify Jw and omit the terms de-

pendent on Espfc which gives the standard Cahn-Hilliard flux

Jw ¼ �Pe�1
w r

dEs

dw
¼ �Pe�1

w Br B0 � �2Dw
	 


: (21)

Although the resulting system is no longer variational and

does not necessarily decrease the energy, this effect tends to

be higher order since away from the interface BðwÞ � 0 and

near the interface w locally equilibrates yielding B0ðwÞ
� �2Dw � 0 Note that if Jw � 0 then _E � 0 with F and Jq

given in Eqs. (18) and (20).

Using Eqs. (12) and (13), the force F in the Navier-

Stokes equation can be written as

F ¼ El�1

�
B0rwðf �rm � rq� m2Þ þ B

dE

dq
rqþ dEs

dw
rw

(22)

¼ El�1

�
r B f � d4rm � rq� d4m2

	 
	 

þ F; (23)

where

F ¼ �El�1

�
Brðf � d4rm � rq� d4m2Þ þ B

dE

dq
rq

þ dEs

dw
rw: (24)

We refer to the first two terms of F as the elastic force and to

the last term as the surface tension, or capillary, force. Note

that if q � constant so that the colloids are in the disordered

or liquid state, then the elastic force is nearly zero. Further,

Eq. (24) suggests that in equilibrium the interface experiences

colloid-induced elastic stress just as it does capillary stress.

In the Navier-Stokes equations (14), we may use the

force F rather than F by introducing a new pressure �p as

�p :¼ p� El�1

�
Bðf � d4rm � rq� d4m2Þ:

Numerically, we find that using F yields a more accurate so-

lution than using F.

B. Attachment of colloids

We next consider the attachment of colloids to the inter-

face with the idea of using attachment to drive the colloid

density on the interface into the crystal part of the PFC phase

diagram to induce colloid jamming and interface crystalliza-

tion. Here, we do this by introducing a nondimensional col-

loid density in the bulk, c, which satisfies a convection-

diffusion equation with a flux boundary condition at the

interface that describes colloid attachment and detachment.

We note that there are many other ways this could be done.

For example, the bulk PFC equation (recall Sec. II A) could

be used instead. However, since we are most interested in

the case in which the colloids only crystallize at the inter-

face, and not in the bulk fluid regions, the advection-diffu-

sion equation is likely sufficient.

Here, we present the equations in nondimensional form

and use the diffuse interface framework developed in Ref. 32.

For simplicity, we assume that the colloids are soluble only in

the fluid phase w � 1. This leads to the convection-diffusion

equation

@tðwcÞ þ r � ðwucÞ ¼ Pe�1
c r � ðwrcÞ � hjjrwj; (25)

where Pec is a Peclet number, h is the penetration depth, and

j is the net flux of colloids to the interface. Note that

jrwj � dC the surface delta function. The net flux j must

also be accounted for in the evolution of the surface colloid

density q through the addition of a source. Therefore, Eq.

(17) is modified accordingly as

_q ¼ �u � rqþ B0

B
qr � Jw �

1

B
r � Jq þ Bj: (26)

There are numerous ways of defining the source term j. In

general, it is not clear how to couple the macroscopic density

c with the microscopic density q. The usual way of defining

the net flux for macroscopic quantities is to use the constitu-

tive assumption
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j :¼ Bi cðq1 � qÞ � k�1q
	 


; (27)

where Bi is a Biot number that measures the adsorption

rate relative to the surface tension time scale sr and k�1

measures the relative rates of desorption and adsorption.

The density q1 is a saturation constant that is in the crys-

tal phase of the phase diagram of the PFC. The use of Eq.

(27) may introduce difficulties, however, when q is in the

crystal phase of the PFC. In this case, q oscillates locally

with each oscillation representing a colloidal particle.

Hence, attachment at valleys of q may drive the peaks of

q above q1 which results in detachment. However, as dis-

cussed in the introduction, the attachment process for col-

loids is essentially irreversible so that detachment should

be very limited.

To avoid this behavior one could use the simple form

j :¼ Bi c (28)

making the attachment and detachment independent of q by

postulating that every existing colloid in the bulk will attach

to the interface. In this case, colloid saturation is reached

when c is depleted.

Another way to overcome the oscillations of q and con-

nect the macroscopic and microscopic bulk and surface col-

loid densities in Eq. (27) is to use an average hqi instead of

the microscopic q in Eq. (27) and take

j :¼ Bi cðq1 � hqiÞ � k�1hqi
	 


; (29)

where hqi could be either a local or global average of q over

the interface.

We have implemented all of the above formulations for

the flux term j and observed that all of these formulations

behave similarly, at least qualitatively. For the simulations

presented in Sec. IV A, we use Eq. (27) for j.

C. Shifting the free energy

Interface coarsening provides another route to driving

the surface colloid density q into the crystal part of the PFC

phase diagram, leading to colloid jamming and interface

crystallization. For example, if the fluid structure coarsens in

time and the interface length decreases then, in the absence

of attachment, the absolute value of q increases. This can

bring q into the crystal phase of the SPFC and thus induces

crystallization of the interface. To account for this, we shift

the SPFC energy in Eq. (6) by taking

f ¼ 1

4
ðq� ~qÞ4 þ 1þ r

2
ðq� ~qÞ2 � d2jrqj2 þ d4

2
m2; (30)

where ~q is a constant. The definitions of the variational

derivatives dE=dw and dE=dq change accordingly. Equation

(30) agrees with Eq. (1) when ~q ¼ 0. On the other hand, tak-

ing the parameter r ¼ �0:4 then the crystal phase occurs

when q � ~q. In our numerical examples, we use by default

~q ¼ 0 and only set ~q 6¼ 0 to simulate the jamming of par-

ticles in Sec. IV D.

D. Summary of governing equations

Putting everything together, we now summarize the non-

dimensional NSCHSPFC equations and the associated

boundary conditions. We write the equations as a system of

2nd order partial differential equations. The advective Cahn-

Hilliard equation governs the motion of the two-phase

interface

@twþ u � rw ¼ Pe�1
w r � ðBrlÞ; (31)

l ¼ B0ðwÞ � �2Dw: (32)

The surface phase-field-crystal equation on the diffuse inter-

face defined by w governs the evolution of the surface

colloids

@tðBqÞ þ r � ðBuqÞ ¼ Pe�1
q r � ðBrxÞ þ Bj; (33)

Bx ¼ B q� ~qð Þ q� ~qð Þ2 þ 1þ r
� �

þ 2d2Bmþ d4r � ðBrmÞ;

(34)

Bm ¼ r � ðBrqÞ; (35)

j ¼ Bi c q1 � qð Þ � k�1q
	 


: (36)

The bulk colloid density evolves according to the convec-

tion-diffusion equation

@tðwcÞ þ r � ðwucÞ ¼ Pe�1
c r � ðwrcÞ � hjjrwj: (37)

Finally, the Navier-Stokes equations, with surface tension

and elastic forces, governs the motion of the fluids

r � u ¼ 0; (38)

@tuþ ðu � rÞu ¼ �r�pþ 1

Re
Duþ 1

�
lrw

þ El�1

�
B xrq�rðf � d4rm � rq� d4m2Þ
	 


: (39)

The NSCHSPFC system is equipped with the initial

conditions

uðt ¼ 0; xÞ ¼ u0ðxÞ;wðt ¼ 0; xÞ ¼ w0ðxÞ; qðt ¼ 0; xÞ
¼ q0ðxÞ; cðt ¼ 0; xÞ ¼ c0ðxÞ; in X

and either natural boundary conditions

@w
@n
¼ @q
@n
¼ @c

@n
¼ @l
@n
¼ @m
@n
¼ @x
@n
¼ 0; u ¼ u1 on @X;

where n denotes the outward normal vector or periodic

boundary conditions.

III. NUMERICAL METHODS

An adaptive finite element method is used to solve the

high-order nonlinear system of equations; the method is

implemented using the adaptive finite element toolbox

AMDiS.38 We solve the coupled system as follows. First, the

Cahn-Hilliard equations (31) and (32) are solved to deter-

mine the position of the interface, then the SPFC equations
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(33)–(36) are solved to determine the surface colloid density

and finally the Navier-Stokes equations (38) and (39) are

solved to determine the fluid velocity using the new position

of the interface and the surface density of the colloids in the

surface tension and elastic forces. If colloids are present in

the bulk, then the Eq. (37) is solved after the Navier-Stokes

equation. To ensure the well-posedness of Eqs. (33)–(35), B
is replaced by Bþ n (see Ref. 29, for example). Analo-

gously, in Eq. (37), w is replaced by wþ n. Here, we use

n ¼ 10�6.

A semi-implicit Euler method is used for the time dis-

cretization keeping as many terms implicit as possible. Non-

linear terms are linearized by a Taylor expansion dropping

terms of order two and higher so that the equations are linear

at the implicit time step. The linearized system is solved

using the direct unsymmetric multifrontal method [UMF-

PACK (Ref. 39)].

We use linear basis functions for all variables. Accord-

ingly, the Cahn-Hilliard and SPFC equations are solved as

coupled systems of second order equations (e.g., see Refs. 40

and 41). The Navier-Stokes equations are solved using a first

order projection method developed in Ref. 42. The scheme is

given by

u� � um�1

s
� gDu� þ um�1 � ru� ¼ Fm (40)

sDp� ¼ r � u� (41)

um :¼ u� � srp� (42)

where s denotes the timestep and the superscripts denote the

time iteration.

Adaptive meshes are indispensible for providing a high

spatial resolution along the fluid-fluid interfaces described

implicitly by w. For local mesh adaptation, we use a L2-like

error indicator based on a jump residual (e.g., see Refs. 38

and 43) for w to maintain approximately 5 grid points across

the transition layers. Although we did not find it necessary to

do here, additional mesh refinement can be used to increase

local resolution of the flow field (e.g., velocity gradients,

etc.).

IV. RESULTS

A. Retracting ellipse

As a first test for the NSCHSPFC model, we consider

the case of an initially elliptical fluid droplet surrounded by

another fluid. The computational domain is X ¼ ½�2; 2	

½�2; 2	 We start with an initial condition as in Eq. (2)

using

d ¼ 1:0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x

0:35

� �2

þ y

1:8

� �2
r

:

Since this d is only an approximation to a signed distance

function of an ellipse, we refine the initial condition by solv-

ing the Cahn-Hilliard equations (31) and (32) for a short

time with velocity u ¼ 0 to obtain better approximation of

Eq. (2) where the actual signed distance function is used.

The resulting w is the initial condition w0 for the following

simulations. It describes an elliptical drop with a vertical di-

ameter of about 3 and a horizontal thickness of around 0:75:
To get an initial condition for q we solve the SPFC

equations (33)–(36) on the fixed interface defined by w0

(e.g., u is set to zero). We use as an initial condition for q a

constant value of �0:3 plus a uniformly distributed random

perturbation between ½�0:05; 0:05	 at each node. Hereafter,

we write such a condition as q0 ¼ �0:360:05 Since this sur-

face density is in the crystal phase of the PFC, the colloidal

particles become ordered and arrange in a crystal-like state.

We stop solving the SPFC equations when a stationary state

of colloid density is reached. The solution q shown in Fig. 1

is taken as the initial condition q0 for the full NSCHSPFC

system. Note that a single colloid corresponds to the combi-

nation of one darker region (q < 0) and one lighter region

(q > 0). The remaining parameters are chosen as follows:

s ¼ 0:017; r ¼ �0:4; ~q ¼ 0; Peq ¼ 3:76; Pew ¼ 0:47;
Re ¼ 0:38; El ¼ 0:002; � ¼ 0:03; d ¼ 0:067; and Bi ¼ 0;
and the fluid is initially quiescent (e.g., u ¼ 0 at time t ¼ 0).

The natural boundary conditions with u1 ¼ 0 are used.

Fig. 2 shows the NSCHSPFC simulation (bottom) and a

comparison to the Navier-Stokes-Cahn-Hilliard (NSCH)

model (top) which has no elastic force (El�1 ¼ 0). One can

see that in the latter case surface tension makes the ellipse

retract to become circular. However, in the presence of col-

loids, the retraction is stopped by the elastic force as the col-

loids jam at the interface and the interface crystallizes. Note

that at late times, the interface may start to wobble a little.

This is likely due to the combination of the surface elasticity

induced by the colloids and the inertial forces in the fluid.

The velocity u at the top of the ellipse at an early time

(t ¼ 1:67) is shown in Fig. 3 . The elastic force induces local

straining flows around the interface (two per colloid). The

maximum magnitudes of the velocities induced by the sur-

face tension and elastic force are about ten times larger than

that induced by the surface tension only. Consequently, we

need to use smaller time steps and a finer grid in a neighbor-

hood of the interface to resolve the system with elastic forces

FIG. 1. Initial condition q0 for the NSCHSPFC system obtained by solving

the SPFC equation on an elliptical diffuse interface, as described in the text.
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than are required to solve the system without elastic forces.

The magnitude of the straining flows can be decreased by

increasing El. To compensate for an increased El, the num-

ber of colloids on the interface may be increased, which

increases the interface stiffness by enabling colloid jamming

and interface crystallization to occur more readily. This can

be achieved by making the colloidal particles smaller result-

ing in a smaller parameter d, as we now demonstrate.

To investigate the influence of the number of colloids on

the system, we vary the parameter d, which relates the char-

acteristic colloid size to the characteristic drop radius. Now,

we proceed as before. We first solve the SPFC equation on a

fixed interface until a stationary state is reached. We use

three values of d ¼ 0:133, 0:067 and 0:033. This yields 8,

16, and 32 colloids on the interface as seen in Fig. 4. Using

the same parameters and boundary conditions as before, with

the exception of d, the initial ellipses are evolved in time in

an initially quiescent fluid. In Fig. 5, the interface length, cal-

culated by from the length of the w ¼ 0:5 contour, is plotted

as a function of time. In all cases, the elastic force is strong

enough to stop the retraction, with the decrease in length

being inversely proportional to d. Thus, increasing the num-

ber of colloids makes the interface stiffer by making it easier

for the colloids to jam. Note that for d ¼ 0:133, a minimum

in interface length occurs around time t � 50 as the drop

starts to retract to a circle; its length only decreases by only

about 1% though. After this, the particles seem to slightly

over compress and the drop rebounds a little to an equilib-

rium configuration. This occurs to a much lesser extent for

the case with 16 colloids. In the case, with 32 colloids, the

interface length evolves monotonically with very slight

decrease in length. To reach the smaller values of d needed

to model specific experiments (e.g., Refs. 9, 14, and 15),

larger scale simulations are necessary. This is currently

research in progress.

Next, we incorporate attachment into the system. There-

fore, we solve an additional concentration equation as

described in Sec. II B. As initial condition, we impose a col-

loid concentration in the lower region of the domain:

c0ðx; yÞ ¼
1; if y < �1:67

0; else:

�
The parameters are the same as before, with d ¼ 0:067, and

the parameters associated with attachment are Bi ¼ 0:6,

k�1 ¼ 0, Pec ¼ 37:6, h ¼ 0:67 and q1 ¼ 0:0. The initial sur-

face colloid density q0 ¼ �0:8, which is in the liquid phase

of the PFC (e.g., the colloid phase is disordered). Thus,

attachment is needed to order the colloids and crystallize the

interface. Accordingly, the surface colloid structure evolves

dynamically together with the interface evolution and attach-

ment from the bulk matrix fluid. The results, shown in Figure

6, show that colloids attach to and crystallize the interface

FIG. 2. (Color online) Retraction of an elliptical drop without (top) and

with (bottom) colloidal forces at times t ¼ 0; 33; 167; and 1671 from left to

right. The drop and matrix fluids have different shades, lighter (red online)

for w ¼ 1 and darker (blue online) for w ¼ 0 The colloids (q) on the inter-

face are colored black (q < 0) and white (q > 0).

FIG. 3. Velocity field at the top of the ellipse at the early time t ¼ 1:67. The

black-white curve represents the interface. Left: The NSCHSPFC system

induces localized straining flows along the interface. Right: The velocity

induced by surface tension only (elastic force turned off, El�1 ¼ 0 ), at the

same time, for comparison.

FIG. 4. (Color online) Drop morphologies with 8, 16, and 32 colloids at the

interface used as initial condition for the NSCHSPFC model.

FIG. 5. (Color online) Interface length as a function of time for different

numbers of colloids on the interface (see text for details).

062103-7 A continuum model of colloid-stabilized interfaces Phys. Fluids 23, 062103 (2011)



starting at the bottom of the ellipse (closest to the bulk

source) and move upwards as time progresses. Correspond-

ingly, the retraction stops first at the bottom of the ellipse,

since the colloids jam there first, with the retraction becoming

progressively more arrested as the colloid structure moves up

the ellipse. This leads to the development of an asymmetrical

shape because the drop retracts more at the top.

B. Drop in shear flow

We consider a drop in shear flow to show that the col-

loids on the interface induce both repulsive and attractive

forces. This ability to impart rigidity, akin to surface elastic-

ity, is an important difference between colloid stabilized and

surfactant stabilized systems. Surfactants can lower the sur-

face tension but they do not generally result in significant

surface elasticity. This makes it easier for colloid stabilized

systems to resist external forces such as arise in an externally

applied shear flow.

To illustrate this, we simulated a drop with colloids and

elastic force (NSCHSPFC), a drop without colloids (NSCH),

and a drop without colloids but with insoluble surfactants on

its surface. The latter is performed using the diffuse-interface

formulation in Teigen et al.,32 which we briefly describe.

The surfactant concencentration cs on the interface satisfies

@tðBcsÞ þ r � ðBucsÞ ¼
1

Pecs

r � ðBrcsÞ; (43)

where Pecs
is the surfactant Peclet number. The nondimen-

sional surface tension (scaled by the clean surface tension) is

dependent on cs using the linear approximation

rs ¼ ð1� bcsÞ (44)

with a constant factor b. The capillary and Marangoni forces

are accounted for by using the following force in the Navier-

Stokes equation

F ¼ ð1� bcsÞ
dEs

dw
rw�

ffiffiffi
2
p

6
bjrwj I�rw�rw

jrwj2

 !
rcs;

(45)

where the
ffiffiffi
2
p

=6 arises in order to match the scaling of the

different delta function representations used in the two terms.

An asymptotic analysis as �! 0 reveals that the first term

tends to �
ffiffi
2
p

6
ð1� bcsÞjdRn with j the total curvature of C

(e.g., see Ref. 44). In the second term jrwj � dC and thus the

scaling is needed in order to balance the terms to approximate

the sharp interface limit 6ffiffi
2
p F � �ð1� bcsÞjdCn �brscsdC.

In our simulations, we use b ¼ 0:5, Pecs
¼ 39 and the

initial condition cs ¼ 1:0. Here, the domain size is

X ¼ ½�6; 6	 
 ½�2; 2	 and a drop of radius 1 is placed in the

center. To obtain an initial configuration with colloids on the

interface, we solve the SPFC equations first on this fixed inter-

face to steady state starting from an initial colloid density

q0 ¼ �0:360:05. This creates a stationary state with 15 col-

loids at the circular interface. Note that there are fewer col-

loids here than in the elliptical case considered previously

since the interface length is smaller. This solution q is taken

as the initial condition for the complete NSCHSPFC system.

We take s ¼ 0:0084, El ¼ 4
 10�4, d ¼ 0:067, Bi ¼ 0 and

the remaining parameters as in Sec. IV A. We use periodic

boundary conditions on the left and right boundaries of

the domain. At the top and bottom boundaries, the natural

boundary conditions are used with u1 ¼ ð0:24; 0Þ and u1
¼ ð�0:24; 0Þ respectively. The initial fluid velocity is

u0 ¼ ð0:12y; 0Þ.
The result is shown in Fig. 7. The drop with colloids

(black and white) deforms only slightly and reaches a steady

morphology around time t ¼ 10 and thereafter resists defor-

mation by the shear flow. In contrast, the drop with surfac-

tants (grey) and the clean drop without colloids and

surfactants ( b ¼ 0, El�1 ¼ 0 black) increasingly elongate in

time. As expected the drop with surfactants deforms the most.

C. Stabilizing bicontinuous structures

We next investigate the potential of colloidal particles to

stabilize the bicontinuous structures generated by spinodal

FIG. 6. (Color online) Retraction of an elliptical drop with simulated attach-

ment of colloids. From left to right, the times shown are t ¼ 0;
3:3; 10:0; and 33:4.

FIG. 7. A drop under shear flow. With colloids (black-white), without col-

loids (black), and with insoluble surfactants on the interface (grey) at times

t ¼ 0; 10:0; and 33:4.
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decomposition in the computational domain ½�2;2	
 ½�2;2	
We first attempted to model this by solving the full

NSCHSPFC system using an initial condition in which the

fluid is quiescent, no interface is present (e.g., w¼ 0:560:1 )

and colloids are only present in the bulk. Thus, the interface

crystallization should arise from attachment of colloids at

the interface as it nucleates and coarsens. However, we

found that the fluid phases never reached a steady, stable

state due to the competing effects between the sizes of the

fluid structures that form at early times and the colloid sizes.

In particular, the fluid structures should be larger than the

size of the colloids (e.g., d< 1).

As an alternative initial condition, we first generate suf-

ficiently large fluid structures via spinodal decomposition by

solving the CH equation in the absence of flow (u ¼ 0) using

the initial condition for w mentioned above, with a large

interface thickness � ¼ 0:16 for a few time steps. Then, to

generate the initial condition for the full NSCHSPFC system,

the CH and SPFC equations are solved together for several

more time steps, again in the absence of flow, with � ¼ 0:03

to refine the interface thickness and to create the colloid

structure on the complex interface. As initial data for the

CH-SPFC solve, the previously generated w is used together

with the colloid density q0 ¼ �0:360:05. The resulting

w; q are used as the initial condition w0; q0 for the full

NSCHSPFC system. The parameters are the same as in Sec.

IV A with d ¼ 0:067; periodic boundary conditions are used

in each coordinate direction.

Figure 8 shows a comparison between the NSCHSPFC

model (bottom) and a NSCH model without the elastic force

( El�1 ¼ 0, top). In the latter case, the structure coarsens sig-

nificantly. When colloids are present, the elastic force

induced by the particles is able to prevent the coarsening as

the colloids jam and the interface crystallizes. Indeed, it can

be seen in Fig. 10 the interface length (long-dashed)

decreases only slightly throughout the simulation. In con-

trast, without colloids, the interface length decreases sub-

stantially over the simulation (solid). Hence, the colloids

stabilize the system against coarsening.

D. Stabilizing bicontinuous structures using
coarsening-induced jamming

Next, we simulate the jamming of colloids at the inter-

face as proposed in Sec. II C. In particular, using the same

initial interfacial configuration in Sec. IV C, we start with an

unordered colloid configuration. We test whether ordering

and crystallization of the interface may occur as the complex

fluid structure coarsens. As discussed in Sec. II C, we intro-

duce a shifting constant ~q to shift the crystal region of the

PFC phase diagram. Here, we take ~q ¼ 1 which makes

the crystalline phase of the PFC occur near densities q � 1.

The initial SPFC density is q0 ¼ 0:35, w0 and the remaining

parameters as the same as in Sec. IV C.

The results are shown in Fig. 9. At early times, the fluid

structure coarsens and the NSCHSPFC evolution is very sim-

ilar to that for the NSCH system without colloids (Fig. 8

(top)). At these early times, the interface has not yet crystal-

lized. Therefore, the elastic force is small and the evolution

is dominated by the surface tension force. As the interface

coarsens, the colloid density increases and eventually

reaches the limit where the colloids jam and the interface

crystallizes. This occurs around time t � 60 and crystalliza-

tion begins in the upper right portion of the interface first.

The crystal region then spreads rapidly around the interface.

Interestingly, although the coarsening slows significantly af-

ter the initial crystallization, the increased elastic forces do

not immediately stop the coarsening because there are some

adjustments in the colloid distribution that result in changing

the local colloid density (particularly at the upward pointing

FIG. 8. (Color online) The evolution of

a complex fluid structure generated by

spinodal decomposition without (top)

and with (bottom) colloidal forces at

times t ¼ 0; 16:7; 83:6; and 167 from

left to right. The presence of colloids

arrests the coarsening.

FIG. 9. (Color online) Coarsening of a

complex fluid structure with simulated

jamming of colloids. The times shown

are t ¼ 0; 58:5; 83:6; and 167 from left

to right.
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finger in the center of the domain). This results in a small

amount of additional localized coarsening. As the colloid

density equilibrates and the colloids jam fully, the coarsen-

ing of the fluid structure ceases. Note that crystallization

does not occur on the isolated drop because the drop is

nearly circular and thus does not coarsen enough to increase

the colloid density to the crystallization limit.

To quantify the coarsening process, the total interface

length (calculated as described earlier) is plotted in Fig. 10

as a function of time for the three simulations modeling the

bicontinuous structures (Figs. 8 and 9). At early times, before

the interface crystallizes, the interface length for the simula-

tion shown in Fig. 9 (short dashed) evolves very similarly as

the case without colloids (El�1 ¼ 0, solid). Thus, the elastic

force seems to have almost no effect on the system if the sur-

face colloid density is in the liquid phase. The point at which

the colloids start to jam and the interface begins to crystallize

is clearly indicated by the abrupt stop in the decrease of the

interface length around t � 60. The additional localized

coarsening that occurs in response to colloid redistribution is

seen by the slight decrease in interface length around t � 80.

After the colloids jam fully, the interface length stays almost

perfectly constant.

V. CONCLUSIONS

We have developed a model to simulate the presence of

colloids at interfaces in a two-phase system. Our approach

combines a Navier-Stokes-Cahn-Hilliard model for a macro-

scopic two-phase system with a surface phase-field-crystal

model for the microscopic colloidal system along the inter-

face. In the resulting NSCHSPFC model, the presence of col-

loids introduces elastic forces at the interface between the

two immiscible fluid phases. On the interface, colloids

induce both repulsive and attractive forces, which can make

the interface rigid. This ability to impart rigidity, akin to sur-

face elasticity, is an important difference between colloid

stabilized and surfactant stabilized systems. An adaptive fi-

nite element method is used to solve the model numerically.

Using a variety of flow configurations in two dimensions, we

demonstrated that as colloids jam on the interface and the

interface crystallizes, the elastic force may be strong enough

to make the interface sufficiently rigid to resist external

forces, such as an applied shear flow, as well as surface ten-

sion induced coarsening. Although one may be tempted to

associate this behavior with a divergence of the interfacial

viscosity (e.g., a surface version of the Krieger-Dougherty

equations45) rather than colloid jamming, the surface viscos-

ity interpretation cannot support equilibrium solutions that

may exist in a state of stress analogous to capillary stresses

for colloid-free interfaces. This suggests that jamming inter-

actions among the colloids are responsible for halting the

interface motion.

We presented examples where the interface is crystal-

lized initially and where crystallization and jamming are

induced by attachment of colloids from the bulk. We also

presented an example of coarsening-induced colloid jam-

ming resulting in a bijel. In this example, the coarsening of a

two-dimensional bicontinuous structure under surface ten-

sion forces raises the colloid density sufficiently to induce

jamming, which abruptly halts the coarsening process.

There are many interesting directions to pursue in the

future, the first of which should be an extension of this

approach to three dimensions and to incorporate large scale

simulations capable of resolving very small values of d
needed to simulate experimental conditions. While the

NSCHSPFC model and the numerical method for the NSCH

part of the model extend straightforwardly to three dimen-

sions, the numerical method for the SPFC equation needs to

be improved. For example, using the direct method UMFPACK

to solve the linearized system is too expensive in three dimen-

sions. To make the method more efficient, we are currently

developing iterative methods and parallel implementations

for use in two and three dimensions. Other directions, we are

currently pursuing include developing methods to upscale the

microscopic SPFC model and elastic force to obtain a fully

macroscopic system, investigating the rheological properties

of simulated bijels and comparing the results with physical

systems (e.g., Refs. 46 and 47), and developing a model of a

crossflow microreactor in which two fluids flow in opposite

direction allowing close contact between mutually insoluble

reagents across a colloid-stabilized interface in a bijel.10
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APPENDIX: NONDIMENSIONALIZATION

Consider the dimensional energy for the colloid-fluid

system

E ¼ Ekin þ Es þ Espfc; (A1)

FIG. 10. (Color online) The evolution of the interface length for the simula-

tions shown in Figures 8 and 9. Without elastic force (solid line), with elastic

force from the beginning (long-dashed), and with elastic force where the col-

loids jam and the interface crystallizes during coarsening (short-dashed).
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with the dimensional kinetic and surface energies given by

Ekin ¼
�q
2

ð
juj2dx;Es ¼ r

ð
1

�
BðwÞ þ �2jrwj2
� �

dx; (A2)

where �q is the constant density of the fluid, and r is a surface

tension coefficient. The dimensional SPFC energy is given by

Espfc ¼ k
ð

1

�
BðwÞf ð/Þdx; (A3)

where k is an elastic energy coefficient and the SPFC energy

density f is given by

f ð/Þ ¼ /2

2
aþ ~bq4

0

� �
þ g

4
/4 � ~bq2

0jr/j2

þ
~b
2

1

BðwÞr � BðwÞr/ð Þ
� �2

: (A4)

The function / is a dimensionless measure of the colloidal

density field (e.g., / ¼ qcrys � �qcrysÞ
	 


=�qcrys where qcrys is

the colloid density and �qcrys is a reference density, for exam-

ple, the density of the system in the liquid state). The quanti-

ties a, ~b, q0, and g are system specific parameters. The first

three can be determined from matching the liquid structure

factor for the colloidal system with q�1
0 setting the crystal

lattice spacing, and a and ~b being determined by a polyno-

mial approximation to the liquid structure factor. The

remaining parameter g can be determined by fixing the am-

plitude of density waves in the crystal state. See Refs. 23,

25, 28, and 48, for example, where the connections between

the PFC model and the classical DDFT are also discussed.

Introducing characteristic scales for space L (e.g., char-

acteristic drop radius) and velocity U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð�qLÞ

p
(e.g., the

characteristic surface tension velocity), we define the nondi-

mensional quantities denoted by tildes

ex ¼ x=L;~t ¼ tU=L; eu ¼ u=U; ~E ¼ E=ð�qU2L3Þ (A5)

and

r ¼ a=ð~bq4
0Þ; ~� ¼ �=L; d ¼ 1=ðLq0Þ; (A6)

we get the nondimensional energies

~Ekin ¼
1

2

ð
jeuj2d~x; ~Es ¼

1

~�

ð
BðwÞ þ ~�2j ~rwjd~x: (A7)

Taking q ¼
ffiffiffiffiffi
g

bq4
0

q
/ (e.g., see also Ref. 49), the nondimen-

sional PFC energy becomes

~Espfc ¼
El�1

~�

ð
BðwÞf ðqÞd~x; (A8)

where El ¼ �qU2L
k �

g
bq8

0

¼ r
k �

g
bq8

0

is an elasticity number that

measures the strength of the SPFC energy relative to the sur-

face energy, and

f ðqÞ ¼ q4

4
þ q2

2
ð1þ rÞ � d2j erqj2

þ d4

2

1

BðwÞ
er � BðwÞ erq
� �� �2

: (A9)
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