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a b s t r a c t

A method is presented to solve two-phase problems involving soluble surfactants. The
incompressible Navier–Stokes equations are solved along with equations for the bulk
and interfacial surfactant concentrations. A nonlinear equation of state is used to relate
the surface tension to the interfacial surfactant concentration. The method is based on
the use of a diffuse interface, which allows a simple implementation using standard finite
difference or finite element techniques. Here, finite difference methods on a block-
structured adaptive grid are used, and the resulting equations are solved using a nonlinear
multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the
effect of solubility is discussed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The presence of surface active agents (surfactants) at fluid interfaces can have a considerable effect on flow dynamics.
Surfactants are amphiphilic organic compounds, which can be adsorbed at liquid/gas or liquid/liquid interfaces. The presence
of surfactant typically alters the interface dynamics by a reduction in the surface tension of the interface. An inhomogeneous
distribution of surfactants produces gradients in surface tension, which again gives rise to tangential forces along the
interface. Through this so-called Marangoni effect, surfactants can play an important role in several physical phenomena
such as vortex pair interaction (e.g., [1]), fingering (e.g., [2]), drop break-up and coalescence (e.g., [3–5]) and tip-streaming
(e.g., [6,4]).

From a numerical point of view, solving the problem of soluble surfactants is highly challenging. A coupled bulk/surface
system of equations must be solved on a moving, complex domain, where the domain boundary may stretch, break-up or
coalesce with other interfaces. Adsorption of mass to, and desorption of mass from, the interfaces poses another challenge.
. All rights reserved.
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Further, the surface concentration may only be soluble in either the exterior or interior of the domain (e.g., amphiphilic nat-
ure of surfactants). The available numerical methods for solving these problems can roughly be divided into two categories:
interface tracking and interface capturing methods. Interface tracking methods use either a separate grid for the interface, or
a set of interconnected points to mark the interface. For example, boundary integral methods use a surface mesh to track the
interface. In the context of surfactants, a boundary integral method for studying the effect of insoluble surfactants on drop
deformation was developed in [7]. This method was extended to arbitrary viscosity ratios in [8], to 3D in [9,4] and to soluble
surfactants in [10]. See the review [11]. Another tracking method is the front-tracking method (see the review [12]), where a
fixed grid is used to compute the flow, while a set of connected marker particles is used to track the interface and any inter-
facial quantities. A front-tracking method for insoluble surfactants was developed in [13], and this method was extended to
handle soluble surfactants in [14,15]. A related front tracking method is the immersed boundary method (see the review
[16]), which was recently used to simulate interfacial flows with insoluble surfactants using a surfactant-conserving algo-
rithm [17]. A ghost-cell immersed boundary method was introduced in [18], and was used to study the effects of a diffusion
controlled surfactant on a viscous drop injected into a viscous medium [19]. A hybrid level-set/front-tracking approach was
used to study the dynamics of capillary waves with insoluble surfactant [20]. Another front-tracking method which com-
bines a finite element methodology with adaptive body-fitted meshes was used to simulate the deformation and break-
up of axisymmetric liquid bridges [21] and thin filaments [22] with insoluble surfactants. Very recently, Booty and Siegel
[23] developed a hybrid numerical method to simulate bubbles in Stokes flow by combining a boundary integral method
with a fixed grid solution of the bulk surfactant equation (using a mapped domain) that incorporates a singular perturbation
analysis to account for the rapid variation of the bulk surfactant concentration near the interface when the bulk Peclet num-
ber is large. In general, interface tracking methods can be made very accurate but can be relatively complicated to imple-
ment, especially in three dimensions and for problems involving topological changes.

In interface capturing methods, the interface is not tracked explicitly, but instead is implicitly defined through an auxill-
iary function (e.g., level-set, color or phase-field function). This means that the solution of the problem can be done indepen-
dently of the underlying grid, which greatly simplifies gridding, discretization and handling of topological changes. For
example, a volume-of-fluid (VOF) method (see the review [24]) for insoluble surfactants was developed in [25]. A more gen-
eral method which allows nonlinear equations of state for surface tension was later developed in [26]. Very recently, a VOF
method was developed for soluble surfactants in the limit of large sorption rates where there is an analytic relationship be-
tween the surface and bulk concentrations at the interface [27]. A level-set method [28] for solving the surfactant equation
was presented in [29], and later coupled to an immersed-interface external flow solver in [30]. See the review [31] for fluid
dynamics applications. An alternative approach for simulating fluid interfaces with insoluble or soluble surfactant was
developed in [32,5,33], using the so-called Arbitrary Lagrangian–Eulerian (ALE) method (see the review [34]) together with
a coupled level-set and volume of fluid method. Very recently, surfactant dynamics was simulated using a conservative
smoothed particle hydrodynamics algorithm [35].

The diffuse-interface, or phase-field, method represents yet another approach for simulating solutions of equations in
complex, evolving domains (see the reviews [36,37]). In this method, which we follow here, the complex domain is repre-
sented implicitly by a phase-field function, which is an approximation of the characteristic function of the drop or matrix
fluid domain. The domain boundary is replaced by a narrow diffuse interface layer such that the phase-field function rapidly
transits from one inside the domain to zero in the exterior of the domain. The boundary of the domain can thus be repre-
sented as an isosurface of the phase-field function. The bulk and surface PDEs are then extended on a larger, regular domain
with additional terms that approximate the adsorption–desorption flux boundary conditions and source terms for the bulk
and surface equations respectively. Standard finite-difference or finite-element methods may be used. Here, we focus on a
finite difference approach.

The diffuse interface method, which has a long history in the theory of phase transitions dating back to van der Waals
(e.g., [38,36,37]), has been used to simulate multiphase flows in simple geometries including drop coalescence and break-
up, electrowetting, and viscoelasticity (e.g., [39–47]). In [48], a diffuse interface model is implemented using a lattice Boltz-
mann scheme to simulate the effect of surfactant adsorption on droplet dynamics; preliminary simulations were performed.
The interaction of multiphase flows with complex boundaries has also been investigated using the diffuse interface method
including contact line dynamics and the effect of wetting (e.g., [49–51]). More generally, diffuse interface methods have been
developed for solving PDEs on stationary surfaces [52], evolving surfaces [53–56] and for solving PDEs in complex stationary
[57–59] and evolving domains with Dirichlet, Neumann and Robin boundary conditions [60]. Extending previous work [58],
in [61] it was shown how to solve the coupled bulk/surface problem on general, evolving domains with the diffuse interface
method.

Here, we couple the diffuse interface approach from [61] with the solution of the Navier–Stokes equations, and use the
method to simulate a drop in shear flow in the presence of a soluble surfactant. The method is very simple compared to pre-
vious methods, and can handle advection, diffusion and adsorption/desorption in a straightforward manner. The use of a
nonlinear multigrid method and block-structured, adaptive grids also make the method computationally efficient. Results
are presented for a drop in shear flow in both 2D and 3D, and the effect of surfactant solubility is discussed. As observed
by Milliken and Leal [10] in the context of drop deformation in extensional flows, solubility mitigates many of the surfactant
effects by making the surface concentration more uniform. In particular, while an insoluble surfactant can immobilize a sur-
face, solubility may remobilize the surface due to surfactant exchange with the bulk.
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The paper is organized as follows. In Section 2, the mathematical formulation of the problem is stated. The governing
equations for the interfacial surfactant and the bulk surfactant are introduced, and the interface representation is presented.
Section 3 then details the numerical implementation of the mathematical formulation and Section 4 presents some valida-
tion test cases of the method. In Section 5, a drop in shear flow is studied in detail and the effect of solubility discussed. Fi-
nally, Section 6 provides conclusions and discusses future work.

2. Mathematical formulation

2.1. Governing equations

Consider a domain X � R2;3, which contains a closed interface, C. The interior of the interface is X0 �X, and the exterior
is X1 �X. See Fig. 1 for an illustration.

We assume that the flow inside the domain X is governed by the incompressible Navier–Stokes equations, which in
dimensional form are
q�
@u�

@t
þ ðu� � $Þu�

� �
¼ �$p� þ $ � l�ð$u� þ $ u�ð ÞTÞ

� �
þ F�;

$ � u� ¼ 0:
ð1Þ
where q is the density, u* is the velocity, p* is the pressure, l is the dynamic viscosity, and F* is the interfacial force, given
below in Eq. (5). The density and viscosity can be discontinuous across the interface. We will only consider cases where the
densities and viscosities are equal in the two phases in this work, but the discontinuity can in general be handled by inter-
polating their values using an indicator or characteristic function v that varies from 0 to 1 across the interface (characterising
function of X1), such that
l� ¼ l0ð1� vÞ þ l1v; ð2Þ
q� ¼ q0ð1� vÞ þ q1v: ð3Þ
In practice, v may be smoothed so that the transition from 0 to 1 is steep but finite. An example of a smoothed characteristic
function is given in Section 2.3. Using a phase-field function c as described in Section 2.3, the governing equations can then
be reposed following either the approach of Ding et al. [47] where the volume-averaged velocity is used or Lowengrub and
Truskinovsky [38] where the mass-averaged velocity is used (see also [62,63]).

We consider the deformation of an initially circular drop of radius a, placed in a shear flow of shear rate _c. Choosing L ¼ a
as the length scale and T ¼ _c�1 as the time scale, and U ¼ _ca as the velocity scale, the nondimensional Navier–Stokes equa-
tions can be written as
@u
@t
þ ðu � $Þu ¼ �$pþ 1

Re
$2uþ 1

ReCa
F;

$ � u ¼ 0;
ð4Þ
where Re ¼ q1 _ca2=l1 is the Reynolds number, which measures the relative strength of the inertial and viscous forces, and
Ca ¼ l1 _c=r0 is the Capillary number which measures the relative strength of the viscous and surface tension forces, where
r0 is the surface tension of a clean drop. The influence of these parameters on a clean interface has been extensively studied
Fig. 1. Illustration of the mathematical domain.
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in the literature (e.g., [64–67]). For example, as the capillary number is increased, the drop will become increasingly elon-
gated. There exists a critical capillary number, above which the drop will no longer attain a steady shape, but continue to
stretch until it breaks into smaller droplets. The value of the critical capillary number increases with increasing Reynolds
numbers and viscosity ratios k = l0/l1. Larger viscosity ratios serve to reduce the deformation, and for creeping flow there
exists a limit where there is no critical capillary number. However, for flows with higher Reynolds numbers, break-up may
still occur, due to inertial forces. In this work, we will only consider flows with moderate Reynolds numbers and viscosity
ratios.

The interface force F* is given by
F� ¼ $ � ððI� n� nÞr�dCÞ: ð5Þ
Here, r* is the interfacial tension, I is the identity tensor and n is the outward pointing unit normal vector. dC is a regularized
delta function, to be defined in Section 2.3. Alternately, one may write
F� ¼ �r�jdCnþ ð$sr�ÞdC; ð6Þ
where j is the total curvature and $s ¼ ðI� n� nÞ$ is the surface gradient operator. The first term on the right hand side is
the normal surface tension force, while the second is the tangential (Marangoni) force, which appears due to non-uniform
surface tension.

Next, we assume that the interface is covered by surfactants, and we let f* denote the dimensional surfactant concentra-
tion defined on C. The presence of a surfactant will decrease the surface tension of the interface. We assume that the depen-
dence of the surface tension is governed by the Langmuir equation of state,
r�ðf �Þ ¼ r0 1þRTf1
r0

ln 1� f �

f1

� �� �
; ð7Þ
where R is the ideal gas constant, T is the absolute temperature, r0 is the surface tension of a clean interface and f1 is the
maximum interfacial surfactant concentration. Let fe denote the average of f* at time t = 0. We define f = f*/fe to be the dimen-
sionless surfactant concentration, which gives the dimensionless surface tension
rðf Þ ¼ 1þ b lnð1� xf Þ; ð8Þ
where b ¼ RTf1=r0 is the elasticity number and x = fe/f1 is the dimensionless surfactant coverage. The elasticity number is a
measure of the sensitivity of the surface tension to the surfactant concentration, and thus a larger elasticity number in-
creases the deformation. In this definition, b is independent of x, see [68].

For low surfactant concentrations, Eq. (8) can be simplified to
rðf Þ ¼ 1� bxf ; ð9Þ
which is known as the linear equation of state. These two expressions are compared in Fig. 2. We see that the expressions are
similar for low surfactant concentrations, but deviate significantly for higher concentrations. Also note that for large elastic-
ity numbers and surfactant concentrations close to 1/x, the nonlinear equation of state may give unphysical (negative) values
of surface tension. In [15], a minimum surface tension was introduced to alleviate this problem. However, in [69], it was ar-
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Fig. 2. Dependence of surface tension on surfactant concentration. Comparison of a linear and nonlinear equation of state. b = 0.3, x = 0.5.
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gued that high elasticity numbers rarely occur in real systems. We use Eq. (8) directly for all the simulations in this work and
do not encounter negative surface tension.

In [70], the sharp-interface representation of the surfactant mass balance equation is
df �

dt
� u� � $sf � þ f �ðu� � nÞð$s � nÞ ¼ �$s � ðf �u�s Þ þ Df $

2
s f �; ð10Þ
where d
dt is the material derivative, u�s ¼ ðI� n� nÞu� is the tangential velocity, Df is the diffusion coefficient, and j* is the

source term. Assuming that f* may be extended off C, the time derivative term can be changed to
df �

dt
¼ @f �

@t
þ u� � $f �: ð11Þ
Since
�u� � $sf � ¼ �u� � $f � þ ðu� � nÞn � $f �; ð12Þ

f �ðu� � nÞð$s � nÞ ¼ jf �u� � n; ð13Þ

$s � ðf �u�s Þ ¼ u� � $f � � ðu� � nÞu � $f � � jf �u� � n� f �n � $u� � n; ð14Þ

$2
s f � ¼ ðI� n� nÞ$ � ðI� n� nÞ$f � ¼ $2f � � n � $$f � � n� jn � $f �; ð15Þ
Eq. (10) is equivalent to
@f �

@t
þ u� � $f � � f �ðn � $u� � nÞ ¼ Df ð$2f � � n � $$f � � n� jn � $f �Þ þ j�: ð16Þ
The source term, j*, is given by
j�ðf �; F�Þ ¼ raF�s ðf1 � f �Þ � rdf �; ð17Þ
where ra and rd are adsorption and desorption coefficients, respectively, and F�s is the bulk surfactant concentration imme-
diately adjacent to the surface. For dilute concentrations, this can be simplified to
j�ðf �; F�Þ ¼ raf1F�s � rdf �: ð18Þ
In this work, we use the full nonlinear form in Eq. (17).
Now, assume that f* is soluble in X1, but not in X0. The bulk concentration, F*, in X1, evolves according to
@F�

@t
þ $ � ðF�u�Þ ¼ DF$

2F� in X1; ð19Þ
with the boundary condition at C
DF$F� � n ¼ �j� on C: ð20Þ
The equation for the surface surfactant concentration, Eq. (16), can be extended to the general domain X by introducing a
surface delta function, dC, such that
Z

C
f � dC ¼

Z
X

f �dC dX: ð21Þ
Using that (e.g., [26])
@tdC þ u � rdC ¼ �ðn � ru � nÞdC;
Eq. (16) can be rewritten in distribution form as [61]
@

@t
ðf �dCÞ þ $ � ðf �dCu�Þ ¼ Df $ � ðdC$f �Þ þ dCj�; ð22Þ
where it is understood that f* is extended as a constant in the normal direction off the interface. Note that in the diffuse inter-
face reformulation of Eq. (22) this is indeed the case to leading order in the interface thickness [61]. The formulation given by
Eq. (22) is considerably simpler than the sharp-interface formulation.

Similarly, the bulk concentration Eq. (19) can be extended to X by using the characteristic function v
v ¼
1 in X1;

0 in X0:

�
ð23Þ
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In distribution form, Eq. (19) becomes
@

@t
ðvF�Þ þ $ � ðvF�u�Þ ¼ DF$ � ðv$F�Þ � dCj�; ð24Þ
where the boundary condition has been included using the approach from [60,61].
Let F = F*/Fe be the dimensionless surfactant concentration in the bulk fluid, where Fe average of the initial bulk concen-

tration. Then, Eqs. (22) and (24) can be written in dimensionless form as
@

@t
ðf dCÞ þ $ � ðf dCuÞ ¼ 1

Pef
$ � ðdC$f Þ þ dCj; ð25Þ

@

@t
ðvFÞ þ $ � ðvFuÞ ¼ 1

PeF
$ � ðv$FÞ � hdCj; ð26Þ
where Pef ¼ _ca2=Df is the surface Peclet number, PeF ¼ _ca2=DF is the bulk Peclet number and h = fe/(aFe) is the adsorption
depth. The dimensionless source term, j, is given by
jðF; f Þ ¼ Bi kFs
1
x
� f

� �
� f

� �
: ð27Þ
The dimensionless parameters are Bi ¼ rd= _c (Biot number) and k = raFe/rd (adsorption number). In our simulations, we as-
sume that fe and Fe are in equilibrium such that j*(fe,Fe) = 0. Consequently, the following relations hold:
k ¼ x
1� x

; ð28Þ

h ¼ raf1
rda
ð1� xÞ: ð29Þ
An insoluble surfactant may be characterized by Bi = 0. The Biot number is the ratio of the desorption rate to the interfacial
surfactant convection due to shear. For large Biot numbers, there is strong coupling between the surface and the bulk.

2.2. Interface representation

To represent the interface implicitly, we may either use a level-set function or a phase-field function. For example, taking
r(x, t) to be a signed distance function from C to x, the interface C is the r = 0 isosurface. Alternatively, using a phase field
function c, which is 1 in X0 and 0 in X1, we may define CðtÞ ¼ fx 2 Xjcðx; tÞ ¼ 1

2g. We follow the latter here and evolve
the phase field function using an advective Cahn–Hilliard equation
@c
@t
þ $ � ðcuÞ ¼ $ � ðMðcÞ$lcÞ; ð30Þ

lc ¼ g0ðcÞ � e2$2c; ð31Þ
where M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð1� cÞ2

q
is a mobility function, and g = c2(1 � c)2/4 is a double well potential. The function lc is called the

chemical potential and e is a small parameter related to the interface thickness. Note that the above equation system is
fourth-order and nonlinear, which requires specialized numerical methods to solve in an efficient manner. Note that for
small e, the following relation holds near C
cðx; tÞ � 1
2

1� tanh
rðx; tÞ
2
ffiffiffi
2
p

e

� �� �
: ð32Þ
2.3. Regularized delta and characteristic functions

To be able to evaluate Eqs. (3), (25) and (26) numerically, regularizations of the surface delta function and characteristic
function are needed. In the phase-field context, several definitions of the delta function are available from the literature. In
this work, the approximation from [52],
dC � BðcÞ ¼ 3
ffiffiffi
2
p

e
c2ð1� cÞ2; ð33Þ
is used for the surface equation. For the surface tension term and the boundary condition in the bulk equation, the
approximation
dC � j$cj ð34Þ
is used. This is to avoid any scaling of the equations. Note that in the surface Eq. (25), the constants in Eq. (33) cancel out in
the discretized equations.
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The regularized characteristic function, is simply taken as [60]
v � 1� c: ð35Þ
In [61], it was shown that the regularized equations for the interfacial surfactant and the bulk surfactant converge to the
sharp interface equations in the sharp interface limit.

3. Numerical methods

This section briefly describes the numerical methods used to solve the above equations. The algorithm follows that devel-
oped in [71]. In particular, the equations are discretized using finite differences in space and a semi-implicit time discreti-
zation. All variables are defined at cell-centers. A block-structured, adaptive grid is used to increase the resolution around the
interface in an efficient manner. The nonlinear equations at the implicit time level are solved using a nonlinear Adaptive Full
Approximation Scheme (AFAS) multigrid algorithm.

Special care has to be taken for the temporal discretization. The Cahn–Hilliard system is fourth order in space, and re-
quires the use of an implicit method to avoid severe limitations in the time step. Here, we employ a combination of explicit
Adams–Bashforth schemes for the convective terms and implicit Crank–Nicholson schemes for other terms.

First, the Cahn–Hilliard system is solved to find the phase-field function at the new time step. This is solved using
ckþ1 � ck

Dt
¼ �$ � ucð Þkþ

1
2 þ 1

2
$d � ðMkþ1$dlkþ1

c Þ þ $d � ðMk$dlk
cÞ

� �
; ð36Þ

lkþ1
c ¼ g0ðckþ1Þ � e2$2

dckþ1: ð37Þ
The operator $d represents the standard, second-order, finite-difference discretization. The convective terms of the form,
$ � ðu/Þ, are discretized using the third-order WENO reconstruction method [72,73]. The WENO reconstruction method
has the advantage that it handles steep gradients well, which may occur in the type of dynamics described in this work.
Additionally, fewer grid points are needed to achieve a high order solution. This is particularly important for the efficiency
of the adaptive grid, because fewer ghost cell values have to be calculated at the boundaries of each grid block.

The velocities and concentration at the half-step are found by extrapolation, ukþ1
2 ¼ 1

2 ð3uk � uk�1Þ and ckþ1
2 ¼ 1

2 ð3ck � ck�1Þ.
The velocities at the cell-edges are needed to construct the convective term. These are found by
uiþ1
2;j
¼ ui;j þ uiþ1;j

2
�Wiþ1;j �Wi;j

h
; ð38Þ

v i;jþ1
2
¼ v i;j þ v i;jþ1

2
�Wi;jþ1 �Wi;j

h
; ð39Þ
where W is the MAC projection found by solving
$2
dW ¼ $c

d � ukþ1
2; ð40Þ
withrW�n = 0 on oX (assumed to be along Cartesian directions). In the AFAS nonlinear multigrid method used to solve Eqs.
(36), (37), the nonlinear term in the chemical potential equation, g0(ck+1), is linearized in the smoother (local linearization) by
g0ðcmÞ � g0ðcm�1Þ þ g00ðcm�1Þðcm � cm�1Þ; ð41Þ
where m is the V-cycle iteration index. See [71] for details.
Next, the surfactant concentration on the surface and in the bulk at the new time step is found. Because of the regularized

delta functions and characteristic functions, no special treatment of these equations are needed. We use the method from
[61], and solve
ðBf Þkþ1 � ðBf Þk

Dt
¼ �$ � ðuBf Þkþ

1
2 þ 1

2Pef
$d � ðBkþ1$df kþ1Þ þ $d � ðBk$df kÞ
� �

þ 1
2
ððBjÞkþ1 þ ðBjÞkÞ; ð42Þ

ðvFÞkþ1 � ðvFÞk

Dt
¼ �$ � ðuvFÞkþ

1
2 þ 1

2PeF
ð$d � ðvkþ1$dFkþ1Þ þ $d � ðvk$dFkÞÞ � 1

2
$dckþ1


 

ðhjÞkþ1 þ $dck



 

ðhjÞk
� �

: ð43Þ
as a coupled system, where we use v = 1 � c. The source terms at the new time step are lagged in the V-cycle of the multigrid
algorithm [61], i.e. jk+1 � jk+1,m�1 where m is the V-cycle iteration index. This did not degrade the multigrid performance, the
residual is typically reduced by an order of magnitude for each iteration.

The Navier–Stokes equations are solved using a second-order projection method. The details can be found in [74,75,45].

3.1. Mesh adaptivity

We use block-structured, adaptive mesh refinement to increase the resolution around the interface in an efficient man-
ner. Near the interface, patches of overlapping, uniform, Cartesian grids are applied.
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At every time step, we check grid cells for refinement using a simple undivided gradient test. Since it is essential for our
problem to have a fine resolution in the diffuse interface region, this test marks grid cells where the finite difference of the
phase-field function is large. In particular, we mark a cell for refinement if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðciþ1;j � ci�1;jÞ2 þ ðci;jþ1 � ci;j�1Þ2Þ
q

> Ck; ð44Þ
where Ck is the tolerance for level k. We note that more sophisticated refinement criteria could also be applied. For instance,
[76] used a criteria based on curvature and vorticity with a level-set method. It may also be important to refine where finite
differences of f and F are large; in particular this is needed when Pef and/or PeF are large. After the cells are marked for refine-
ment, they are grouped together into rectangular patches, and populated with data from the old grid. For a detailed discus-
sion of all the aspects of the adaptive algorithm, the reader is referred to [71].

4. Code validation

In this section, three test cases are presented to validate the proposed numerical method. Because the bulk/surface cou-
pling was thoroughly tested in [61], we will here focus on validating the flow solver and the coupling between the flow sol-
ver and the surfactant concentration.

In the numerical implementation, surface quantities are defined at grid points near the interface. To find values on the
interface, we use a marching squares algorithm (see e.g., [77]) to generate a set of points on the 0.5 isocontour of the
phase-field function. Bilinear interpolation is then used to interpolate the grid values of the surface concentration to these
interface points.

4.1. Oscillations of a capillary wave

First a two-phase system without surfactants is considered to test the Navier–Stokes solver and the adaptive grid algo-
rithm. The test problem is the damping of a sinusoidal, capillary wave. For the case of small amplitudes and matched vis-
cosities, an analytical solution for the amplitude was found in [78].

The frequency of a wave with wavenumber k = 2p/k, where k is the wave length, is given by
x2
0 ¼

rk3

q0 þ q1
: ð45Þ
Assuming the amplitude is small, the analytical solution for the amplitude a(t) is given in dimensional form by
aðtÞ ¼ 4ð1� 4bÞk4m2

8ð1� 4bÞk4m2 þx2
0

a0erfc mk2t
� �1=2

þ
X4

i¼4

zi

Zi

x2
0a0

z2
i � mk2 � _a0

 !
exp ðz2

i � mk2Þt
h i

erfcðzit1=2Þ; ð46Þ
where the zi’s are the four roots of the algebraic equation
z4 � 4bðk2mÞ1=2z3 þ 2ð1� 6bÞk2mz2 þ 4ð1� 3bÞðk2mÞ3=2zþ ð1� 4bÞk4m2 þx2
0 ¼ 0 ð47Þ
and Zi = (z2 � z1)(z3 � z1)(z4 � z1) with Z2, Z3, Z4 obtained by circular permutation of the indices. Further, b is given by
b ¼ q0q1

ðq0 þ q1Þ
2 : ð48Þ
Here, we will consider a computational domain given by a unit square box, with an interface given by
y ¼ 0:5� 0:01 cosð2pxÞ: ð49Þ
We choose dimensional variables q0 = q1 = 18.3, l0 = l1 = 0.078 and r = 1.0, giving x2
0 ¼ 6:778. Periodic boundary conditions

are used in the horizontal direction, no-slip boundary conditions are imposed on the upper and lower boundaries, and an
interface thickness parameter of e = 5 � 10�3 is used along with a time step of Dt = 5 � 10�3.

The initial condition is shown in Fig. 3 (left). An adaptive grid with 16 � 16 grid points at the root level and three levels of
mesh refinement are used (hmax = 6.25 � 10�2 and hmin = 7.8125 � 10�3). There are 8–10 grid points across the interface
layer. Fig. 3 (right) shows the evolution of the amplitude compared to the analytical solution. The numerical method is
clearly capable of accurately simulating the oscillatory behavior.

4.2. Rising drop in a linear surfactant gradient

In [79], an approximation for the rise velocity of a viscous drop in a linear temperature gradient was found. This approx-
imation is used here to test the implementation of the Marangoni stresses. Instead of a temperature gradient, the interfacial
surfactant concentration is assumed to vary linearly in the vertical direction.

In dimensional variables, consider an axisymmetric drop of radius R in a channel of radius 5R and height L = 15R. Let the
interfacial surface concentration be given by
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f ðzÞ
f1
¼ z

L
; ð50Þ
and the relationship between surfactant and surface tension as
rðzÞ ¼ rs 1� b
f ðzÞ
f1

� �
; ð51Þ
then an approximation for the terminal rise velocity is [79]
VYBG ¼
2ðrsbsR=L� DqgR2ðl0 þ l1Þ=l1

ð6l0 þ 9l1Þ
: ð52Þ
We choose dimensional parameters q0 = q1 = 0.2, l0 = l1 = 0.1, R = 0.5, rs = 1.0 and bs = 1.0. According to Eq. (52), this should
give a Reynolds number of Re = 0.0889, which is well within the creeping flow regime for which the equation is valid.

Because of the relatively large domain needed to keep the boundary conditions from interfering with the solution, this
test case lends itself very well to an adaptive grid. Here, a root level grid spacing of hmax = 5/64 = 7.8125 � 10�2 is chosen
with three levels of refinement hmin = 5/512 = 9.76 � 10�3. The number of nodes is approximately 9000 throughout the sim-
ulation, compared to the 196608 nodes needed for a uniform grid. An interface thickness parameter of e = 6.0 � 10�3 is used
(8–10 grid points across the interface), and the time step is Dt = 5.0 � 10�4. The rise velocity is calculated by
V ¼
R

X cðx; tÞuðx; tÞ � ez dXR
X cðx; tÞdX

; ð53Þ
where ez is the unit vector in the z-direction. This integral was evaluated using the midpoint rule.
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The velocity field around the drop at steady state is shown in Fig. 4 (left). The figure is in good agreement with the cor-
responding Fig. 10a in [15]. Fig. 4 (right) shows the normalized rise velocity. After an initial acceleration phase, the velocity
approaches the theoretical prediction asymptotically.

Assuming the pressure in the surrounding fluid is zero, the pressure inside the drop is given by
pðzÞ ¼ 2rðzÞ
R

: ð54Þ
Fig. 5 shows a closeup of pressure contours inside the drop (left), and the pressure along the vertical center line compared to
the analytical result (right). Good agreement is observed.

4.3. Drop stretching in linear flow

In [7], an expression was presented for the deformation of a surfactant-covered drop in the creeping flow limit under the
assumptions Ca	 1, Pef	 1 and k = O(1). This can be written as
D ¼ L� B
Lþ B

� 3Ca � br

4þ Ca � br
; ð55Þ
where L and B denote the drop extension along the z and x axes, respectively, and the coefficient br is given by
br ¼
ð80þ 95kÞ þ 4bPef

Cað1�bÞ

40ð1þ kÞ þ 2bPef

Cað1�bÞ

: ð56Þ
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Here, we simulate a 3D drop in a velocity field given by u = (�x,�y,2z), with varying Ca. The viscosity ratio is set to k = 1 and
the surfactant parameters are Pe = 0.1 and b = 0.5. Due to symmetry, we only simulate one octant of the drop, and the do-
main size is 4R � 4R � 4R. We use an adaptive mesh with three levels of adaptivity, where the finest level has grid spacing
h = 1/64. The interface thickness parameter is e = 0.025.

Fig. 6 shows the simulated results together with small deformation theory and results from [7]. We see that there is good
agreement with the theory at low Ca and then the discrepancy gets larger at higher Ca. Our results are also in good agree-
ment with the boundary-integral simulations of [7].

5. Influence of soluble surfactant on drop deformation and break up in shear flow

In this section, we consider the deformation of an initially circular drop placed in a shear flow. We begin by presenting 2D
results. The (nondimensional) computational domain chosen for the simulations is a rectangular domain of size 12 � 4. The
nondimensional velocity, u = y is imposed on the upper and lower boundaries, and periodicity is assumed in the horizontal
direction. In effect, we are simulating an infinite array of drops placed 8 units (in drop radii) apart. The root level grid spacing
is hmax = 1/16, and three levels of refinement are used (hmin = 1/128), unless otherwise specified. The interface thickness
parameter is e = 1/160, and we choose a time step of 1 � 10�3. There are approximately 8–10 grid points across the interface
layer. We use Ca = 0.5, Re = 1.0, viscosity ratio k = 1.0, and Pef = 10 for all simulations unless otherwise noted.

5.1. Insoluble surfactant

First, we compare the evolution of a clean drop with a drop covered with insoluble surfactant using Bi = 0. We take b = 0.3,
x = 0.5 and the initial surfactant distribution to be uniform: fjt=0 = 1.0.

Fig. 7 shows the morphology of a clean drop and an insoluble surfactant-covered drop at times 0, 4 and 8. As expected, the
surfactant-covered drop exhibits a larger deformation and rotates faster due to the lower surface tension. Fig. 8 shows the
surface quantities surfactant concentration, surface tension, capillary force and Marangoni force as a function of arc length s
at times 0, 4 and 8. The point s = 0 corresponds to the point y = 0 on the right side of the drop and s increases counterclock-
wise along the drop. The capillary forces are calculated as � 1

Ca rj, while the Marangoni forces are calculated as 1
Ca $sr � t,

where t is the unit tangential vector. Surfactant is swept to the drop tips, which lowers the surface tension. This reduces
the drop the resistance to stretching. Correspondingly, the drop thins, elongates and rotates. The capillary forces reach a
maximum at the tips due to the high curvature. The presence of surfactant does not alter the capillary forces significantly,
but does lower the forces near the tips (not shown). Due to symmetry, the Marangoni forces are zero at the drop tips. Near
the tips, the Marangoni force has local maxima and minima. The maxima occur on the upper part of the drop interface near
the right tip and on the lower part of th interface near the left tip. The minima occur on the lower region near the right tip
and the upper region near the left tip. The velocity near the maxima is larger, which leads to increased surfactant convection
and thereby larger surface tension gradients.

A common problem with interface capturing methods is that they do not exactly conserve mass. In the above simulation,
there is about a 0.3 % loss of surfactant mass throughout the simulation. The mass is measured by evaluating mf ¼

R
X Bf dX

using the midpoint rule. In [30], a simple mass correction scheme was used where the surfactant is multiplied by a constant
to preserve mass. This scheme could also be easily adapted to our approach. The mass loss for the phase-field concentration
was only 5.6 � 10�5% (measured by the total integral

R
X c dX using the midpoint rule).

5.2. Soluble surfactant

We next investigate the effect of surfactant solubility. We again take b = 0.3, x = 0.5, and the initial surface surfactant dis-
tribution to be uniform: fjt=0 = 1.0. The adsorption number is k = 1.0 and the adsorption depth is h = 0.5. We take the drop to
be in equilibrium with the bulk at the start of the simulation, i.e. jjt=0 = 0, which gives the initial bulk concentration Fjt=0 = 1.0.
We vary the Biot number and the bulk Peclet number.
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5.2.1. Influence of Biot number
We first set the bulk Peclet number PeF = 1, and vary the Biot number. The morphology of the drops for varying Biot num-

bers is shown in Fig. 9. The inner (magenta) drop corresponds to Bi = 0 and the outer drop (black) corresponds to Bi =1,
simulated by enforcing f = 1 throughout the simulation. The drop deformation is an increasing function of Bi. The reason
for this is that surfactant adsorption/desorption decreases the surface tension gradients and hence Marangoni forces. If
the Biot number tends to infinity, the surface surfactant should be uniform and the Marangoni force vanishes.

This is further elucidated in Fig. 10. The left column of Fig. 10 shows the surfactant concentration, the surface tension, the
capillary force and the Marangoni force at t = 4. We see that by increasing the Biot numbers, the surfactant concentration
becomes more uniform. This leads to lower surface tension gradients and thereby lower Marangoni forces, which enables
the drop to deform more. The capillary force is dominated by the curvature, and remains largely unaffected by the variation
in surface tension.

The right column of Fig. 10 shows the bulk concentration at t = 4. It is evident that a larger Biot number leads to a faster
depletion of bulk surfactant due to the higher adsorption at the interface. At the drop tips, there is desorption of surfactant
off the interface leading to increased surfactant concentration in the bulk. Also note that the change in dynamics from Bi = 1
to Bi = 10 is not as significant as the change from Bi = 0.1 to Bi = 1. This is because the bulk diffusion is not large enough to
maintain a high adsorption/desorption rate. The process has become diffusion-limited.
5.2.2. Influence of Peclet number
Next, we examine the effect of the bulk Peclet number PeF. The Biot number is Bi = 1. Fig. 11 shows the morphology of the

drops for varying Peclet numbers. The deformation is larger for smaller Peclet numbers since stronger diffusion in the bulk
enables the redistribution of bulk surfactant to maintain a more uniform bulk distribution. This in turn supports a larger rate
of surfactant adsorption along the drop sides that keeps the surface surfactant concentration more uniform and thus de-
creases the Marangoni force.
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The left column of Fig. 12 shows the surfactant concentration, the surface tension, the capillary force and the Marangoni
force at t = 4. Again, we see that the surface surfactant concentration becomes more uniform due to the mass transfer process
when the Peclet number is smaller, thereby decreasing the Marangoni forces. However, the effect is most pronounced away
from the drop tips. At the drop tips, the surfactant concentration (surface tension and Capillary force) are somewhat insen-
sitive to PeF because convection is relatively more important here than on the sides. In particular, at the sides surfactant is
adsorbed to the interface, then swept by convection towards the tips, leaving room for more adsorption along the sides. This
depletes the bulk concentration near the sides but at the tips, there is increased bulk concentration above F1 = 1 because
surfactant desorbs to the bulk. A small Peclet number is needed to redistribute bulk surfactant to maintain a more uniform
bulk distribution and thus a high adsorption rate along the drop sides. In fact, when the Peclet number is small, the adsorp-
tion rate is not large enough to adsorb all the available bulk surfactant. Thus the differences between the results from
PeF = 0.1 to PeF = 1 are less pronounced than the differences from PeF = 1 to PeF = 10. This is because the process becomes
adsorption-limited for small Peclet numbers.

This is further illustrated in Fig. 14, which shows the source term j for the three Peclet numbers. Away from the drop tips, j
is positive, which means that surfactant is transported from the bulk to the interface. At the tips, the transportation is re-
versed due to the accumulation of surfactant here. For a high Peclet number, the mass transfer is lower, because the bulk
diffusion is not large enough to transport desorbed surfactant away from the interface or to replenish surfactant adsorbed
to the interface. This effect is even more pronounced when the Peclet number is significantly increased to PeF = 1000 as seen
in Fig. 13. At this large Peclet number, a narrow boundary layer of depleted bulk surfactant is observed along the drop sides
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while the bulk concentration is significantly increased near the drop tips. In order to simulate this case, another level of
refinement is required such that hmin = 1/256 and in addition the mesh is refined where the undivided gradient of F is suf-
ficiently large; the finest mesh covers the surfactant boundary layer. The thickness of the surfactant boundary layer along the



Table 1
Error in L2 norm and convergence rate for the fluid velocities and the surfactant concentrations.

Grid ku � urefk2(�10�2) Rate kv � vrefk2(�10�1) Rate

1/16 4.03 - 8.49 -
1/32 1.84 1.13 5.20 0.71
1/64 0.503 1.87 1.57 1.73
1/128 0.0754 2.74 0.203 2.95

kf � frefk2(�10�1) Rate kF � Frefk2(�10�1) Rate

1/16 2.93 - 5.96 -
1/32 2.23 0.39 3.64 0.71
1/64 1.58 0.50 1.19 0.92
1/128 0.686 1.20 0.834 1.20

Fig. 15. Three-dimensional simulation of a drop in shear flow with interface thickness e = 1/80. The left column shows a drop with no surfactant. The right
column shows a drop with insoluble surfactant. The times shown are from top to bottom: 10, 25, 34, and 35.16.
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drop sides is approximately 0.14 while at the drop tips the boundary layer thickness is approximately 0.69. For reference, the
thickness, O(e), of the diffuse interface describing the drop boundary is approximately 0.06.

5.2.3. Convergence study
A convergence study was carried out for the fluid velocity, the interface surfactant and the bulk surfactant for the case

where PeF = 1 and Bi = 1. Since the analytical solution is not available, we use the solution for a fine mesh as a reference solu-
tion and measure the deviation from this solution in the L2 norm. The L2 norm is calculated as
kf k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

f 2
q

; ð57Þ



Fig. 16. Drop evolution in shear flow without surfactant at times t = 25 (left) and 35.16 (right) with e = 1/40. All other parameters are the same as in Fig. 15.

Fig. 17. Three-dimensional simulation of a drop in shear flow with soluble surfactant, e = 1/80. The left column shows the drop shape with the surface
colored according to the interface surfactant concentration. The right column shows a slice of the bulk surfactant concentration along the x-axis. The times
shown are from top to bottom: 10, 25, 34 and 35.16.
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and the rate of convergence as
rate ¼ lnðe2h=ehÞ
ln 2

; ð58Þ
where h denotes grid spacing. All simulations here are carried out on a uniform mesh. Since the variables are collocated, they
do not coincide when the mesh is refined. Linear interpolation is used to interpolate the values.

The results are summarized in Table 1. The rate of convergence is around two for the velocities and one for the surfactant
concentrations. The result for the surfactant concentrations are in line with what was found in [61].

5.3. Three-dimensional results

Finally, we present some results from three-dimensional simulations. In particular, we investigate drop break up in a
shear flow. The grid spacing at the root level is hmax = 1/4, three levels of refinement are used such that hmin = 1/32. To elu-
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cidate the effects of the interface thickness parameter e, we simulated two different cases: e = 1/80 and 1/40. There are
approximately 5–6 grid points across the interface for smaller e. These simulations took approximately 3 days to complete
on one core of an Intel i7 processor.

We take Ca = 0.42 and Re = 0.4, which while smaller than used in 2D are still above the critical threshold for the existence
of steady state solutions. This allows us to run the simulation until the drop breaks up to demonstrate the ability of our
method to handle topological changes. A similar simulation was presented in [66], although their simulation used Re = 0.
For the surfactant, we assume a dilute concentration of x = 0.1 and a relatively strong coupling between surfactant and sur-
face tension with b = 0.2. For the parameters associated with solubility, we again choose initial conditions at equilibrium,
k = 1/9 and h = 0.9. The bulk Peclet number is set to PeF = 10.

The results for a clean drop and a drop covered by an insoluble surfactant are shown in Fig. 15 (left and right columns
respectively). After an initial regime of stretching, necks form near the two drop tips. These become thinner until the drop
breaks up. In each case, two tiny satellite drops can be observed after the necks pinch off. In the surfactant case, the satellite
drops are very small and are covered with nearly uniform surfactant. We see that the surfactant-covered drop breaks up at
an earlier time. There are two principal reasons for this behavior. First, the non-uniform distribution of surfactant leads to
larger deformation, as shown in the previous sections, which thins the drop more than the clean case. Second, in the necks,
the surfactant concentration is low, which gives a larger surface tension (similar to the surface tension of a clean drop). Since
the necks are thinner in the surfactant-laden drop this leads to faster breakup.

In Fig. 16, the break-up of a clean drop is shown for a larger value of interface thickness e (e = 1/40 compared to e = 1/80 in
Fig. 15). For the larger value of e, the drops break up at an earlier time and satellites are not observed since they are not re-
solved by this value of e. A similar behavior is observed in the presence of surfactant.

The results for soluble surfactant are shown in Fig. 17, using e = 1/80. The right column, which shows a slice of the bulk
concentration, indicates that surfactant is adsorbed to the surface at the middle of the drop, and desorbed at the tips. This
leads to a more uniformly distributed surfactant concentration. Comparing Fig. 17 with Fig. 15 we can see the soluble-sur-
factant-covered drop breaks up at a later time than the clean drop and the drop with insoluble surfactant. The principle rea-
son is the adsorption and desorption of surfactant. Since adsorption occurs over a larger surface area than desorption, which
just occurs at the drop tips, the interfacial surfactant concentration becomes larger across the entire drop. This means that
the deformation becomes larger and that there is significant concentration of surfactant near the drop necks. This slows the
thinning of the necks since the surface tension is smaller. Thus, the drop breaks up at a later time than for the clean drop and
the drop with insoluble surfactant. This shows that the influence of solubility can have an important influence on drop
dynamics.
6. Conclusions and future work

A diffuse-interface method to simulate two-phase flows with soluble surfactants was presented. The method handles
advection, diffusion and adsorption/desorption of surfactant, and is easy to implement using standard numerical techniques.

As an example of the applicability of the method, results were presented on the influence of solubility on a drop in shear
flow. It was shown that solubility could have a considerable influence on the flow dynamics. Simulations in 3D were also
performed, which showed that the influence of soluble surfactants is important for the breakup behavior of the drop.

Although not presented here, asymptotic and numerical evidence suggests that the convergence to the sharp interface
system is first order in the interface thickness parameter e [61]. It may be possible to gain second order accuracy in e by
explicitly removing the corresponding term in the asymptotic expansion as can be done in the context of solidification to
enable simulations with arbitrary kinetic coefficients [80,81]. Also, more consistent projection methods for collocated
grids were recently presented in [82]. These two improvements to the proposed method should be explored. In addition,
as we have seen, when the bulk Peclet number is large, thin boundary layers develop near the deforming drop.
Adaptive meshes can enable accurate simulations for a range of Peclet numbers but in some applications, the bulk Peclet
number can reach 105 � 106 (e.g., [83]) at which point it is infeasible to use adaptive meshes. Instead, following the approach
recently developed by Booty and Siegel [23], a singular perturbation analysis should be incorporated in the numerical
algorithm.
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