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A Phase Field Crystal Approach for Particles in
a Flowing Solvent
Simon Praetorius,* Axel Voigt*
A number of dynamic density functional theories (dDFTs) have been developed to describe the
dynamics of the one-particle density of atomic fluids.We review an approach that accounts for
particle advection by a flowing solvent, and make further approximations using a locally
advected phase-field-crystal model which in turn is
coupled with a Navier–Stokes equation. In particular
we apply the approach to Brownian particles (e.g., coarse
grained polymer coils) in a solvent flowing around var-
ious obstacles (e.g., colloidal particles). We compare the
bowwave in the density distribution of particles in front
of the obstacles as well as the wake behind it. The results
qualitatively agree with full dDFT results and simu-
lations based on the underlying Brownian dynamics.
The much lower computational cost of the phase field
crystal approach provides an efficient way to couple fluid
flow around macroscopic fixed or moving particle with
interactions of particles in the solvent.
Introduction

Binary mixtures of colloids and non-adsorbing polymer

coils are ideal model systems for the study of phase

behavior and equilibrium as well as non-equilibrium

physics of multicomponent systems.

The generalization of classical density functional theory

(DFT) to the case of non-equilibrium situation, known as

dynamic density functional theory (dDFT), was first

introduced by Marconi and Tarazona,[1] and was recently

extended to driven systems[2] in the advected dynamic

density functional theory (adDFT). The authors used this
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method to model colloidal particles moving through a

polymer solution, or conversely, the flow of polymer

particles around a fixed macroscopic particle. The colloid

deforms the flow field, as it has radius of hydrodynamic

interaction with the solvent greater than 0.

Earlier studies of a similar system with conventional

DFT[3] neglected this deformation and are therefore only

valid for small obstacles of radius R� d, where d represents

the size of the polymer particles. A full dDFT model

including the advection of the solvent particles was

analyzed by ref.[2]

Simple flow fields around a colloidal particle with radius

R at low Reynolds number are given by the solution of the

Stokes equation around a spherical obstacle at the origin:
elibrary.
uðrÞ ¼ c� 3R

4krk 1þ R2

3krk2

� �
c

þ 3R

4krk3 rðr � cÞ
R2

krk2 �1

� �
; (1)
with c ¼ c1 ex the velocity at infinity distance from the

obstacle. For R¼ 0 this reduces to the uniform flow u(r)¼ c.
com DOI: 10.1002/mats.201100004 541
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More complex situations withmore colloidal particles that

are not fixed but can move independently, are difficult or

impossible to calculate analytically. Numerical solutions

of the Stokes equation have to be used. For non-stationary

flow fields a direct coupling of the equations of fluid

dynamics to the equations of the simulation of interacting

polymer particles in the solvent would be necessary. Such

coupling is crucial for the inclusion of the hydrodynamic

forces between polymer coils exerted on the solvent.

In this paper we present an approximation of the dDFT

using a phase field crystal (PFC) model, and motivated by

refs.[2,3] extend it by a transport term to approximate the

generalized adDFT. In contrast to dDFT equations the PFC

model is given by a differential equation and can easily be

coupled tootherequations like theaforementionedNavier–

Stokes equations of fluid dynamics.

The paper is organized as follows: in the next section the

model is derived starting from the Langevin equation of

motion for an ensemble of advected interacting Brownian

particles. Using various approximations we have obtained

an advected PFC-model, which is coupled to a Navier–

Stokes equation. In Computational Results Section simula-

tion results for the polymer density around a colloidal

particle were shown. We have considered the bowwave in

the density distribution of particles in front of the obstacles

aswell as thewakebehind it andhave compared the results

with full dDFT results and simulations based on the

underlying Brownian dynamics. The density profile is

analyzed in terms of different velocities and different radii

of the obstacle. In Conclusion Section we have drawn

conclusions.
Model Derivation

A continuum model considering the particle density in a

flowing solvent isderived starting fromanatomistic theory

as motived by ref.[1]
Fokker–Planck Equation

We consider the Langevin equation of motion for an

ensemble of N advected interacting Brownian particles

with position coordinates~r ¼ fr1; r2; . . . ; rNg, and mass m,

immersed in an incompressible fluid.
@tri ¼

¼

uðri; tÞ þ
1

g
ðFið~r; tÞ þ hiðtÞÞ

uðri; tÞ�
1

g
rri

X
i

V1ðri; tÞ þ
X
i<j

V2ðkri�rjkÞ

2
4

3
5

0
@

1
Aþ hiðtÞ

(2)
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with the external potential V1(ri, t), the pair interaction

potential V2ðkri�rjkÞ, flow field u(ri, t) and a noise term

hiðtÞ. The potential terms sum up to the deterministic force

Fi acting on the ith particle. Equation (2) is a stochastic

differential equation for each particle in the system.

The corresponding Fokker–Planck equation for a prob-

ability density,Wð~r; tÞ,whichdetermines the probability of

finding the set of N particles around the positions r1,. . .,rN
reads:
2011, 2
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r; tÞ ¼ LSWð~r; tÞ with

Sð�Þ ¼
X
i

rri � �uðri; tÞ�
1

g
Fið~r; tÞ þ kBTrri

� �
ð�Þ

� �
(3)
with initial conditions Wð~r; t0Þ ¼ dð~r�~r0Þ and appropriate

boundary conditions.

Because we are not interested in the individual position

of all particles, but rather the probability of finding any

particle at a given position, we can integrate Equation (3)

overN� 1of theNvariables to obtainaone-particle density

distribution. We introduce the n-particle density r(n) by

integrating the probability density (N�n)-times:

rðnÞðr1; . . . ; rn; tÞ ¼
N!

ðN�nÞ!

Z
� � �

Z
Wð~r; tÞdrnþ1 . . .drN :

Dropping the superscript for the one-particles density

r(1)¼ :r and the subscript in the positions one obtains the

continuity equation:
@trðr; tÞ þ r � ðrðr; tÞuðr; tÞÞ ¼ �r � jðr; tÞ (4)
with
gjðr; tÞ ¼ �rðr; tÞrV1ðr; tÞ�kBTrrðr; tÞ

�
Z

rð2Þðr; r0; tÞrV2ðkr�r0kÞdr0:
(5)
If we neglect the pair-interaction term containing the

two-particle density r(2), Equation (4 and 5) reduce to Fick’s

diffusion equation in a flowing heat bath:
@trðr; tÞ þ r � ðrðr; tÞuðr; tÞÞ ¼ �r � jðr; tÞ
G�1jðr; tÞ ¼ �rðr; tÞrU1ðr; tÞ�rrðr; tÞ

(6)
with an external potential U1:¼ (kB T)�1V1 and diffusion

coefficient G:¼ kB Tg�1. This equation models the flow of

non-interacting particles.
Dynamic Density Functional Theory

In classical dDFT the flux j is related to the gradient of the

variational derivative of an energy functional

F½rðrÞ� :¼ F id½rðrÞ� þ F ext½rðrÞ� þ F ex½rðrÞ�. The functional
0, 541–547
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consists of an ideal solution part F id½rðrÞ� ¼R
kBTrðrÞðlnðrðrÞLdÞ�1Þdr, where L is the thermal wave-

length, a description for an external potential

F ext½rðrÞ� ¼
R
rðr; tÞV1ðr; tÞdr, and the excess free energy

for particle interactions F ex½rðrÞ�, that is unknown for

general systems. The authors of ref.[2] used this relation for

the adDFT to obtain the evolution equation,
@trðr;

www.M
tÞ þ r � ðrðr; tÞuðrÞÞ ¼ r � g�1rðr; tÞr dF½rðr; tÞ�
drðr; tÞ

� �
:

(7)
Equation (7) still contains the unknown free energy part

F ex and furtherapproximationsarenecessary.Oneapproach

to obtain F ex is the mean-field approximation for very soft

interactions F ex½r� � ð1=2Þ
RR

rðrÞrðr0ÞrV2ðkr�r0kÞdrdr0.
In ref.[2] this approach is used to obtain a dDFT for

particles in a flowing solvent. Even if the approach is only

valid for potential flows, in ref.,[3] situations are described

where it gives good approximations in cases without

detailed balance. This is confirmed in ref.[2] by considering

Stokes flows.

We will follow this route and further approximate

Equation (7). Toderivemoreefficientmodelswhichallowus

to simulatemore complex problemswe consider adifferent

way to approximate F ex. Known approximations for hard

and soft particles include those based on the Rosenfeld

fundamental measure theory, weighted density approx-

imation,[4] and the Ramakrishnan–Yussouff (RY) approx-

imation.[5] In this work we use the RY approximation.
:

Phase-Field-Crystal Model

Consider the relative density deviation from a constant

reference liquid density: drðrÞ :¼ rðrÞ�rL. The excess free

part of the energy can be approximated in the RY-

approximation by expansion around the liquid density rL
up to second order, in the sense of generalized gradient

expansions:

F ex½rðrÞ��F ex½rL� ¼: DF ex½rðrÞ�

�
Z

drðrÞ dF ex½rL�
drðrÞ drþ 1

2

ZZ
drðrÞdrðr0Þ d

2ðF ex½rL�Þ
drðrÞdrðr0Þ drdr0

¼ �kBT

Z
drðrÞcð1Þðr; rLÞdr�

kBT

2

ZZ
drðrÞcð2Þðr; r0; rLÞdrðr0Þdrdr0

with the direct correlation functions, given by

cð1Þðr; rÞ ¼ ð�1=kBTÞðdF ex½r�=drÞ and cð2Þðr1; r2; rÞ ¼
ðdcð1Þðr1; rÞ=drðr2ÞÞ ¼ ð�1=kBTÞðd2ðF ex½r�Þ=drðr1Þdrðr2ÞÞ. In

the liquid reference fluid another form of c(1) can be found:

cð1Þðr; rLÞ ¼ lnðrLLdÞ�ðmL=kBTÞ with mL the constant che-

mical potential of the reference liquid.
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The ideal gas part F id of the energy can be rewritten as:

F id½rðrÞ��F id½rL� ¼: DF id½rðrÞ�

¼ kBT

Z
drðlnðrLLdÞ�1Þ þ rðrÞ ln rðrÞ

rL

� �
dr:

Combining both, ideal gas and excess free part of the

energy (relative to the reference liquid state), results in:

DF id½rðrÞ� þDF ex½rðrÞ� ¼ kBT

Z
drðrÞ mL

kBT
�1

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

f1ðrðrÞÞ

þ rðrÞ ln rðrÞ
rL

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

f2ðrðrÞÞ

� 1

2

Z
drðrÞcð2Þðr; r0; rLÞdrðr0Þdr0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f3ðrðrÞÞ

dr:

Because V2 depends on the distance kr�r0k only, this

property is assumed to be true also for the direct pair

correlation function, especially in the liquid phase, so

cð2Þðr; r0; rLÞ ¼: cð2Þ kr�r0kð Þ and the rotational symmetry of

cð2Þ follows immediately.

Now consider the Fourier transformed correlation

function by rewriting f3(r) as convolution f3ðrðrÞÞ ¼
ð1=2ÞdrðrÞ½cð2Þ � dr�ðrÞ. The correlation-function is rotation-

ally symmetric. This leads to a simplification of the Fourier-

transform of cð2Þ to:

=½cð2Þ� ¼: ĉðkÞ ¼
Z
Rd

cð2Þ krkð Þ cosðk � rÞdr:

Expanding ĉ around k0¼ 0[6] leads to:

ĉðkÞ ¼ Ĉ0 þ k2Ĉ2 þ k4Ĉ4 þ . . .

with km :¼
P

i k
m
i . The coefficients with odd derivatives

vanish, due to the choice of the expansion point. We can

now write the Fourier transform of f3 as:

=½f3ðrÞ�ðkÞ¼
1

2 � ð2pÞd
½d̂r�ðĉ � d̂rÞ�ðkÞ

¼ 1

2 � ð2pÞd
½d̂r�ððĈ0 þ Ĉ2ð�Þ2 þ Ĉ4ð�Þ4 þ . . .Þ � d̂rÞ�ðkÞ ¼: f̂ 3ðrÞ

The inverse Fourier transform leads to the real space

approximation, by truncating the expansion at fourth

order:

=�1 f̂ 3ðrÞ
h i

ðrÞ � 1

2
drðrÞðĈ0�Ĉ2Dð�Þ þ Ĉ4D

2ð�ÞÞdrðrÞ:

To relate the parameters Ĉi to those of other models

which assume constant mobility in Equation (7) on the

right-hand side (e.g., the PFC2-model[7]), the ideal solution

term in the energy is expanded around themean density r.

We introduce a new variable fðr; tÞ :¼
ðrðr; tÞ�rÞ=r ¼ ðdrðr; tÞ�rÞ=rþ rL=r, the dimensionless

density modulation, and truncate the expansions at fourth

order. For f the property
R
fðr; tÞdr ¼ 0 holds. The expan-

sions of fi(r) in terms of f, neglecting all linear terms
2011, 20, 541–547
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because they vanish on differentiation, yield:

1

r
ðf1ðrðrÞÞ�f1ðrÞÞ¼ fðr; tÞ mL

kBT
�1

� �
¼ ðlinear termÞ

1

r
ðf2ðrðrÞÞ�f2ðrÞÞ�

1

2
fðr; tÞ2� 1

6
fðr; tÞ3

þ 1

12
fðr; tÞ4 þ ðlinear termsÞ

1

r
ðf3ðrðrÞÞ�f3ðrÞÞ�

r

2
fðr; tÞðĈ0�Ĉ2Dþ Ĉ4D

2Þfðr; tÞ

þ ðlinear termsÞ:

The third termin theenergy,DF ext½r� ¼
R
drV1 ¼:

R
f4ðrÞ,

containing the external potentials, can also be expressed in

terms of f as ð1=rÞðf4ðrðrÞÞ�f4ðrÞÞ ¼ fðr; tÞV1ðr; tÞ. Finally
wecandefinethetotalfreeenergyrelativetothemeandensityby

summationof the energyparts: ð1=rÞðDF½rðr; tÞ��DF½r�Þ ¼
ð1=rÞðF½rðr; tÞ��F½r�Þ � F 1½fðr; tÞ� with:
F

@tfð

¼ kB

þ

G�1
1½fðr; tÞ�
kBT

:¼
Z

1

2
fðr; tÞ2� 1

6
fðr; tÞ3 þ 1

12
fðr; tÞ4 dr

�
Z

r

2
fðr; tÞðĈ0�Ĉ2Dþ Ĉ4D

2Þfðr; tÞdr

þ
Z

1

kBT
Mðfðr; tÞÞV1ðr; tÞdr

(8)
where MðfÞ :¼ r ¼ ðfþ 1Þr, and the notation F 1 comes

from the original name PFC1-model in ref.[7] Now the

evolution equationwith respect to f(r, t) can be written as:
r; tÞþr � ðfðr; tÞuðrÞÞ ¼ r � g�1MðfÞr dF 1½fðr; tÞ�
dfðr; tÞ

� �

Tr � g�1MðfÞrðfðr; tÞ� 1

2
fðr; tÞ2 þ 1

3
fðr; tÞ3

�

ðkBTÞ�1M0ðfÞV1ðr; tÞ�rðĈ0�Ĉ2Dfðr; tÞ þ Ĉ4D
2fðr; tÞÞÞ

�
(9)
This evolution equation is an approximation of the

dynamic density functional evolution Equation (7)

obtained by expansion of the correlation function. It is

related to the classical PFC equation, extended by an

advection term and non-constant mobility, and was first

derived by Elder and Grant.[8]

Toobtain this standard formwe introduceanewvariable

% :¼ ð1�2fÞ% and perform a re-parametrization to new

parameters rand%. Thenumberofparameters is reducedby

setting the lattice constant to 1, i.e., to fix the ratio

2jĈ4j : Ĉ2 ¼! 1. Stability considerations give the sign of the

last parameter, i.e., signðĈ4Þ ¼ �1. This leads to the

parameter relations:

Ĉ0 :¼ Ĉ2
9

2
� 1

2
ð1þ rÞ

� �
; Ĉ2 :¼ 1

6r%2
; Ĉ4 :¼ � 1

2
Ĉ2

Inserting this into the energy (8) and neglecting linear

and constant terms we arrive at the proposed standard
Macromol. Theory Simul.
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formulation that is the base for our simulations:
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F 1½%ðr; tÞ�
kBT

¼ C

Z
1

2
%ðr; tÞðr þ ð1þ DÞ2Þ%ðr; tÞ

þ 1

4
%ðr; tÞ4 þMð%ðr; tÞÞUðr; tÞdr

(10)
with C ¼ ð48%4Þ�1, Uðr; tÞ ¼ ðCkBTÞ�1V1ðr; tÞ which is the

transformed external potential and with Mð%Þ :¼ r ¼
ð1=2Þð3�ð%=%ÞÞr. This functional is strongly related to

the Swift–Hohenberg functional.[9] The evolution

equation of the simplified advected phase-field crystal

model (aPFC) reads:
r; tÞ þ r � ð%ðr; tÞuðrÞÞ ¼ r � g�1Mð%Þr dF 1½%ðr; tÞ�
d%ðr; tÞ

� �

� fMð%Þrmg
m ¼ ðr þ ð1þ DÞ2Þ%ðr; tÞ þ %ðr; tÞ3 þM0ð%ÞUðr; tÞ

(11)
with the diffusion constant G:¼ kB TCg�1.
Computational Results

Numerics

The evolution Equation (6 and 11) are discretized using

finite elements in space and a semi-implicit time dis-

cretization. For the standard PFC part we follow the

approach described in ref.[10] and extend the scheme by a

transport term and an external potential. The advection–

diffusion equation is discretized using a backward Euler

scheme. We use the adaptive finite element toolbox

AMDiS[11] to implement the equations.

Similar to the calculation of[2] an external potential of

exponential form ðkBTÞ�1V1ðrÞ ¼ a1 � expð� krkl

a
l
2

Þ is used,

where the parameters a1, a2, and l are chosen in such away

that the slope and interaction region depend on the colloid

and solvent-particle radius. This potential describes a soft

colloidal particle in the center of a domain. In our

simulations we have set:

l :¼
ln lnð2Þ�lnða1Þ

lnða1�2Þ�lnða1Þ

	 

lnðD=RÞ ; a2 :¼ D �ðlnð2Þ�lnða1ÞÞð Þ�1=l

for given a1:¼ 10 and R, D the radius of the colloid and the

interaction radius. For simplicity we set the diffusion

constant in the evolution equation to G¼ 1.
Validation

To validate the approach we use a simple configuration

with one colloidal particle fixed in the center of a

rectangular domain. The flow field is given by
0, 541–547
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Figure 1. Polymer density around a colloidal particle. Left: Phase-field crystal simulation
with R�¼0.6, c¼0.8 for the parameters r¼�0.1, % ¼ �0:3, right: advection–diffusion
simulation with R�¼0.6, c¼ 1.0 for parameter % ¼ �0:3. Light colors indicate high
density whereas dark colors indicate low density. The colloid in the center is visualized
as a gray ball.
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Equation (1). Figure 1 shows a solution of the advection–

diffusion and the advected PFC-equation for a fluid flowing

through the domain from left to right. The characteristic

first density wave can be seen in both simulations. The

studies of refs.[3,12] indicatemore thanone suchwave in the

interacting case as can be seen in their Brownian dynamics

simulations and dDFT calculations. For this reason we

assume that in the interacting case the wave like structure

in front of the obstacle ismore realistic than the single peak

observed in the simple diffusion case.

Proceeding from the qualitative comparison we now

follow[2] andanalyze thedependencyofdensity onboth the

radiusof the colloid, and thevelocityof thefluid, for thecase

of interacting and non-interacting particles. We use the

same analytic Stokes flow (1) with a far-field velocity

depending on the reference value c� :¼ c1D%=r, that we

refer to as the Peclet number. First the radius of the obstacle
Figure 2. Density-profile of solution with non-interacting particles
for different Peclet numbers c� of the fluid, at fixed radius R�¼0.6
of the obstacle.

Figure 3. Density
different Peclet n
the obstacle.
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is fixed at R=D ¼: R� ¼ 0:6, thus the

colloid is bigger than the polymer coils.

The size D represents the interaction

radius of the colloid, i.e., how close

polymer particles can approach the

obstacle boundary. The value can

be approximated by D¼ Rþ a/2,

where a ¼ 4p=
ffiffiffi
3

p
is the mean distance

between polymer particles (constant for

our choice of parametrization of the

energy), and can be obtained from the

one-mode approximation.[7,8] Figures 2

and 3 show the density profile with non-

interacting and interacting particles,
respectively.

The other relation of density to radius is plotted in

Figures 4 and 5, again for non-interacting and interacting

particles. Now the Peclet number is fixed at c�¼ 12. For radii

bigger than thepolymer coil radius, i.e.,R�> 0.5, the density

shows an additionalwave behind the obstacle, whereas for

smaller radii one cannot see such an effect.
Discussion

The difference between Figures 2 and 3 is the formation

behavior of the firstwave depending on the Peclet number.

Where the non-interacting simulation shows a big increase

of the firstmaximum for higher values c�, in the interacting

case this is far less pronounced.
-profile of solution with interacting particles for
umbers c� of the fluid, at fixed radius R�¼0.6 of

im
545



Figure 4. Density-profile of solution with non-interacting
particles for different radii R� of the obstacle, at fixed Peclet
number c� :¼ 12 of the fluid.
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For the interacting case, themaximum increases slightly

with increased c�, and the change is negligible on further

increase of c�. Behind the colloid, i.e., to the right of the

obstacle, the wave structure is also found. Because of the

compressibility of the polymer particles in the solvent,

the distance of the maxima in front of the colloid shrinks

slightly.

The comparison of Figures 4 and 5 goes in the same

direction. For higher velocities, i.e., lower values of R�, the

first maximum rises much more in the case of non-
Figure 5. Density-profile of solution with interacting particles for
different radii R� of the obstacle, at fixed Peclet number c� :¼ 12
of the fluid.

Macromol. Theory Simul.

� 2011 WILEY-VCH Verlag Gmb
interacting particles than in the case of interacting ones.

The interesting observation is the structure behind the

colloid. For radii R� less than 0.5, i.e., the colloidal radius is

less than the interaction radius of the polymers, the bow

wave does not show the oscillating structure, which can be

seen for larger radii. The wave is similar to the non-

interacting case.
Coupling with Navier–Stokes Equation

For more complex configurations of colloidal particles, an

analytic result for the flow field can no longer be used. We

therefore extend the model and couple the evolution

Equation (6 and 11) with a Navier–Stokes equation:
@tð’"u

j ¼ 1;

2011, 2
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@tuþ ðu � rÞu ¼ �rpþ hDu
r � u ¼ 0

(12)
with p the scaled pressure variable and h the kinematic

viscosity of the fluid. The problem has to be solved in a

domain excluding the colloidal particles. The colloids as

macroscopic objects in the flow field have an interaction

radius with the fluid approximately equal to R. For fixed

colloids the boundary conditions at the colloidal interface

are set to u¼ 0. Moving colloids, i.e., moving domain

boundaries, need special caution in numerical calculations.

We follow the diffuse domain approach in ref.[13] and

describe only the geometry implicitly using a phase-field

function we, which indicates the fluid domain by value 1

and the colloidal particles by value 0. Moving colloids can

simply be described by shifting the phase-field. A function

for the phase-field for one colloid with radius R in the

center of a domain can be expressed by a tanh formulation:

’"ðxÞ ¼
1

2
ð1�tanhð3="ðR�kxkÞÞÞ

where e defines the width of the diffuse interface and

R�kxkð Þ acts as a signed distance function that defines the

boundary as its zero level set and can be replaced by each

distance function with negative sign inside the domain.

For a set of colloidal particles with position coordinates ri
the phase-field can easily be adopted by replacing R�kxkð Þ
by a distance function d(x):

dðxÞ :¼ max
i

fR�kx�rikg

The diffuse domain Navier–Stokes equations read:
jÞ þ ’"u � ruj ¼ ’"rp�hr � ð’"rujÞ�
b

"3
ð1�’"Þðuj�gjÞ

. . . ; d r � ð’"uÞ ¼ r’" � g inV

(13)
subject to initial and boundary conditions. Thereby b is an

additional scaling factor for the penalty term incorporat-
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Figure 6. Five colloidal particles as macroscopic obstacles in polymer solution. Left:
Streamlines of fluid-particles flowing around the obstacles, red indicates high velocity,
blue low velocity. Right: Density profile of particles flowing around the colloids, light
colors indicate high densities, dark colors low densities.
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ing the Dirichlet boundary condition u ¼ gjcolloid boundary.

The approach has already been used and verified for flow

problems in ref.[14] and can also be used for situations in

which moving colloidal particles are considered. Figure 6

shows an example configuration with five fixed obstacles

in a channel with parabolic inflow profile. Analytic results

for the flow field could not be found and a numerical

approach for the calculation was necessary. The figure

illustrates the value of the coupling.
Conclusion

We have proposed a local approximation to the dDFT

formulation in ref.[2] The formulation provides an efficient

way to treat interacting Brownian particles in a flowing

solvent. Neglecting the hydrodynamic interactions

between the solute particles and between the solute and

colloid particles allows for an efficient coupling, in which

only the time derivative in the PFCmodel is replaced by the

total (material) timederivative. Theobtainedequation thus

provides an advected PFC model, which then is coupled

to a Navier–Stokes equation in a domain excluding the

spherical obstacles.

A quantitative comparison with the full adDFT simula-

tions in refs.[2,3] was not possible. Qualitatively the aPFC

simulations show wave structures similar to the results of

the authors above, but significantly more pronounced.

The influence of the both Peclet number of the fluid, and

radius of the colloidal particle was investigated, and

comparison was made between the PFC and diffusion–

advection models, for interacting and non-interacting

polymer particles in the solvent.

The aPFCmodel requiresmuch less computational effort

than full adDFT simulations, due to the locality of the

approach. Furthermore, coupling to the Navier–Stokes

equations can be done easily. This is encouraging for
www.MaterialsViews.com
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extension of the approach to include

colloid–colloid interactions inmore com-

plex configurations. The calculation of

depletion forces between two colloids

that are close to each other, so that

polymer particles do not fit between

them, is appealing and easily realizable

with the aPFC approach. Hydrodynamic

interactions between the polymer parti-

cles is often neglected but could possibly

alsobe included inthemodel, considering

that aweak coupling of aPFCandNavier–

Stokes is done already. We are presently

working on the inclusion of such inter-
actions.

We have demonstrated that the advected PFC model is a

suitable and computationally efficient method for the

study of the qualitative behavior of a multicomponent

system of polymer and colloidal particles, which influence

each other by direct or hydrodynamic interactions, in a

solvent.
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