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a b s t r a c t

By using the phase-field crystal model (PFC), we simulate dendritic growth of face-centered cubic and

body-centered cubic structures. The anisotropy of the dendritic growth velocity coefficient C and the

growth dynamic scaling exponent n0 are investigated as function of the PFC number density in the

liquid phase c . We obtain the stability criterion of the operating state of the PFC dendrite tip, which is

growth. This disagreement is caused by the strongly faceted growth in the regime of large anisotropy of

the PFC surface energy.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The dendritic growth is a long-standing fundamental research
topic in materials science and materials processing. Its simulation
is also a big challenge due to large time and space scales spanning
atomic structures to macroscopic morphologies. At the atomic
level, the molecular dynamics (MD) method has been used to
evaluate various anisotropic properties of the solid–liquid inter-
face that causes the dendritic growth [1–4]. However, long-time
dendritic growth processes are not easily accessible in the MD
simulations. At the macroscopic level, the coarsen-grained simu-
lations like the phase-field (PF) method are instead adopted based
on the input data of the anisotropy magnitude and the predefined
formula of the crystal symmetry [5–9]. However, when the
anisotropic strength is greater than 1/15, more complex regular-
ization methods are required to amend the concavity in order to
obtain the accurate crystal shape [10,11]. Recently, a new method
known as phase-field-crystal (PFC) model [12–14] has been
constructed based on the dynamical density-functional theory
of freezing. Being implemented at the atomic length scale but the
diffusive time scale, the PFC model can reproduce atomic pro-
cesses of the anisotropic dendritic growth even without any input
data of the anisotropy magnitude and the predefined formula of
ll rights reserved.
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the crystal symmetry. Three-dimensional (3D) PFC phase
diagrams have been proposed for the bcc phase [15] and also
the fcc and hcp phases [16,17]. The previous study has shown that
the single-component PFC model is possible to grow fcc and bcc
dendrites [17]. The anisotropic growth properties has been done
for flat interfaces of the fcc and bcc crystals in the PFC model,
which is highly related to the dendritic growth [18]. Nevertheless,
the anisotropic property of the dendritic growth still is not
well-understood in the PFC simulations.

In this work, we reproduce the dendrite growth of the face-
centered cubic (fcc) and bulk-centered cubic (bcc) structures by
conducting large-scale PFC simulation in three dimensions. The
anisotropic growth properties are further investigated by check-
ing the growth velocity coefficient C and the growth dynamics n0

for three low-index orientations [100], [110], and [111] (C and n0

are obtained by fitting the position-time relationship dZ ¼ Cdtn0 ,
where dZ is variation of the growth front position in the time
interval dt.) Our results show that C½100�4C½110�4C½111� (fcc) and
C½100�4C½110� � C½111� (bcc), and for both fcc and bcc dendrites
n0
½100� ¼ 1 and n0

½110� � n0
½111�o1 . The anisotropy of C increases with

the initial number density in the liquid phase c, while the
anisotropy of n0 increases with the small parameter r (which
controls anisotropy of the surface energy). Finally, we obtain the
stability constant sn of the dendrite tip growth, which are
sn ¼ 0:278 (fcc) and sn ¼ 0:104 (bcc). The faceting growth
mechanism due to large PFC anisotropy is compared with the
macroscopic dendritic growth of weak anisotropy.

www.elsevier.com/locate/jcrysgro
www.elsevier.com/locate/jcrysgro
dx.doi.org/10.1016/j.jcrysgro.2011.08.027
mailto:ymyu@aphy.iphy.ac.cn
dx.doi.org/10.1016/j.jcrysgro.2011.08.027


S. Tang et al. / Journal of Crystal Growth 334 (2011) 146–152 147
2. Model

We first review derivation of the PFC model [13,15,19]. The
PFC model is based on the classical density-functional theory
(DFT) of freezing [20] that starts from a free-energy functional:
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kBTr0

¼

Z
drf½1þnðrÞ�ln½1þnðrÞ��nðrÞg
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where nðrÞ ¼ ½rðrÞ�r0�=r0, rðrÞ is the one-particle number density
field, and r0 is the one-particle number density of the reference
liquid state. The local part is expanded as
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and the interaction function is expanded in the Fourier space as
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where a, b, G, EB are model parameters. The interaction function is
related to the structure factor in terms of SðkÞ ¼ 1=½1�CðkÞ�. The
PFC model parameters can be further determined in terms of km,
C00ðkmÞ, C0, and us, which are the position of the first maximum of
C(k), the second-order derivative of C(k) at k¼km, C(k¼0), and the
amplitude of the density oscillation in the solid, respectively. The
parameters in Eqs. (2) and (3) are expressed as

a¼
3

2SðkmÞus
, ð4Þ

b¼
4

30SðkmÞu2
s

, ð5Þ

G¼�
k2

mC00ðkmÞ

8
, ð6Þ

EB ¼ CðkmÞ�C0�G: ð7Þ

By defining

nðrÞ ¼ nþ
fðrÞ
r0

, ð8Þ

Eq. (1) is rewritten as
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where F½fðrÞ� ¼ ½DFðnþfðrÞ=r0Þ�DFðnÞ�=kBT , n ¼ a=2b (by using
this equality, the c3

ðrÞ term are removed), and
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Table 1

The fitting results of the position–time relationship Z¼Z0þCðt�t0Þ
n0 for various simulati

by eC ¼ C½001�=C½111� (fcc) and eC ¼ C½001�=C½110� (bcc). The anisotropy of the growth dynam

error is less than 0.006 and 0.02 respectively. The small fitting error ensures that the b

Data set Structure ðr,cÞ C[100] C[110] C[1

I fcc(�0.53,�0.4607) 0.062 0.052 0.0

fcc(�0.53,�0.4625) 0.058 0.040 0.0

fcc(�0.53,�0.465) 0.045 0.034 0.0

fcc(�0.53,�0.4675) 0.032 0.031 0.0

II bcc(�0.30,�0.35) 0.070 0.052 0.0

bcc(�0.25,�0.3205) 0.058 0.045 0.0

bcc(�0.0923,�0.18) 0.22 0.22 0.2
The governing evolution equation is then written as
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Eq. (11) can be rewritten in the a Swift–Hohenberg-type form:
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Introducing x¼ km~r , t¼ lk6
mMrt0, and c¼f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=lk4

m

p
, the

dimensionless PFC model is written as
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where r is a small parameter. Substitute Eqs. (4)–(6) into Eq. (18),
we can see that r is determined by properties us, km, C(km), and
C00ðkmÞ. Substitute Eqs. (6) and (7) into Eq. (19), we can see that b0 is
determined km, C(km), C00ðkmÞ and also C0. Both r and b0 depend on km

(one of the important sources for the temperature dependence of
these parameters). Furthermore, b0 includes a new quantity C0 to
improve the approximation for the correlation function C(k). The
parameter b0 arises from the eight-order fitting of C(k) [19]. When
b0 ¼ 0, Eq. (17) reduces to the original PFC model [12,13] based on
the fourth-order fitting of C(k). In the previous study, Wu et al. have
suggested us¼0.72 and r¼0.0923 for Fe (Table 1 of Ref. [15]), and
Jaatinen et al. have suggested 1�CðkmÞ ¼ 0:332, a¼0.6917,
b¼0.0854, EB¼38.085 and G¼ 11:583 for Fe [19], which indicates
r¼0.0923, b0 ¼ 3:285, and c ¼�0:2008 (for n0¼0). The above data
only suggests one point of the EOF PFC (r,c) phase diagram, but
most points in this (r,c)phase diagram are not available for EOF PFC
model currently. Therefore, our following PFC computations shown
on parameters. The anisotropy of the growth velocity coefficient kinetics is defined

ics index is defined by en0

4 ¼ ðn½001��n0
½110�Þ=ðn½001� þn0

½110�). For C and n0 , the fitting

est-fitting lines coincide with most data points of position–time plotted in Fig. 3.

11] n0
½100� n0

½110� n0
½111� eC en0

4

29 1.0 0.91 0.91 2.14 0.047

26 1.0 0.925 0.92 2.23 0.039

23 1.0 0.92 0.92 1.96 0.042

22 1.0 0.92 0.92 1.45 0.042

54 1.0 0.94 0.96 1.35 0.03

5 1.0 0.96 0.96 1.29 0.02

2 1.0 1.0 1.0 1 0



Fig. 1. The PFC dendrite morphology: (a) fcc ðr,cÞ ¼ ð�0:53,�0:4607Þ, containing

about 77 039 atoms, (c) bcc ðr,cÞ ¼ ð�0:30,�0:35Þ, containing 250 000 atoms, and

(b) and (d) show the corresponding cross-section images in the (110) plane.
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in Section 3 are conducted for the case of b0 ¼ 0, i.e., based on the
original PFC model. The parameters ðr,c) (as list in Table 1) are
chosen based on the phase-diagram [16]. One of our PFC computa-
tions is for r¼�0.0923 based on Wu’s data [15] for Fe. However, it
need to be note that our bcc dendrite obtained for r¼�0.0923 is not
the real iron dendrite, because such dendrite growth is a result of
diffusive mass transport and the respective Mullins–Sekerka
instability emerging from the over-damped conservative equation
of motion of the PFC model, neither by the thermal field nor the
solute field as the iron dendrite grows in real circumstances.

The one-mode approximations of the fcc and bcc structure are
used as the initial input of c:

cfcc ¼cþ8Asðcos qx cos qy cos qzÞ ð20Þ

and

cbcc ¼cþ4Asðcos qx cos qyþcos qy cos qzþcos qz cos qxÞ, ð21Þ

where As and q are the amplitude and the wave number of the
density fluctuation around an average density c respectively.

Eq. (17) is solved numerically using the semi-implicit Fourier
spectral method with the space stepping Dx¼ 1:0 and the time
stepping Dt¼ 1:5 on the simulation box of the size L¼800 (fcc)
and L¼1200 (bcc). The dendrite growth begins with a sphere seed
at center of the simulation box. In the center of the simulation
domain a small spherical fcc or bcc nucleus is set according to
Eqs. (20) and (21). The liquid around the initial nucleus is
metastable due to the supersaturation of the liquid density. We
develop a parallel C code using FFTW3 library, which is efficient
for large-scale computations. The typical PFC computation for the
bcc dendrite is conducted at L¼1200 and t¼6000 (the corre-
sponding real space is about 3000 Å and the real time is about
10�6 s if taking the atomic lattice constant a¼3.3 Å of the liquid
metal and the self-diffusion coefficient of the liquid metal being
D¼10�5 cm2/s). The computations run on 50 CPU cores for 72 h
on the supercomputer Mars at TU Dresden.
3. Results and discussion

The PFC dendrite morphology is shown in Fig. 1. For both fcc
and bcc, six well-defined dendritic branches evolve in the /100S
directions. The fcc dendrite in the [100] direction exhibits the
four-fold symmetry. Away from the dendritic tip, the edges and
faces of the dendritic branches change from the pyramidal
structure towards a more parabolic shape gradually. The cross
section parallel to the base of the fcc PFC dendrite still shows the
four-fold symmetry of the dendrite tip. The dendritic faces consist
of step trains. Towards the center of the grain the steps become
denser and bent towards the dendrite tip. This effect, due to
preferable kink production near the dendrite edges, may be the
onset of a meandering instability at the dendrite faces. This leads
to deep valleys in the dendrite faces or a fin structure as also
reported for classical phase-field (PF) [7] and Kinetic-Monte-Carlo
(KMC) [24] simulation of dendritic growth.

In Fig. 2(a) the locally smoothed density is shown. As predicted
in the phase-diagram [16] the density in the crystal is higher than
in the surrounding liquid. Ahead of the solid-liquid interface a
depletion zone is formed in the liquid. Thus, the growth of the
dendrite tip is driven by a Mullins–Sekerka type instability. The
same mechanism can be accounted for the preferable kink
production at the steps near the dendrite edges shown in Fig. 1.
Fig. 2(b) illustrates the density distribution of c in three
low-index growth directions. The [100] direction corresponds to
the normal to the dendrite tip, the [011] direction corresponds to
the normal to the interfaces in the saddle area between two
dendrite branches, and the [111] direction corresponds to the
normal to the interfaces in the valley area among three adjacent
dendrite branches. The density ahead of the interfaces normal to
[110] and [111] direction is remarkably lower than that ahead of
the dendrite tip. We suppose that the more facile atomic attach-
ment at steps and kinks on the surface normal to [011] and [111]
direction is responsible for the lower density in the nearby area.

A closer analysis of the atomistic growth mechanism at the
dendritic tip is shown in Fig. 2(c) and (d). Attaching of new layers
leads to the fluctuating supersaturation at the dendrite tip. A fully
facetted dendrite tip leads to the maximum of the supersatura-
tion (D’,D). After some time a new two dimensional island begins
to nucleate at the {111} faces near the dendrite tip. As this island
grows up, the local supersaturation reaches a minimum (A).
When the island is fully formed, local supersaturation turns to
increase again and the island begins laterally at the newly formed
step edges and kinks (B,C). This leads to some smaller maximum
of the local supersaturation at the interface again. Thus, the
dendritic growth is defined by two dimensional nucleation at
the {111} faces of the dendrite tip. The local supersaturation at
the interface is connected to the amount of preferable attachment
sites at the surface. The nucleation of the two dimensional island
is the sources of the step trains that appear at the faces of the
dendrite.

In order to analyze the anisotropic growth properties of the
dendritic grain, we check the position-time relationship of the
growth front for the principal directions [001], [110], and [111]. In
Fig. 3, we fit the function of Z ¼ Z0þCðt�t0Þ

n0 , where Z0 and t0 are
position and time when the dendrite begins to evolve with
constant velocity. The position–time relationship is also written
as V ¼ Cn0ðt�t0Þ

n0�1, wherein V is the dendritic growth velocity,
n0 is the dendritic dynamics exponent index, and C is the dendritic



Fig. 2. The fcc dendritic growth simulated for ðr,cÞ ¼ ð�0:53,�0:4607Þ: (a) the smooth density in the (110) cross-section plane, (b) the profile of the liquid density and its

smooth value at the solid–liquid fronts, (c) variation of the minimum of the smooth density in the liquid front versus the time, (d) snapshots of the atomic structure of the

dendrite tip at the time A, B, C, D, corresponding to half period of oscillation in the bellow panel in (c).
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Fig. 3. The position Z of the dendritic growth front in [001], [110], and [111] orientations versus the growth time t plotted on the logarithmic coordination, where t0 is the

initial transient time for the steady state and Z0 is the position at t¼t0. The function Z ¼ Z0þCðt�t0Þ
n0 is fitted in the inset of (a) and (c). (a) fcc ðr,cÞ ¼ ð�0:53,�0:4607Þ,

(b) fcc ðr,cÞ ¼ ð�0:53,�0:4625Þ (open) and (�0.53, �0.4675) (solid), (c) bcc ðr,cÞ ¼ ð�0:30,�0:35Þ, and (d) bcc ðr,cÞ ¼ ð�0:0:0923,�0:18Þ (open) and (�0.25, �0.3205)

(solid). The fitting results are given in Table 1.
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Fig. 4. The operate state for the dendrite tip obtained for r¼�0.53 with the

different c . (a) The dendrite tip radius R0 , Inset: variation of R0 versus time,

reaching the steady state, obtained for ðr,cÞ ¼ ð�0:53,�0:4625Þ. Oscillation of R0 at

the steady state is denoted by the error bar. (b) The dendrite tip growth velocity

V 0tip. (c) V 0tipR02.
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velocity coefficient. Table 1 gives our fitting results. We find that
n0 ¼ 1 in [001] directions for both fcc and bcc dendritic growth,
whereas n0o1 in [110] and [111] directions (n0

½110� � n0
½111� ¼ 0:91

for the bcc dendritic growth and n0
½110� � n0

½111� ¼ 0:96 for the fcc
dendritic growth). The scaling law n0

½001� ¼ 1 illustrates the con-
stant-velocity growth, which is consistent with the dendritic
growth experiment under the ‘free’ growth environment that
has proven that the dendritic tip is of constant advancing velocity
[25]. The scaling law n0

½110� � n0
½111�o1 further explain the aniso-

tropic growth mechanism due to the Mullis–Sekeraka instability.
We also find that C½001�4C½110�4C½111� (fcc) and C½001�4C½110� �

C½111� (bcc). This result reflects that the crystal growth is facile in
the [001] orientation, as supported by the geometric analysis of
the fcc and bcc structure [26] and the MD results of the
anisotropic atomic attachment kinetics, m½001�4m½110�4m½111�

(fcc) and m½001�4m½110� � m½111� (bcc) [1,2,4]. Our results for C and
n0 illustrate the dendritic growth under the free growth mechan-
ism, which is distinguished with the planar-interface crystal
growth. For the latter the PFC simulation has predicted that
C½110�4C½001� and C½111�4C½001�4C½110� with n0 ¼ 0:5 in terms of
the diffusion-controlled growth mechanism [18].

The anisotropy of the dendrite growth is further investigated
as a function of the PFC model parameters. The anisotropy of C is

defined as eC ¼ C½001�=C½111� (fcc) and eC ¼ C½001�=C½110� (bcc). We find

that eC increases with c (by comparing data of eC in Data set I in
Table 1 for the same r value but different c). This result seems to
contradict to the trend observed for the flat interfaces of the bcc
structure (in Ref. [18], Fig. 2(f) shows that the ratio of C[100] to
C[110] seems to decrease with the increasing density). This contra-
diction is attributable to the fact that unlike that the flat inter-
faces are under diffusion-controlled growth mechanism, our
dendritic growth is under ‘free’ growth mechanism. Where the
energy can diffuse away rapidly, the dendritic growth is mainly
determined by the local density. This tendency is most apparent
in the [001] direction (where the local diffusion is most rapid).
The larger liquid density causes the lager local growth velocity in
[001] direction, which leads to that the reduced value of the
corresponding eC increases versus the liquid density. The aniso-
tropy of n0 is defined as en0

4 ¼ ðn½001��n0
½110�Þ=ðn½110� þn0

½110�Þ. We find
no obvious c dependence of e4

n0 (by comparing data of e4
n0 in Data

set I in Table 1 for the same r value but different values of cÞ. On
the other hand, we find that e4

n0 decreases with r through
comparing e4

n0 for the different values of r (by comparing data of
e4

n0 in Data set II in Table 1 for r¼�0:0923��0:30). Such results
show that n0 is affected mainly by r.

In our simulation, n0 ¼ 1 is obtained for the dendritic tip, which
indicates that the dendritic tip growth has entered into the
stationary state, so that we can investigate the operating state
of the dendrite tip in terms of the dendrite tip velocity Vtip and the
dendrite tip radius R. The operating state of the dendrite tip is
determinate by a stability criterion sn ¼ 2Dd0=R2Vtip, where D is
the diffusion constant in the liquid and d0 is a capillary length
defined by [5,21]

d0 ¼
g=ðDcÞ2ð@m=@cÞ ðchemical modelÞ,

gTMCP=L2 ðthermal modelÞ,

(

where g is the liquid–solid interface energy. In the chemical
model, the dendritic growth is driven by the supersaturation of
the chemical species, where Dc is the miscibility gap of the
liquid–solid two phase region, m is the chemical potential of the
solute atoms relative to that of solvent, c is the concentration of
the solute. In the thermal model, the dendritic growth is driven by
the temperature undercooling, where TM is the melt temperature
of the pure substance, CP is the specific heat capacity at constant
pressure of the liquid, and L is the latent heat per unit volume of
the solid. The dendrite growth in the PFC model is approximate to
the chemical model, but driven by the density difference in liquid
and solid in equilibrium, i.e., Dc .resp. Df. Thus, in the PFC model,
we can rewrite

sn ¼
2gM

ðDfÞ2VtipR2
: ð22Þ

By using the dimension scales:

g¼ g0l2q7
0=g, ð23Þ

Df¼Dc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lq4=g

q
, ð24Þ

R¼ R0q�1
0 , ð25Þ

V ¼ V 0q�1
0 lq6

0M, ð26Þ

the dimensionless sn is rewritten as

sn ¼
2g0

ðDcÞ2V 0tipR02
ð27Þ

In Fig. 4, we analyze the operate state of the dendrite tip of the
fcc PFC dendrite obtained for r¼�0.53 with the different c. We
extract the data for Vtip in terms of the position-time relationship
of the dendrite tip. The tip radius is evaluated in the cross-section
(110) plane that is cut along the principal [001] axis. The solid–
liquid interface is defined by the position of the isoline of the
smoothed density (that equals to the average value of the smooth
liquid density and the smooth solid density). The positions of the
solid-liquid interface is fitted in terms of y¼ x2=2R0 þb, where x

and y are the x- and y-axis distance, R0 is the dendrite tip radius,
and b is a fitting parameter. For the facet dendritic morphology,
R0 is an effective size that reflects the sharpness of the dendrite tip
as well as the average radian of the dendrite edges near the
dendritic tip. The solid–liquid interface converges to a constant
profile after the iterated filtering (e.g. the iteration time is taken
to be 8–10 in our cases). Then, we can obtain the value of R0 that is
independent on the filtering. For high driving forces, that is
increased by c, V 0tipR02 converges to a constant. The solid–liquid
interfacial energy is calculated by constructing the Gibbs dividing
surface for a crystal slab as proposed in [15,19]. We do two sets of
calculations for sn, one for the fcc PFC dendrite obtained for
(r,cÞ ¼ ð�0:53,�0:4625Þ, and the other for the bcc PFC dendrite
obtained for (�0.248, �0.323). The data for g0, Dc, V 0tip and R0 are
summarized in Table 2. We obtain sn ¼ 0:278 for the fcc PFC
dendrite by adopting g0

ð111Þ ¼ 0:0082 and sn ¼ 0:02570:007 for
the bcc PFC dendrite by adopting g0

ð110Þ ¼ 0:0027. For the fcc
(�0.53, �0.4625) dendrite, the obtained value of R0 evaluated
in the (100)/(010) cross section plane (cut along the [001]
principal, R0 ¼ 14:56) is slightly larger than that evaluated in the



Table 2
Results of the PFC simulations for the interface energy g0 and its anisotropy e4, the dendritic tip velocity V 0tip, the dendritic tip radius R0 , and the reduced stability constant

sn . The error bar for sn comes from fluctuation of R0 versus time, and e4 ¼ ðg½001��g½111�Þ=ðg½001� þg½111�Þ (fcc) and e4 ¼ ðg½001��g½110�Þ=ðg½001� þg½110�Þ (bcc).

Structureðr,cÞ g0
ð100Þ g0

ð110Þ g0
ð111Þ e4 Dc V 0tip R0 sn

fcc(�0.53,�0.4625) 0.0113 – 0.0082 0.16 0.087 0.057 11.66 0:27870:017

bcc(�0.248,�0.323) 0.0031 0.0027 – 0.074 0.034 0.049 30.39 0:10470:006

10-2

10-1

100

0 0.03 0.06 0.09 0.12 0.15 0.18

σ*

anisotropy ε4'

fcc(-0.53,-0.4625)

bcc(-0.248,-0.323)

phase-field
numerical solvability

linear solvability
our PFC data

Fig. 5. The stability constant sn versus the crystal anisotropy e04 compared with

the reported data in Ref. [5]. The red arrow denotes sn ¼ 0:02570:007 for weak

anisotropy of e04 generally cited in Refs. [7,21–23]. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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(110) cross section plane (R0 ¼ 12:66). Larger R0 indicates lower sn

(sn is proportional to 1=R02). For bcc (�0.248, �0.323), R0

evaluated in the (110) plane and that evaluated in the (100)/
(010) plane are the same.

Our results of sn are larger than the predicted value that
generally cited for the macroscopic dendritic growth in an ingot
of molten metal or SCN [21–23]. The phase-field simulation also
predicted sn being about 0.025 in the regime of e4 being around
0.01–0.02 [5–7]. Our PFC simulations are conducted for large
values of e4 (e4 ¼ 0:16 for fcc (�0.53, �0.4625) and e4 ¼ 0:074 for
bcc (�0.248, �0.323). For such e4 values, the growth mechanism
is governed by two dimensional nucleation near the dendrite tip
and step flow along the dendrite faces, which corresponds to the
slower growth velocity and the sharper tip radius. Therefore, our
results of sn locate on the large side, corresponding to the high e4

values. Fig. 5 compares our data of sn with the reported data in
Ref. [5] for the different e4. Here, e4 is related to e04 (the anisotropy
coefficient defined in Ref. [5]) in terms of e4 ¼ 4e04=ð3�e04Þ. Our
results are close to the data obtained by the Liner stability theory.
However, we give the PFC results for only two points of aniso-
tropy, which still is insufficient to make a complete comparison
with the previous theories. Besides, its need to be note that Fig. 5
only is a qualitative comparison. So far, there is no effective way
to convert the PFC model parameter (r,c)to the temperature
undercooling or the solute supersaturation that are used in real
cases. Here, we define an effective supersaturation as ðc�
c liquidusÞ/(csolidus�c liquidus), where csolidus=cliquidus is the density at
the solidus/liquids line. In our cases the effective supersaturation
equals to 0.96 and 0.87 for fcc (�0.53, �0.4625) and bcc (�0.248,
�0.323) respectively, which means that there is very large
density supersaturation in the initial liquid. However, our PFC
supersaturation is not equivalent to the solute supersaturation in
real cases. Therefore, the above comparison of our PFC and the
previous theories is qualitative on the precondition that the
corresponding undercooling/superdaturation used in our PFC
simulations may be different from those used in the previous
theories. To conduct the PFC simulation for dendritic growth
especially for weak e4 is still a challenging task, which requires
larger simulation system size. In real dendritic growth, the MS
instability is driven by solute or thermal diffusion. The binary PFC
modeling works have been done in this field [14,27]. To conduct
PFC simulation for real dendrites brings a big challenge for the
ongoing research.
4. Conclusions

We investigated the fcc and bcc PFC dendritic growth for large e4.
Our results reproduce the anisotropic growth process of the fcc and
bcc PFC dendrites at the atomic level. The growth mechanism is
described by two dimensional nucleation near the dendrite tip
serving as a source for step flow at faces of the dendrite. The growth
velocity coefficient C and the growth dynamics n0 are checked for
three low-index orientations [100], [110], and [111]. Our results
show C½100�4C½110�4C½111� (fcc) and C½100�4C½110� � C½111� (bcc), and
n0
½100� ¼ 1 and n0

½110� � n0
½111�o1 for both fcc and bcc dendrites. The

anisotropy of C increases with c while the anisotropy of n0 increases
with r. In the regime of large PFC anisotropy, the faceted growth of
the PFC dendrite forms the sharp dendritic tip, which leads to large
sn, about 0.278 (fcc) and 0.104 (bcc), deviating from sn ¼ 0:025
predicted for the macroscopic dendritic growth of weak anisotropy
of the crystal structure.
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