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SUMMARY

Diffuse interface models for incompressible two-phase flow with large density ratios are tested on benchmark
configurations for a two-dimensional bubble rising in liquid columns. The benchmark quantities circularity,
center of mass, and mean rise velocity are compared with reference solutions from Hysing et al. Copyright
© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In [1], a numerical benchmark configuration has been proposed for two-dimensional bubble dynam-
ics. Two benchmark test cases have been considered, both concern the evolution of a single bubble
rising in a liquid column while undergoing shape deformations. The first with a small density and
viscosity ratio, for which the bubble undergoes only moderate shape deformations, and the sec-
ond with a bubble with a very low density compared with the surrounding fluid, which leads to
large deformations and topological changes. Different numerical approaches have been quantita-
tively compared, among them are Eulerian level set finite element methods as well as an arbitrary
Lagrangian–Eulerian moving grid approach. Diffuse interface approximations for two-phase flow
problems have not been considered so far. We will test finite element discretizations of different
diffuse interface models for two-phase flow problems on both benchmark test cases. Diffuse inter-
face approximations have been successfully used to describe two-phase flow problems with constant
density in both phases for various applications. The model dates back to Hohenberg and Halperin
[2] and is called ‘Model H’. Gurtin et al. [3] showed thermodynamic consistency of this model.
To treat problems with small density ratios, a common practice is to use a Boussinesq approxima-
tion where an external gravitational force is added to model the effect of a density difference. The
achieved model remains thermodynamically consistent. The approach however is not valid for large
density ratios. Lowengrub and Trusinowsky [4] derived a thermodynamically consistent extension
to the ‘Model H’, which allows also for large differences in densities. However, the velocity field is
no longer divergence free, and the coupling between the Navier–Stokes equation and the evolution
equation of the phase field function becomes much stronger, which makes numerical computations
harder. Alternative generalizations for different densities have been discussed by Boyer [5], Ding
et al. [6], Shen and Yang [7], and most recently by Abels et al. [8]. In all approaches, the velocity
remains divergence free; thermodynamic consistency however could only be shown for the models
proposed in [7, 8].
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748 S. ALAND AND A. VOIGT

The outline of the paper is as follows. Section 2 introduces the governing equations in the classical
sharp interface setting. The diffuse interface approximations are considered in Section 3, and their
numerical treatment is described in Section 4. The test cases and results are presented and compared
in Section 5. Conclusions are drawn in Section 6.

2. MATHEMATICAL MODEL

We consider isothermal, incompressible flow of two immiscible fluids. In the classical approach,
the interface between both fluids is usually considered as a free boundary that evolves in time. The
movement of the interface is determined by a set of interfacial balance conditions. The governing
equations read

�i

�
@ui
@t
C ui � rui

�
D�rpi Cr � .�iD.ui //C Fi , in �i (1)

r � ui D 0, in �i (2)

where �i � R2, for i D 1, 2 denotes the domain, and �i , ui , pi , �i , Fi are the density, velocity,
pressure, viscosity, and body force in domain �i , respectively. Across the interface † separating
the domains, the following jump conditions hold:

Œu�† D 0, Œ�pIC �D.u/�† � nD���n, (3)

where Œf �†Df1�f2 denotes the jump in f across†, I is the identity tensor, D.u/D
�
ruC .ru/T

�
,

n is the normal vector to † pointing into�2, � is the surface tension, � is the mean curvature of the
interface (positive for a sphere), and r† D .I� nn/r is the surface gradient. Let�D�1[†[�2.
It is assumed that fluid 1 occupies the domain �1 and that it completely surrounds fluid 2 in
�2. Therefore, @�2 \ @� D ;. As boundary conditions, we take the no-slip condition u1 D 0

at the top and bottom boundaries in a rectangular domain, as well as the free-slip condition
u1 � nD t �D.u1/ � nD 0, with the tangent vector t, on the vertical walls.

3. DIFFUSE INTERFACE APPROXIMATION

An alternative to direct approaches for solving such interface problems is the diffuse interface
method, which was originally developed to model solid–liquid phase transitions (see e.g., [9–11]).
The interface thereby is represented as a thin layer of finite thickness, and an auxiliary function,
the so-called phase field function, is used to indicate the phases. The phase field function varies
smoothly between distinct values in both phases, and the interface can be associated with an inter-
mediate level set of the phase field function. Diffuse interface approaches for mixtures of two
immiscible, incompressible fluids lead to the Navier–Stokes–Cahn–Hilliard equations and have been
considered by several authors (see e.g., [12–15]). The model reads as follows:

� .@tuC .u � r/u/D�r QpCr � .�D.u//C FC�rc, (4)

r � uD 0, (5)

@tcC u � rc Dr � .M.c/r�/ , (6)

�D Q�	�1W 0.c/� Q�	
c, (7)

in the domain �. Here u, Qp, c and � are the velocity, pressure, phase field variable, and chem-
ical potential, respectively. The relation between Qp and the physical pressure p is thereby given
through Qp D p C Q��

2
jrcj2 C Q�

�
W.c/. The function W.c/ is a double well potential, here we use

W D 1=4.c2 � 1/2 such that c � 1 in �1 and c � �1 in �2. The function M.c/ is a mobility,
here we use M.c/D �.c2 � 1/2, where � is a constant mobility coefficient. 	 defines a length scale
over which the interface is smeared out. Furthermore, �, �, and F are again the density, viscosity,
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BENCHMARK COMPUTATIONS OF DIFFUSE INTERFACE MODELS 749

and body force, respectively. The parameter Q� is a scaled surface tension, which is related to the
physical surface tension by Q� D � 3

2
p
2

.
The diffuse interface model converges to Equations (4)–(7) with �1 D �2 D � and �1 D �2 D � if

the width of the interfacial layer 	 tends to zero. This can at least be shown formally using matched
asymptotic analysis.

The case of variable density and viscosity is more complicated. The model used in [6, 7] uses
Equations (4)–(7) but with variable density and viscosity given by �.c/D �1.cC1/=2C�2.c�1/=2
and �.c/D �1.cC 1/=2C �2.c � 1/=2, respectively. The model reads as follows:

Model 1

�.c/ .@tuC .u � r/u/D�r QpCr � .�.c/D.u//C FC�rc, (8)

r � uD 0, (9)

@tcC u � rc Dr � .M.c/r�/ , (10)

�D Q�	�1W 0.c/� Q�	�c. (11)

Following Guermond and Quartapelle [16], an energy estimate of the model could be shown by
introducing the new variable r D

p
�, see [7]. Boyer [5] followed a different approach. The starting

point for the derivation are the equations of linear momentum of each fluid. The model reads as
follows:

Model 2

�.c/ .@tuC .u � r/u/D�r QpCr � .�.c/D.u//C FC�rc (12)

C .�2 � �1/
1� c2

4
r

�

�.c/
, (13)

r � uD 0, (14)

@tcC u � rc Dr �
�
M.c/

�.c/
r

�

�.c/

�
, (15)

�D Q�	�1W 0.c/� Q�	�c, (16)

Neither global nor local energy inequalities seem to be known for this model. Abels et al. [8]
considered the following thermodynamically consistent model:

Model 3

@t .�.c/u/Cr � .�.c/u˝ u/D�r QpCr � .�.c/D.u//C FC�rc (17)

�r �
�

u˝
�1 � �2

2
M.c/r�

�
, (18)

r � uD 0, (19)

@tcC u � rc Dr � .M.c/r�/ , (20)

�D Q�	�1W 0.c/� Q�	�c, (21)

for which also convergence for 	! 0 is shown using a formal matched asymptotic analysis.

4. FINITE ELEMENT DISCRETIZATION

For the numerical solution of the three models, we adapt existing algorithms for the Navier–
Stokes–Cahn–Hilliard equation (e.g., [17, 18]). Let Th be a triangulation of the domain �, and
let J� D ¹tmºMmD0 be a quasi-uniform partition of Œ0,T � of mesh size  WD T

M
. Of course, adap-

tive time steps may also be used. We define the discrete time derivative dtvm WD .vm � vm�1/= ,
where the upper index denotes the time step number. Furthermore, for a nonnegative integer r , let
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750 S. ALAND AND A. VOIGT

Pr.K/ denote the space of polynomials of degree less than or equal to r on a triangle or tetrahedron
K 2 Th. We introduce the finite element spaces

Mh D ¹q 2 L
2
0.�/jqjK 2 Prq .K/º, (22)

Vh D ¹v 2 C
0. N�/\H 1

0 .�/jvjK 2 Prv .K/º, (23)

Yh D ¹ 2 C
0. N�/j jK 2 Pr .K/º (24)

and denote by Vh D .Vh/d the space of vector test functions in dimension d .
The Cahn–Hilliard and Navier–Stokes systems are solved separately in an operator splitting

manner. For both systems, we use an implicit Euler time stepping algorithm. Higher-order
algorithms for the individual systems are applicable as well (see e.g., [19]).

4.1. Cahn–Hilliard system

At every time step, we first solve the Cahn–Hilliard equations and then solve the Navier–Stokes
system. The finite element approximation of the convective Cahn–Hilliard equation reads as follows:
find .cm,�m/ 2 Yh � Yh such that for all . , �/ 2 Yh � Yh

Model 1

.dtc
m, /C .um�1 � rcm, /C .M.cm�1/r�m,r /D 0, (25)

.�m, �/� Q�	.rcm,r�/� Q�	�1.W 0.cm/, �/D 0, (26)

Model 2

.dtc
m, /C .um�1 � rcm, /C

�
M.cm�1/

�m�1
r�m,r 

�
D 0, (27)

.�m�1�m, �/� Q�	.rcm,r�/� Q�	�1.W 0.cm/, �/D 0. (28)

Model 3

.dtc
m, /C .um�1 � rcm, /C .M.cm�1/r�m,r /D 0, (29)

.�m, �/� Q�	.rcm,r�/� Q�	�1.W 0.cm/, �/D 0, (30)

where .f ,g/ denotes the L2.�/ inner product. We linearize the derivative of the double well
potential W 0.cm/ by a Taylor expansion of order one:

W 0.cm/� .cm�1/3 � cm�1C .3.cm�1/2 � 1/.cm � cm�1/

to obtain a linear system but keeping the non-linearity (semi)-implicit.

4.2. Navier–Stokes system

After the Cahn–Hilliard system has been solved, we can define the variable density and viscosity
by �mD �1.cm C 1/=2 C �2.cm � 1/=2 and �m D �1.c

m C 1/=2 C �2.c
m � 1/=2, respectively.

Because gravity is the only body force, we set FD �g, where g denotes the gravitational vector
field. Now, the finite element approximation for the Navier–Stokes equations is as follows: find
.um,pm/ 2 Vh �Mh such that for all .v, q/ 2 Vh �Mh

Model 1

.�mdtum, v/C .�mD.um/,rv/C .�m.um�1 � r/um, v/� .pm,r � v/

D .�mgC�mrcm, v/, (31)

.r � um, q/D 0, (32)
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Model 2

.�mdtum, v/C .�mD.um/,rv/C .�m.um�1 � r/um, v/� .pm,r � v/

D .�mgC �m�mrcmC .�2 � �1/
1� .cm/2

4
r�, v/ (33)

.r � um, q/D 0, (34)

Model 3

.dt .�u/m, v/C .�mD.um/,rv/� .�mum�1˝ um,rv/� .�mgC�mrcm, v/

D .pm,r � v/C
�

um˝
�1 � �2

2
M.cm/r�m,rv

�
(35)

.r � um, q/D 0. (36)

4.3. Numerical treatment

The adaptive finite element toolbox AMDiS [20] is used for discretization. We use a standard
Taylor–Hood element for the Navier–Stokes equation with polynomial degree two for u and one
for p. The elements discretizing the concentration c and chemical potential � were chosen with
polynomial degree two, although one could take elements of any polynomial degree. We did
this to obtain equal basis functions for u and c and thus to simplify the quantitative evaluation
of the results using the open-source data analysis software PARAVIEW (www.paraview.org). The
linearized system was solved using the direct unsymmetric multifrontal method (UMFPACK, [21]).

4.4. Adaptivity

Adaptive meshes are indispensable for providing a high spatial resolution along the fluid–fluid inter-
face described implicitly by c. To compare our results appropriately, we used a fixed resolution along
the interface to control the grid sizes. Although the domain away from the interface is refined with
an equidistant mesh of grid size h, we used a finer grid at the interface with grid size hint D 1=8h,
in all our simulations. The obtained meshes are similar to meshes generated using an L2-like error
indicator based on a jump residual (e.g., [20,22]). Note that rigorous error estimates in h and 	 only
exist for simpler problems like the Allen–Cahn equation (see [23]).

5. DEFINITION OF THE TEST AND RESULTS

5.1. Test setup

The test setup is extensively described in [1]. The domain � D Œ0, 1� � Œ0, 2� is filled with fluid 1
(c � 1) except for a circular bubble, which consists of fluid 2 (c � �1). The initial bubble has a
radius of 0.25 with its center at .0.5, 0.5/. The parameters of the outer fluid are �1 D 1000, �1 D 10.
In the inner fluid, �2 D 100, �2 D 1 for test case 1 and �2 D 1 and �2 D 0.1 for test case 2. The
gravitational force is given by g D .0, 0.98/. The surface tension is � D 24.5 for test case 1 and
� D 1.96 for test case 2.

Because the density of the bubble is smaller than the density of the surrounding fluid (�2 < �1),
the bubble rises. The evolution of the bubble is tracked for three time units during which the defined
benchmark quantities are measured.

5.2. Benchmark quantities and error quantification

For a rigorous estimation of the accuracy of the simulation, we used the same quantities as in [1].
The measured quantities are the following:

� center of mass

yc D

R
c<0 y dxR
c<0 1 dx
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with y as the vertical coordinate .x,y/ WD x,

� circularity

c D
perimeter of area-equivalent circle

perimeter of bubble
D
2
qR

c<0
�dx

Pb

with the perimeter Pb , which is obtained by integration over a ‘contour’ filter in PARAVIEW.

� rise velocity

Vc D

R
c<0 v dxR
c<0

1 dx

where v is the second (vertical) component of the velocity u.

All defined quantities are time dependent. A relative error can be defined to measure their
temporal evolution. We use the following error norms:

jjejj1 D

PNTS
tD1 jqt ,ref � qt jPNTS
tD1 jqt ,ref j

, jjejj2 D

 PNTS
tD1 jqt ,ref � qt j

2PNTS
tD1 jqt ,ref j

2

!1=2
, jjejj1 D

maxt jqt ,ref � qt j

maxt jqt ,ref j

where qt is the temporal evolution of quantity q. We take the data of group 3 from [1] on the finest
grid as reference solution qt ,ref . Spline interpolation is used to match the time steps of the refer-
ence solution with our solution. Using the so defined errors, a rate of convergence (ROC) can be
computed.

The numerical parameters used are shown in Table I. The mobility coefficient � is an additional
numerical parameter, which is not present in the sharp interface model. The value is chosen as
small as possible according to the numerical performance. Because the coupling between Navier–
Stokes and Cahn–Hilliard equation is carried out explicitly, the Courant–Friedrichs–Lewy condition
 . h 32 needs to be satisfied. However, we assume that the time step size here is sufficiently small
that  can be refined proportional to h. Furthermore, 	 is chosen proportional to h, which keeps
the number of elements along the interface fixed. Here, we have around three elements along the
interface. As we use quadratic basis functions, this resolution is assumed to be sufficient because it
is common to use 4–6 DOF along the interface.

5.3. Results for test case 1

The bubble, being initially circular, first stretches horizontally and develops a dimple at the bottom
before it reaches a stable ellipsoidal shape. As in [1], we tabulate the total number of DOF, the total
number of time steps, and the overall computing time in seconds (CPU) (see Table II). Because the
implementation of the three models only differs in some terms, the measured CPU times are almost
equal for all models.

Table I. Used numerical parameters for all computations: grid resolution
hint, diffuse interface width 	, and time step size  . The mobility coefficient
�1,3 used for models 1 and 3 is different to �2 used for model 2 because of

the different definitions of the Cahn–Hilliard diffusion.

hint 	  �1,3 �2

1/16 0.040 0.008 0.000040 40.0
1/32 0.020 0.004 0.000020 20.0
1/64 0.010 0.002 0.000010 10.0
1/128 0.005 0.001 0.000005 5.0
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Table II. Simulation statistics and timings for model 1. The total number
of degrees of freedom (NDOF), the total number of time steps (NTS), and
the overall computing time in seconds (CPU). The values for models 2 and

3 differ only slightly.

	 NDOF1 NTS1 CPU1

0.040 2,900 375 140
0.020 6,400 750 600
0.010 14,800 1,500 3,240
0.005 39,800 3,000 18,240

Figure 1 shows the bubble shapes at the final time (t D 3). The bubble shapes differ clearly for
different values of 	 but seem to converge so that there is no obvious difference for the finest values
	 D 0.01 and 	 D 0.005. The bubble shapes for model 2 is not similar to models 1 and 3 but seem to
converge to the same shape as the other models do. No significant differences can be seen between
the models 1 and 3.

It is clearly not sufficient to only look at the bubble shapes, therefore we use the previously
defined benchmark quantities. Tables III–V show the quantitative comparison with the benchmark
values for all three models. The line ‘ref’ gives a reference value from group 3 in [1]. One can see
that each quantity approaches the reference value as 	 decreases.

Furthermore, we plot the circularity, center of mass, and rise velocity over time for all models
(Figures 2–4). To increase the readability, we omit the coarsest grid results (	 D 0.04) here.

All the quantities seem to converge for each model. The plots for models 1 and 3 are
indistinguishable, whereas model 2 reveals slightly different time evolutions of all quantities.

Figure 1. Bubble shapes at time t D 3 for 	 D 0.04 (light blue), 	 D 0.02 (blue), 	 D 0.01 (dark blue),
	 D 0.005 (black) for models 1–3 (from left to right).

Table III. Model 1: Minimum circularity and maximum rise velocity, with corresponding
incidence times and final position of the center of mass for test case 1.

	 cmin t jcDcmin Vc,max t jVcDVc,max
yc.t D 3/

0.040 0.9322 1.936 0.2359 1.016 1.0692
0.020 0.9154 2.040 0.2380 1.040 1.0739
0.010 0.9062 1.996 0.2394 0.954 1.0768
0.005 0.9041 1.924 0.2402 0.929 1.0786
ref 0.9013 1.900 0.2417 0.924 1.0799

Table IV. Model 2: Minimum circularity and maximum rise velocity, with corresponding
incidence times and final position of the center of mass for test case 1.

	 cmin t jcDcmin Vc,max t jVcDVc,max
yc.t D 3/

0.040 0.9111 1.800 0.2530 0.960 1.1101
0.020 0.8924 1.792 0.2464 0.876 1.0862
0.010 0.8910 1.830 0.2439 0.904 1.0785
0.005 0.8946 1.843 0.2434 0.914 1.0779
ref 0.9013 1.900 0.2417 0.924 1.0799
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754 S. ALAND AND A. VOIGT

Table V. Model 3: Minimum circularity and maximum rise velocity, with corresponding
incidence times and final position of the center of mass for test case 1.

	 cmin t jcDcmin Vc,max t jVcDVc,max
yc.t D 3/

0.040 0.9334 1.9440 0.2350 1.0160 1.0682
0.020 0.9159 2.0040 0.2375 1.0400 1.0733
0.010 0.9066 1.9910 0.2393 0.9530 1.0767
0.005 0.9045 1.9460 0.2401 0.9460 1.0785
ref 0.9013 1.9000 0.2417 0.9239 1.0817
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Figure 2. Circularity over time for test case 1 and models 1–3 (from left to right).
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Figure 3. Center of mass over time for test case 1 and models 1–3 (from left to right).
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Figure 4. Rise velocity over time for test case 1 and models 1–3 (from left to right).

The relative error norms for the circularity, center of mass, and rise velocity are shown in
Tables VI–VIII together with the estimated relative order of convergence (ROC). To calculate the
ROC, we use the reference solution from [1]. The ROC is in all error norms around one for the mod-
els 1 and 3. For model 2, we obtain negative orders of convergence at some points. This indicates
that this model does not (or not yet) converge to the reference solution. However, the relative errors
are comparable with those of the models 1 and 3.

Note that in [1], the convergence has been calculated assuming the solution on the finest grid as
exact solution. Hence, to be fair with the diffuse interface models, we also do this in the following.
For each model, we assume its finest grid solution to be the exact solution and show errors and
orders of convergence in Table IX. We only display the jj � jj1 norm, but the results are very similar
in the other two norms. The ROC is in all error norms between 1 and 2, for model 2 even above 2.

Next, we compare the solutions of the three different models. We plot the minimum circularity,
maximum rise velocity, and final center of mass for all models versus the reference solution from
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Table VI. Model 1: Relative error norms and convergence orders for test case 1.

	 jjejj1 ROC1 jjejj2 ROC2 jjejj1 ROC1

Center of mass
0.040 0.0193 0.0205 0.0236
0.020 0.0086 1.1619 0.0091 1.1738 0.0094 1.3280
0.010 0.0045 0.9483 0.0047 0.9512 0.0046 1.0249
0.005 0.0026 0.7746 0.0028 0.7601 0.0030 0.6405
Rise velocity
0.040 0.0588 0.0632 0.0968
0.020 0.0188 1.6421 0.0233 1.4365 0.0479 1.0148
0.010 0.0086 1.1298 0.0127 0.8800 0.0263 0.8649
0.005 0.0049 0.7979 0.0071 0.8386 0.0147 0.8397
Circularity
0.040 0.0280 0.0329 0.0596
0.020 0.0118 1.2469 0.0138 1.2566 0.0227 1.3932
0.010 0.0042 1.4797 0.0051 1.4403 0.0093 1.2879
0.005 0.0021 0.9860 0.0027 0.9238 0.0049 0.9290

Table VII. Model 2: Relative error norms and convergence orders for test case 1.

	 jjejj1 ROC1 jjejj2 ROC2 jjejj1 ROC1

Center of mass
0.040 0.0117 0.0154 0.0302
0.020 0.0021 2.4942 0.0025 2.6478 0.0047 2.7000
0.010 0.0013 0.6538 0.0017 0.5712 0.0030 0.6115
0.005 0.0015 �0.1534 0.0020 �0.2711 0.0036 �0.2228
Rise velocity
0.040 0.0879 0.0977 0.1625
0.020 0.0106 3.0468 0.0130 2.9105 0.0327 2.3125
0.010 0.0117 �0.1403 0.0134 �0.0411 0.0214 0.6113
0.005 0.0104 0.1791 0.0119 0.1649 0.0170 0.3354
Circularity
0.040 0.0181 0.0209 0.0354
0.020 0.0041 2.1593 0.0050 2.0667 0.0115 1.6236
0.010 0.0040 0.0061 0.0058 �0.2260 0.0122 �0.0898
0.005 0.0030 0.4082 0.0042 0.4697 0.0081 0.5850

Table VIII. Model 3: Relative error norms and convergence orders for test case 1.

	 jjejj1 ROC1 jjejj2 ROC2 jjejj1 ROC1

Center of mass
0.040 0.0205 0.0218 0.0238
0.020 0.0090 1.1801 0.0096 1.1901 0.0098 1.2764
0.010 0.0045 0.9920 0.0048 0.9962 0.0047 1.0623
0.005 0.0026 0.7835 0.0028 0.7695 0.0030 0.6484
Rise velocity
0.040 0.0570 0.0617 0.0978
0.020 0.0188 1.6024 0.0236 1.3860 0.0486 1.0072
0.010 0.0087 1.1134 0.0129 0.8724 0.0266 0.8731
0.005 0.0050 0.8020 0.0071 0.8504 0.0148 0.8392
Circularity
0.040 0.0286 0.0336 0.0605
0.020 0.0123 1.2192 0.0143 1.2282 0.0238 1.3463
0.010 0.0045 1.4422 0.0054 1.4163 0.0094 1.3451
0.005 0.0022 1.0083 0.0028 0.9516 0.0050 0.9170
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Table IX. Relative error norms and convergence orders for test case 1 assuming the finest grid solution as
exact solution.

Model 1 Model 2 Model 3
	 jjejj1 ROC1 jjejj1 ROC1 jjejj1 ROC1

Center of mass
0.040 0.0167 0.0131 0.0172
0.020 0.0060 1.4721 0.0032 2.0262 0.0057 1.5942
0.010 0.0019 1.6927 0.0005 2.8251 0.0016 1.8237
Rise velocity
0.040 0.0559 0.0979 0.0551
0.020 0.0157 1.8352 0.0172 2.5124 0.0174 1.6613
0.010 0.0041 1.9310 0.0030 2.5366 0.0046 1.9214
Circularity
0.040 0.0259 0.0212 0.0255
0.020 0.0097 1.4184 0.0030 2.8293 0.0102 1.3193
0.010 0.0021 2.1842 0.0014 1.0595 0.0025 2.0423

[1] in Figure 5. All three models seem to approach the reference solution for decreasing 	. The
differences between the models 1 and 3 are very small and vanish as 	 decreases. Model 2 deviates
from the other two.

5.4. Results for test case 2

In test case 2, the decrease in surface tension causes the bubble to develop a more non-convex shape
and thin filaments, which eventually break off. This is a much harder problem, and also in [1],
agreement between the used numerical approaches could not be achieved. It even remains unclear
if break off really should occur for this setting. The results in [1] show that the size of the filaments
might become very small (e.g., 0.01). Therefore, one can expect phase field methods to have some
trouble because this can be close to the interface thickness 	.

We again compare bubble shapes at final time for different values of 	 (Figure 6). At least for
	 D 0.04, there are visible differences between all of the three models. In opposite to the results
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Figure 5. Minimum circularity, maximum rise velocity, and final center of mass (from left to right) for test
case 1 and models 1–3 in comparison with the reference solution.

Figure 6. Bubble shapes for test case 2 at time t D 3 for 	 D 0.04 (light blue), 	 D 0.02 (blue), 	 D 0.01
(dark blue), 	 D 0.005 (black) for models 1–3 (from left to right).
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in [1], none of our models yields break off. Splitting did not even occur in tests with smaller 	 and
higher grid resolution (	 D 0.0005, hint D 1=1024). However, one can see that in all models, the
filaments become thinner for smaller 	. Therefore, it is possible that break off happens for 	! 0.

Until the break off occurs in the reference solution, the bubble shapes agree well with the desired
shapes for smaller 	. The number of DOF and CPU time are comparable with test case 1 (Figure II).

To compare more quantitatively, we give the values of the benchmark quantities in Tables X–XII.
Here, we restricted the comparison with the time interval Œ0, 2� because also the reference solutions
do not agree well for later times.

Furthermore, we plot the circularity, center of mass, and rise velocity over time in Figures 7–9.
All quantities seem to converge for each model. However, even for the finest grid (	 D 0.005), dif-
ferences remain visible. We conclude that the resolution is still not fine enough to get sufficiently
close to the reference solution. The plots for models 1 and 3 are almost indistinguishable, whereas
model 2 reveals different time evolutions of all quantities.

Table X. Model 1: Minimum circularity and maximum rise velocity, with corresponding incidence times
and final position of the center of mass for test case 2.

	 cmin t jcDcmin Vc,max t jVcDVc,max
yc.t D 3/

0.040 0.6779 2.0000 0.2527 0.7360 0.8891
0.020 0.6669 2.0000 0.2520 0.7960 0.8998
0.010 0.6663 2.0000 0.2491 0.7100 0.9060
0.005 0.6718 2.0000 0.2491 0.7380 0.9099
ref 0.6901 2.0000 0.2502 0.7300 0.9154

Table XI. Model 2: Minimum circularity and maximum rise velocity, with corresponding incidence times
and final position of the center of mass for test case 2.

	 cmin t jcDcmin Vc,max t jVcDVc,max
yc.t D 3/

0.040 0.6817 1.9840 0.2483 0.8480 0.8932
0.020 0.6527 2.0000 0.2502 0.7320 0.9058
0.010 0.6614 2.0000 0.2500 0.6980 0.9115
0.005 0.6741 2.0000 0.2503 0.7180 0.9125
ref 0.6901 2.0000 0.2502 0.7300 0.9154

Table XII. Model 3: Minimum circularity and maximum rise velocity, with corresponding incidence times
and final position of the center of mass for test case 2.

	 cmin t jcDcmin Vc,max t jVcDVc,max
yc.t D 3/

0.040 0.6770 2.0000 0.2500 0.7680 0.8880
0.020 0.6684 1.9760 0.2503 0.7960 0.8994
0.010 0.6670 2.0000 0.2488 0.7100 0.9060
0.005 0.6722 2.0000 0.2490 0.7540 0.9098
ref 0.6901 2.0000 0.2502 0.7300 0.9154
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Figure 7. Circularity over time for test case 2 and models 1–3 (from left to right).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:747–761
DOI: 10.1002/fld



758 S. ALAND AND A. VOIGT

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

1.1

Time
0 0.5 1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

1.1

Time
0 0.5 1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

1.1

Time

Figure 8. Center of mass over time for test case 2 and models 1–3 (from left to right).
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Figure 9. Rise velocity over time for test case 2 and models 1–3 (from left to right).

The relative error norms for the circularity, center of mass, and rise velocity are shown in
Tables XIII–XV together with the estimated ROC. To calculate the errors, we use the reference
solution from [1]. The ROC for the models 1 and 3 is in general less than one, clearly less than
in test case 1. For model 2, we again obtain negative orders of convergence for the circularity for
bigger 	, which indicates that this model does not yet converge to the reference solution. However,
the relative errors are comparable with those of the models 1 and 3.

Again, to make a fair comparison with the orders of convergence given in [1], we assume the
solution on the finest grid to be the exact solution. Errors and orders of convergence are shown in
Table XVI. We only display the jj � jj1 norm, but the results are very similar in the other two norms.
The observed ROC is more or less of order 1, which is significantly less than in test case 1.

Next, we plot the minimum circularity, maximum rise velocity, and final center of mass for all
models versus the reference solution from [1] in Figure 10. Again, the differences between the
models 1 and 3 are very small for the circularity and center of mass. However, for the maximum

Table XIII. Model 1: Relative error norms and convergence orders for test case 2.

	 jjejj1 ROC1 jjejj2 ROC2 jjejj1 ROC1

Center of mass
0.040 0.0121 0.0145 0.0288
0.020 0.0061 0.9803 0.0079 0.8785 0.0170 0.7597
0.010 0.0031 0.9645 0.0043 0.8845 0.0102 0.7370
0.005 0.0020 0.6843 0.0026 0.7107 0.0061 0.7535
Rise velocity
0.040 0.0555 0.0819 0.1922
0.020 0.0364 0.6105 0.0529 0.6320 0.1376 0.4818
0.010 0.0252 0.5271 0.0366 0.5324 0.1049 0.3914
0.005 0.0146 0.7913 0.0214 0.7744 0.0623 0.7511
Circularity
0.040 0.0151 0.0193 0.0374
0.020 0.0065 1.2135 0.0087 1.1482 0.0241 0.6322
0.010 0.0040 0.6915 0.0069 0.3417 0.0240 0.0075
0.005 0.0024 0.7601 0.0046 0.5802 0.0183 0.3918
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Table XIV. Model 2: Relative error norms and convergence orders for test case 2.

	 jjejj1 ROC1 jjejj2 ROC2 jjejj1 ROC1

Center of mass
0.040 0.0050 0.0083 0.0242
0.020 0.0028 0.8123 0.0038 1.1038 0.0105 1.2034
0.010 0.0014 1.0722 0.0017 1.2159 0.0042 1.3190
0.005 0.0009 0.6176 0.0012 0.4429 0.0031 0.4484
Rise velocity
0.040 0.0661 0.0881 0.1886
0.020 0.0449 0.5581 0.0618 0.5103 0.1512 0.3191
0.010 0.0236 0.9300 0.0347 0.8357 0.0987 0.6151
0.005 0.0132 0.8379 0.0182 0.9310 0.0526 0.9087
Circularity
0.040 0.0057 0.0071 0.0164
0.020 0.0121 �1.0891 0.0165 �1.2222 0.0374 �1.1886
0.010 0.0081 0.5745 0.0110 0.5851 0.0290 0.3641
0.005 0.0053 0.6070 0.0068 0.6870 0.0162 0.8407

Table XV. Model 3: Relative error norms and convergence orders for test case 2.

	 jjejj1 ROC1 jjejj2 ROC2 jjejj1 ROC1

Center of mass
0.040 0.0130 0.0155 0.0299
0.020 0.0064 1.0193 0.0082 0.9165 0.0175 0.7732
0.010 0.0033 0.9712 0.0044 0.8916 0.0106 0.7252
0.005 0.0020 0.7031 0.0027 0.7267 0.0061 0.7833
Rise velocity
0.040 0.0584 0.0838 0.1920
0.020 0.0374 0.6437 0.0534 0.6505 0.1395 0.4608
0.010 0.0259 0.5292 0.0369 0.5313 0.1055 0.4035
0.005 0.0150 0.7878 0.0216 0.7733 0.0627 0.7502
Circularity
0.040 0.0151 0.0189 0.0352
0.020 0.0063 1.2513 0.0085 1.1626 0.0247 0.5076
0.010 0.0039 0.6850 0.0066 0.3515 0.0232 0.0921
0.005 0.0023 0.7611 0.0045 0.5647 0.0179 0.3730

Table XVI. Relative error norms and convergence orders for test case 2 assuming the finest grid solution as
exact solution.

Model 1 Model 2 Model 3
	 jjejj1 ROC1 jjejj1 ROC1 jjejj1 ROC1

Center of mass
0.040 0.0102 0.0045 0.0110
0.020 0.0042 1.2777 0.0022 1.0671 0.0044 1.3172
0.010 0.0012 1.8075 0.0010 1.1181 0.0013 1.7958
Rise velocity
0.040 0.0446 0.0555 0.0464
0.020 0.0234 0.9335 0.0327 0.7613 0.0237 0.9712
0.010 0.0109 1.1022 0.0112 1.5453 0.0111 1.0893
Circularity
0.040 0.0151 0.0091 0.0151
0.020 0.0042 1.8309 0.0069 0.3992 0.0041 1.8742
0.010 0.0017 1.3092 0.0029 1.2728 0.0017 1.2947

rise velocity, we observe quite high deviations, at least for bigger values of 	. Although model 2
behaves different, it is closer to the reference solution than the other two models for all benchmark
quantities. It is not clear if all three models really approach the reference solution for decreasing 	.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:747–761
DOI: 10.1002/fld



760 S. ALAND AND A. VOIGT

0.0050.010.020.04
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.0050.010.020.04
0.248

0.25

0.252

0.254

0.256

0.0050.010.020.04
0.88

0.89

0.9

0.91

0.92

0.93

0.94

Figure 10. Minimum circularity, maximum rise velocity and final center of mass (from left to right) for test
case 2 and models 1–3 in comparison to the reference solution.

6. SUMMARY

Diffuse interface models for two-phase flow have gained a lot of attention recently because they can
easily handle moving contact lines and topological transitions without any need for reinitialization
or convection stabilization. Various diffuse interface models have been proposed to deal with differ-
ent densities and viscosities in both fluid phases. Three of them, namely the models of Boyer [5],
Ding et al. [6], and Abels et al. [8], are compared in this work by applying them to the benchmark
problem proposed in Hysing et al. [1]. This is to the best of our knowledge the first benchmark
carried out for this type of models and the first comparison of these diffuse interface models among
each other.

The benchmark is divided into two test cases, which both concern the evolution of a single bubble
rising in a liquid column. We find that all the three models agree well with the results from [1] if
the bubble undergoes only moderate shape deformations (test case 1). The time-averaged errors are
higher, but the estimated order of convergence towards the finest grid solution is around 2 and there-
fore comparable with the results of Hysing et al. [1]. We see first order convergence towards the
reference solution provided by [1]. The second test case is far more challenging, and it is not clear if
the diffuse interface models converge to the same benchmark values as presented in [1]. Contrary to
the results there, no break off occurred in our simulations. However, our calculations indicate first-
order convergence towards the finest grid solution and lower order of convergence with respect to
the reference solution. In both test cases, the differences between the calculated benchmark values
of the two models of Ding et al. [6] and Abels et al. [8] are rather small and decrease as the interface
thickness tends to zero. In summary, if combined with adaptive mesh refinement, diffuse interface
methods are comparable in terms of accuracy and computational effort with level set approaches.
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