
Journal of Fluid Mechanics
http://journals.cambridge.org/FLM

Additional services for Journal of Fluid Mechanics:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

A finite element approach to incompressible twophase 
flow on manifolds

I. Nitschke, A. Voigt and J. Wensch

Journal of Fluid Mechanics / Volume 708 / October 2012, pp 418  438
DOI: 10.1017/jfm.2012.317, Published online: 

Link to this article: http://journals.cambridge.org/abstract_S0022112012003175

How to cite this article:
I. Nitschke, A. Voigt and J. Wensch (2012). A finite element approach to incompressible twophase 
flow on manifolds. Journal of Fluid Mechanics, 708, pp 418438 doi:10.1017/jfm.2012.317

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/FLM, IP address: 141.30.70.39 on 25 Sep 2012



J. Fluid Mech. (2012), vol. 708, pp. 418–438. c© Cambridge University Press 2012 418
doi:10.1017/jfm.2012.317

A finite element approach to incompressible
two-phase flow on manifolds

I. Nitschke1, A. Voigt1,2† and J. Wensch1

1 Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, 01062 Dresden, Germany
2 Center for Advanced Modeling and Simulation, Technische Universität Dresden,

01062 Dresden, Germany

(Received 29 September 2011; revised 17 May 2012; accepted 20 June 2012;
first published online 8 August 2012)

A two-phase Newtonian surface fluid is modelled as a surface Cahn–Hilliard–
Navier–Stokes equation using a stream function formulation. This allows one to
circumvent the subtleties in describing vectorial second-order partial differential
equations on curved surfaces and allows for an efficient numerical treatment using
parametric finite elements. The approach is validated for various test cases, including
a vortex-trapping surface demonstrating the strong interplay of the surface morphology
and the flow. Finally the approach is applied to a Rayleigh–Taylor instability and
coarsening scenarios on various surfaces.
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1. Introduction
Newtonian surface fluids have been considered in various applications. The work

dates back to Scriven (1960) who was interested in the importance of interface
rheology on foam stability and derived a general formulation of the dynamics of
a Newtonian surface fluid, which forms the interfacial boundary conditions for a
two-phase flow problem of the embedding solvent. The equations of motion are
formulated intrinsically in a two-dimensional manifold with time-varying metric and
make extensive use of the covariant derivative, and calculations in local coordinates,
which involve the coefficients of the Riemannian connection and its derivatives. The
complexity of the equations may explain why they are often written but never solved
for arbitrary surfaces. With a growing interest in complex fluids for which surface
properties dominate due to a large area-to-volume ratio of small droplets, e.g. in
emulsions or liquid phases in cell membranes, there is now also a need for an efficient
numerical treatment of the equations. Within the context of cell membranes the model
has been considered, for example, in Hu, Zhang & E (2007), Arroyo & DeSimone
(2009) and Fan, Han & Haataja (2010). However, the numerical treatment is restricted
to simplified geometries, e.g. an axisymmetric setting (Arroyo & DeSimone 2009)
or a planar interface (Fan et al. 2010). Such special cases circumvent the subtleties
in describing vectorial second-order partial differential equations on curved domains.
Unlike for scalar conservation laws, a simple translation of the operators to manifold
operators leads to governing equations different from those that result from the basic
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conservation laws of physics applied to manifolds, as was done by Scriven (1960).
For this reason, efficient computational tools that have been developed to solve scalar
partial differential equations on manifolds, such as parametric finite elements (Dziuk &
Elliott 2007a,b; Vey & Voigt 2007), level set methods (Bertalmio et al. 2001; Stöcker
& Voigt 2008), phase-field approaches (Rätz & Voigt 2006, 2007; Elliott & Stinner
2009) or closest point methods (Ruuth & Merriman 2008; MacDonald & Ruuth 2009),
cannot directly be applied to the vector case.

We will consider a special case of a two-phase flow problem with surface tension,
surface viscosity and surface phase transition in which the surface decouples from the
bulk. The resulting model is an incompressible two-phase flow problem on a manifold,
which will be considered using a modified Navier–Stokes–Cahn–Hilliard equation on
a manifold. In order to be able to solve this equation numerically, we use a stream
function formulation, which results in a scalar surface partial differential equation of
fourth order. A parametric finite element approach is used to solve this equation as a
system of second-order equations. Various test cases are considered first without the
coupling of the incompressible Navier–Stokes equation with the Cahn–Hilliard model.
The full model is applied to simulate a Rayleigh–Taylor instability on a torus as
well as coarsening dynamics following a spinodal decomposition process on various
geometries. An outline will be given as to how to extend this approach to the full
model coupled with the bulk flow of the embedding solvent.

2. Mathematical model
We follow the approach in Bothe & Pruess (2010) to introduce the mathematical

model. We therefore consider two immiscible Newtonian fluids with constant densities.
The fluid velocities are continuous at the phase boundary and the interface is advected
with the flow. For the surface stress the Boussinesq–Scriven law is used, which is
extended to incorporate different phases on the surface using a Cahn–Hilliard model.
Without surface viscosity, the idea has already been used before to study phase
separation dynamics in two-component vesicles (see e.g. Taniguchi 1996; Wang &
Du 2008; Lowengrub, Rätz & Voigt 2009). A formal asymptotic analysis has recently
been done by Elliott & Stinner (2011). The full model of a two-phase flow problem
with surface tension, surface viscosity and surface phase transition thus reads:

∇ ·u= 0, t > 0, x ∈Ω i(t), (2.1)
∂t(ρ

iu)+∇ · (ρ iu⊗ u− S)= 0, t > 0, x ∈Ω i(t), (2.2)
S=−πI + 2µiD, t > 0, x ∈Ω i(t), (2.3)

D= 1
2(∇u+∇uT), t > 0, x ∈Ω i(t), (2.4)

with Ω i(t) the bulk fluid domain, and ρi, u, π and µi the bulk fluid density, bulk
velocity field, bulk pressure and bulk viscosity, respectively. At the interface we
specify

[[u]] = 0, V = u · ν = uΓ · ν, t > 0 x ∈ Γ (t), (2.5)
D
Dt
ρΓ + ρΓ∇Γ ·uΓ = 0, t > 0, x ∈ Γ (t), (2.6)

D
Dt
(ρΓ uΓ )=∇Γ · SΓ + [[S]]ν − σγ ε∇Γ · (ρΓ∇Γ c⊗∇Γ c), t > 0, x ∈ Γ (t), (2.7)

SΓ = (σΓ + (λΓ − µΓ )∇Γ ·uΓ )PΓ + 2µΓDΓ , t > 0, x ∈ Γ (t), (2.8)
DΓ = 1

2 PΓ (∇Γ uΓ +∇Γ uT
Γ )PΓ , t > 0, x ∈ Γ (t), (2.9)
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D
Dt
(ρΓ c)+ ρΓ uΓ ·∇Γ c= σγ∇Γ · (M(c)∇Γω), t > 0, x ∈ Γ (t), (2.10)

ω = 1
ε

G′(c)− ε

ρΓ
∇Γ · (ρΓ∇Γ c), t > 0, x ∈ Γ (t), (2.11)

with Γ (t) the bulk fluid–fluid interface, ρΓ the interfacial density, uΓ the interfacial
velocity, λΓ the dilatational viscosity, µΓ the surface viscosity, σΓ the surface tension
and σγ the line tension. The two-phase surface fluid is modelled using a surface phase-
field model, which is an extension of Lowengrub & Truskinowsky (1998) with an
order parameter c, distinguishing the two surface fluid phases, a chemical potential ω,
a double-well potential G(c)= c2 (1− c)2 /4, a mobility function M(c)=

√
c2 (1− c)2

and a small parameter ε specifying the length scale on which the surface fluid–fluid
interface γ (t) is smeared out. Furthermore, we have ν the unit outer normal at Γ (t),
PΓ = I − ν ⊗ ν the tangential projection at Γ (t), with I the identity matrix, and
D/Dt = ∂t + (u · ∇) the Lagrangian derivative. The tangential gradient on Γ (t) for any
function η defined in an open subset containing Γ (t) is defined as ∇Γ η =∇η−∇η ·νν
with the usual scalar product and the usual gradient. The tangential gradient thereby
only depends on the values restricted to Γ (t) and ∇Γ η · ν = 0. The components of the
tangential gradient are denoted by ∇Γ η = (D1η, . . . ,Dn+1η) and the Laplace–Beltrami
operator on Γ (t) is defined as 1Γ = ∇Γ · ∇Γ η =

∑n+1
i=1 DiDjη. In addition we specify

u(0, x) = u0(x) for x ∈Ω i(0), c(0, x) = c0(x) for x ∈ Γ (0) = Γ0 and u = 0 for x ∈ ∂Ω ,
with Ω =Ω1(t) ∪ Γ (t) ∪Ω2(t) a fixed domain, for which we assume Γ (t) ∩ ∂Ω = ∅.

We introduce the hydrodynamic length lhy = µΓ /µi, which distinguishes two-
dimensional from three-dimensional flow for spatial scales smaller than or greater
than lhy (Safmann & Delbrueck 1975). We will consider the regime of lhy →∞
for which the surface flow decouples from the bulk. This regime is an idealized
approximation of a typical situation in fluid vesicles, with a more viscous surface
fluid (lipids) surrounded by liquid (water). We split the interfacial velocity into a
tangential and a normal component uΓ = v + Vν and assume V = 0. This requires
a stationary shape, which, for example, follows for spherical fluid vesicles and is a
mathematical consequence of a constant volume and surface area; see Veatch & Keller
(2003) and Yanagisawa et al. (2007) for experimental results on domain growth on
stationary shapes. We further assume ρΓ is a constant and set ρΓ = 1, which now
is possible as changes of mass density on the surface, e.g. due to stretching of the
surface, are no longer possible. We thus obtain ∇Γ · uΓ = 0. All interfacial quantities
are assumed to be constantly extended in the normal direction off the interface. With
these assumptions, the convective surface Cahn–Hilliard model reduces to

∂tc+ v ·∇Γ c= σγ∇Γ · (M(c)∇Γω), (2.12)

ω = 1
ε

G′(c)− ε1Γ c. (2.13)

The surface flow problem for v on a manifold reads

∂tv+ v ·∇Γ v=−∇Γ p̃+ 2µΓ∇Γ ·DΓ + F̃, (2.14)
∇Γ ·v= 0, (2.15)

where p̃ = −σΓ denotes the thermodynamic interfacial pressure (here the surface
tension (see Scriven 1960)), F̃ = −σγ ε∇Γ · (∇Γ c ⊗ ∇Γ c) a forcing term, accounting
for line tension effects, and H denotes the total mean curvature of Γ (t). Following
Feng (2006) this can be reformulated using p = p̃ + (σγ ε/2) |∇Γ c|2+(σγ /2)G(c)



FE approach to incompressible two-phase flow on manifolds 421

and F =−σγ εω∇Γ c into

∂tv+ v ·∇Γ v=−∇Γ p+ 2µΓ∇Γ ·DΓ + F, (2.16)
∇Γ ·v= 0. (2.17)

In the following we will also allow for other forces F in this setting.
Before we proceed, consider the special case of a flat surface. We obtain

∂tc+ v ·∇c= σγ∇ · (M(c)∇ω), (2.18)

ω = 1
ε

G′(c)− ε1c, (2.19)

∂tv+ v ·∇v=−∇p+ 2µΓ∇ ·D+ F, (2.20)
∇ ·v= 0, (2.21)

with D = (∇v + ∇vT)/2 and F = −σγ εω∇c. The resulting model is the classical
‘model H’ (see Hohenberg & Halperin 1977). The zero-divergence condition enables
one to set v = ∇ × ψ with a stream function ψ . Applying the operator rot = ∇× to
the Navier–Stokes equation now cancels the gradient terms and the nonlinear advection
operator transforms to v · ∇v= J(ψ,1ψ), where J(a, b)= axby − aybx is the so-called
Jacobian. Furthermore the viscous term results in a biharmonic 11ψ and we obtain

∂tc+ J(ψ, c)= σγ∇ · (M(c)∇ω), (2.22)

ω = 1
ε

G′(c)− ε1c, (2.23)

∂t1ψ + J(ψ,1ψ)= µΓ12ψ + f , (2.24)

with f = rot F.
This procedure can be generalized to a two-dimensional Riemannian manifold. The

necessary generalizations are given in the Appendix. We point out that these can be
given in intrinsic terms without specifying an embedding of the manifold into R3.
Following Arroyo & DeSimone (2009) the term ∇Γ · DΓ can be expressed through
a geometric form in the spirit of Scriven (1960). Using a generalized Laplacian of a
vector field on a manifold, we obtain from such a setting

∂tv+ v ·∇Γ v=−∇Γ p+ µΓ (1B
Γ v+ Kv)+ F, (2.25)

with 1B
Γ the so-called Bochner or rough Laplacian, and K the Gaussian curvature. This

formulation but without the Gaussian curvature term has been used in Temam (1988)
to formulate the Navier–Stokes equation on a manifold. An alternative formulation is

∂tv+ v ·∇Γ v=−∇Γ p+ µΓ (1R
Γ v+ 2Kv)+ F, (2.26)

with 1R
Γ the so-called Laplace–de Rham operator or Hodge–de Rham Laplacian. This

formulation is used in Cao, Rammaha & Titi (1999), but again without the Gaussian
curvature term. The correct formulation has been considered in the mathematical
literature before in Ebin & Marsden (1970) and Mitrea & Taylor (2001). Introducing
the stream function ψ we end up with a scalar partial differential equation on a
manifold

∂t1Γψ + J(ψ,1Γψ)= µΓ (12
Γψ + 2∇Γ · (K∇Γψ))+ f , (2.27)

where J is the Jacobian, and f = rot F, with the operators J and rot defined in the
Appendix. A detailed derivation of this equation is outlined in the Appendix.
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The convective surface Cahn–Hilliard equation then reads

∂tc+ J(ψ, c)= σγ∇Γ · (M(c)∇Γω), (2.28)

ω = 1
ε

G′(c)− ε1Γ c. (2.29)

The resulting model only involves scalar quantities and can be solved with any
of the numerical approaches to solve partial differential equations on manifolds
mentioned in the introduction.

3. Numerical approach
Within the numerical approach we rewrite (2.27) as a system of two second-order

equations and consider

∂tφ + J(ψ, φ)= µΓ (1Γ φ + 2∇Γ · (K∇Γψ))+ f , (3.1)
φ =1Γψ, (3.2)

with appropriate initial conditions ψ(x, 0) = rot−1u0. Neglecting the convective terms,
the stream function approach converts the saddle point problem to a system of elliptic
problems, thus no inf–sup condition has to be checked for the choice of finite
elements. We will here consider a parametric finite element approach to solve the
problem, following the general approach described in Dziuk & Elliott (2007a,b) and
Vey & Voigt (2007).

Let Γh be a surface triangulation of Γ of mesh size h and let Tτ be a
partition of the time interval of mesh size τ . We define the discrete time derivative
dtv

m := (vm − vm−1)/τ and introduce the surface finite element spaces

Vh = {vh ∈ H1(Γh) | vh|T ∈ P1 ∀ T ∈ Γh}. (3.3)

The surface finite element approximation for the vorticity equations (3.1) and (3.2)
thus reads as follows. Find (φm, ψm) ∈ Vh × Vh such that for all (α, β) ∈ Vh × Vh

(dtφ
m, α)+ (J(ψm−1, φm), α)= µΓ (∇Γ φm,∇Γ α)− 2µΓ (K∇Γψm,∇Γ α)+ (f , α), (3.4)

(φm, β)=−(∇Γψm,∇Γ β). (3.5)

The finite element approximation for the convective Cahn–Hilliard equation then reads
as follows. Find (cm, ωm) ∈ Vh × Vh such that for all (γ, δ) ∈ Vh × Vh

(dtc
m, γ )+ (J(ψm, cm), γ )− σγ (M(cm−1)∇ωm,∇γ )= 0, (3.6)

(ωm, δ)+ ε(∇cm,∇δ)− 1
ε
(G′(cm), δ)= 0. (3.7)

Furthermore, we linearize the derivative of the double-well potential G′(cm) by a
Taylor expansion of order one, G′(cm) ≈ (cm−1)

3−cm−1 + (3 (cm−1)
2−1)(cm − cm−1), to

obtain a linear system but keeping the nonlinearity (semi-)implicit. The forcing term
in the vorticity equation is treated explicitly and reads (f , α)= σγ (J(ωm−1, cm−1), α). In
each time step we thus first solve the vorticity equation, obtaining ψm, and afterwards
solve the convective Cahn–Hilliard equation to obtain cm and ωm. The discretization
in space and time is consistent with the corresponding approach for flat surfaces (see
e.g. Aland & Voigt 2012). The time step is thereby restricted by dynamical events
in the Cahn–Hilliard equation and is chosen adaptively based on an accuracy criteria.
This behaviour is consistent with the findings of an unconditionally stable scheme for
the Cahn–Hilliard equation (Gomez & Hughes 2011). If not given analytically, which
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is only possible for specific surfaces, the numerical approach requires one also to
approximate the total mean and the Gaussian curvature H and K using the information
of the surface triangulation Γh. The curvatures are given in terms of the surface normal
by

H = ∇ · ν, (3.8)

K = 1
2

(
(∇ · ν)2−

3∑
i=1

3∑
j=1

(
∂νj

∂xi

)2
)
. (3.9)

As Γh is only a globally C0 piecewise polynomial surface, the normal ν is given as
a piecewise constant function. A direct application of the above equations is therefore
not possible. Various attempts have been made in computer graphics to deal with this
problem. They are mostly based on local weighted averaging (see e.g. Meyer et al.
2003). Within a first approach (I), we follow this attempt and restore the normal as
a smooth function using suitable interpolation procedures that are based on recovery
strategies (Zienkiewicz & Zhu 1987). We demonstrate first-order convergence for two
different polygonal meshes; see table 1. However, we must point out that these results
are highly sensitive to the regularity of the mesh. Furthermore the approach might fail
for adaptively refined meshes (see Bonito, Nochetto & Pauletti 2010). Therefore we
consider also a different approach, denoted (II), to approximate the total mean and the
Gaussian curvature H and K, which is based on a finite element approximation and is
commonly used in the approximation of geometric evolution equations (see e.g. Dziuk
1991). We here follow Heine (2004), in which a weak formulation for the Weingarten
map Π = ∇Γ ν and the identity H = −1ΓX is used to compute H and K. Thereby X
denotes the position vector and H the vector curvature. The order of convergence with
respect to the L2-norm was shown to be k − 1, if k is the degree of the isoparametric
Lagrange elements (see Heine 2004). As k = 1 in our case, this would indicate no
convergence. We therefore modify the approach slightly by using a gradient recovery
strategy to approximate ∇ΓX as a piecewise linear function. We again demonstrate
convergence for two different polygonal meshes, see table 1, which show an order
of convergence of 1/2 and 1, depending on the mesh. For more irregular meshes the
approach fails to converge, which is in agreement with the numerical results in Heine
(2004), in which a highly irregular mesh has been used. The mentioned problems
with adaptively refined meshes still remain. As a last approach, denoted (III), we use
Lagrange elements of degree k = 2 within the original approach of Heine (2004) and
project the inner nodes of the surface triangulation to Γ . The obtained convergence
results are shown in table 1. We see second-order convergence for both meshes.
The results are much less sensitive to the regularity of the mesh and the approach
is also suitable for adaptively refined meshes. The convergence rate drops for such
cases but for all considered meshes at least first-order convergence was achieved. This
again is in agreement with Heine (2004). With these findings the last method is the
most suitable; however, the drawback of the approach is the need for higher-order
isoparametric elements or, as in our case, a projection of inner nodes to Γ , which in
general might not be known.

The accuracy of all the considered approaches depends on the quality of the
surface mesh and thus limits the accuracy of the whole algorithm if applied for
complicated surfaces with irregular surface meshes. However, for smooth surfaces and
an appropriate surface mesh, all the approaches are sufficient, as long as adaptivity is
not used. For the considered examples of a sphere and a torus, we further demonstrate
this by comparing results for the flow field if an analytic form for H and K is used or
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FIGURE 1. (Colour online) Adaptively refined surface mesh for a sphere and a torus. An
L2-like error indicator is used to refine the mesh along the diffuse interface with c= 0.5. New
mesh points are projected onto Γ .

h eL2(KI) EOC eL2(KII) EOC eL2(KIII) EOC

Icosahedral grid 1.051 460 0.825 140 0.555 163 2.228 640
0.618 034 0.357 732 1.57 0.527 720 0.10 0.581 252 2.53
0.324 920 0.124 774 1.63 0.279 096 0.99 0.141 596 2.19
0.164 647 0.060 118 1.07 0.184 701 0.61 0.034 723 2.07
0.082 604 0.030 395 0.99 0.129 955 0.51 0.008 603 2.02
0.041 337 0.015 944 0.93 0.092 174 0.50 0.002 142 2.01
0.020 673 0.008 695 0.87 0.065 294 0.50 0.000 534 2.00

Cubed sphere grid 0.088 388 0.025 502 0.053 963 0.004 289
0.044 194 0.012 742 0.93 0.027 142 1.01 0.001 066 1.86
0.022 097 0.006 406 0.95 0.013 671 1.02 0.000 266 2.14
0.011 048 0.003 238 0.99 0.006 982 1.04 0.000 066 2.13

TABLE 1. Errors of the computed Gaussian curvature K in the L2-norm for an icosahedral
and a cubed sphere grid and estimated orders of convergence (EOC) for different methods:
(I) local weighted averaging, (II) weak formulation with piecewise linear finite elements
and piecewise linear approximation of the gradient of the position vector, and (III) weak
formulation with piecewise quadratic finite elements and projection of inner nodes to the
exact surface.

the numerical approximation (I); see table 3. Approach (I) is also used for the example
of a perturbed sphere for which H and K are not known analytically; see results in § 4.
The underlying mesh has the same structure as a cubed sphere grid, and is only locally
perturbed. In all other examples we use the analytic form for H and K.

The adaptive finite element toolbox AMDiS (Vey & Voigt 2007) is used for
discretization. The linearized systems are solved using the direct unsymmetric
multifrontal method (UMFPACK). Adaptive meshes are indispensable for providing
a high spatial resolution along the phase boundary described implicitly by c. Here
we use the value of c as an indicator of where to refine or coarsen the mesh. As
long as Γ is known, new grid points inserted in Γh will be projected on Γ to
reduce the approximation error. Figure 1 shows a typical mesh on a sphere and a
torus. If on the other hand the information of the geometry is only incomplete and
only the surface triangulation Γh is known, mesh modifications have to be done in
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FIGURE 2. (Colour online) Numerical solution for stationary rotating sphere problem. The
velocity together with the streamlines from different viewpoints are shown.

a geometrically consistent way (Bonito et al. 2010) to preserve accuracy on position,
total mean and Gaussian curvature. In the numerical examples we only use a given
surface triangulation without adaptive mesh refinement if an analytic expression for Γ
is not available; see § 4.

4. Validation and test cases
To validate the numerical approach for surface flow we consider the following

simplified single-phase flow problem. We first follow an approach in meteorology and
consider the motion of harmonic waves in the atmosphere. We use a rotating sphere
as our computational domain. The Coriolis force is incorporated into the model by
considering J(ψ, φ + l) with the Coriolis parameter l = 2ω sinϕ, angular frequency ω
and latitude ϕ. If we further neglect the viscosity and force terms the system reduces
to

(dtφ
m, α)+ (J(ψm−1, φm), α)+ (J(ψm, l), α)= 0, (4.1)

(φm, β)=−(∇Γψm,∇Γ β), (4.2)

and has the stationary solution ψ(ϕ, λ)= a sin(lλ)Pl
n(sinϕ)−2ω sinϕ/[K(n(n+1)−2)],

with a ∈ R, l, n ∈ N (l 6 n), λ the longitude and Pl
n the Legendre polynomial (see

Neamtan 1946). Figure 2 shows the numerical solution for K = 1, l = 6, n = 7,
a = 0.000 002 741 and ω = 10. Table 2 demonstrates second-order convergence of the
numerical approach in the maximum norm.

Inspired by this stationary example we construct a time-dependent analytical
solution for the original problem with viscosity and force terms. The solution reads
ψ(ϕ, λ, t)= sinϕ cos6ϕ ϕ sin(6λ)g(t), which is obtained by using K = 1, m= 6, n= 7,
a = 0.000 007 400 and ω = 0. We use g(t) = −2t + 1. As J(ψ, φ) = 0 we obtain
f =−56 sinϕ cos6ϕ sin(6λ)(−2+ 54µΓ g(t)). The system to be solved reads

(dtφ
m, α)= µΓ (∇Γ φm,∇Γ α)− 2µΓ (K∇Γψm,∇Γ α)+ (f , α), (4.3)

(φm, β)=−(∇Γψm,∇Γ β). (4.4)
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FIGURE 3. (Colour online) Numerical solution for time-dependent non-rotating sphere. The
velocity together with the streamlines at different times are shown.

N eL∞ EOC

770 0.027 4569
1 538 0.015 6816 0.81
3 074 0.007 9293 0.98
6 146 0.004 4774 0.82

12 290 0.002 1566 1.05
24 578 0.001 1472 0.91
49 154 0.000 5500 1.06
98 306 0.000 2889 0.93

TABLE 2. Stationary rotating sphere problem: L∞-error and experimental order of
convergence (EOC).

Figure 3 shows the numerical solution for µΓ = 0.1 at t = 0 and after 100 time
steps at t = 1. Table 3 demonstrates again second-order convergence of the numerical
approach in the maximum norm. We have computed the convergence rate with K = 1
given, as well as K computed from the surface mesh using approach (I), which does
not have an effect on the convergence rate in this particular example.

In order to demonstrate the applicability of the approach we consider a rotating
sphere with a source term f (x, y, z) = 20y for

√
y2 + z2 < 0.2 and x > 0 and f = 0

otherwise. The system to be solved reads

(dtφ
m, α)+ (J(ψm−1, φm), α)− (J(ψm, l), α)
= µΓ (∇Γ φm,∇Γ α)− 2µΓ (Kφm, α)+ (f , α), (4.5)

(φm, β)=−(∇Γψm,∇Γ β). (4.6)

Here we have used (∇Γψ
m · ∇ΓK, α) = 0 if K = 1. Figure 4 shows the numerical

solution for µΓ = 0.05 after 10 time steps at t = 0.1 for different values of ω .
As a last example we use a similar setting, but without the Coriolis force, on a

more complicated surface to validate the influence of the surface morphology on the
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FIGURE 4. (Colour online) Numerical solution for time-dependent rotating sphere problem.
The velocity together with the streamlines for ω = 10 and 50 at t = 1 are shown.

N eL∞ EOC eL∞,K EOCK

770 0.027 5380 0.027 4821
1 538 0.018 4179 0.58 0.018 3892 0.58
3 074 0.008 4335 1.13 0.008 4361 1.13
6 146 0.004 7253 0.84 0.004 7170 0.84

12 290 0.002 3489 1.01 0.002 3502 1.01
24 578 0.001 2034 0.96 0.001 2014 0.97
49 154 0.000 6380 0.92 0.000 6285 0.91
98 306 0.000 3016 1.08 0.000 3012 1.08

TABLE 3. Time-dependent non-rotating sphere problem: L∞-error and experimental order
of convergence (EOC), if K is given and numerically computed using the geometric
information of the surface mesh (indicated by K).

flow field. In this example the surface Γ is not given analytically and all geometric
quantities have to be computed from the surface triangulation Γh. We again use
approach (I). A benchmark problem with an analytical solution cannot be expected,
but various theoretical ideas and experimental investigations have been devoted to
the delicate interplay between surface geometry and condensed matter order on the
surface; see e.g. the review articles by Bowick & Giomi (2009) and Turner, Vitelli
& Nelson (2010). This coupling plays a role in determining the shape of biological
structures, such as viral shells and cell membranes, and introduces defects, such
as disclinations and grain boundary scars, in liquid crystals and crystalline layers.
More surprising is the existence of a coupling between defects in a surface fluid
and the curvature of the surface, which follow from the same geometric arguments.
This has been theoretically investigated for vortices in a superfluid thin layer by
Turner et al. (2010). To trap a vortex a non-symmetric surface is investigated.
A flat surface is perturbed by an exponentially decaying variation of the form
h(x, y)= (α/r0)(x2−λy2) exp(−(x2+y2)/2r2

0) in order to create a locally saddle-shaped
region. Using a Green’s function for a flat surface the vertex–curvature interaction
energy can be computed, showing that a vertex is indeed confined at the centre of
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(a)

(b)

(c)

FIGURE 5. (Colour online) Time evolution of a vortex on a Gaussian saddle placed on a
sphere: (a) full view, showing the computed Gaussian curvature K; (b) full view, showing the
geometric potential; and (c) zoomed-in view. A second vortex is positioned opposite on the
other side. The colour scale is according to the Gaussian curvature or the vortex–curvature
interaction energy of the surface, the geometric potential UG (see Turner et al. 2010). The
colour coding of the isolines and the vectors is according to the velocity.

the saddle. We use the same configuration but perturb a sphere and not a flat surface.
We further do not consider a superfluid thin layer but a setting with surface viscosity
µΓ = 0.05. This rules out any analytical treatment. Figure 5 shows the computed
evolution of the vortex over time and its trapping in the Gaussian saddle. In addition,
the computed Gaussian curvature K and the geometric potential UG are plotted, which
are obtained by solving the surface Poisson equation with the Gaussian curvature K
acting as a source 1ΓUG = K. Again the computation is done using piecewise linear
finite elements and the right-hand side K computed using strategy (I). The minimum
of the geometric potential and the trapping of the vortex in the centre of the saddle are
clearly seen.

5. Results for two-phase surface flow
We consider two examples, starting first with a Rayleigh–Taylor instability.

Therefore we place a fluid with a larger density on top of a fluid with a lower
density. The density ratio is 0.9, which allows one to incorporate the effect through
a Boussinesq approximation in the forcing term f . A more general treatment with
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FIGURE 6. (Colour online) Time-dependent solution for Rayleigh–Taylor instability on a
torus at various times. The stream function and the phase-field variable are shown.

larger density ratios could be done following the phase-field approaches for two-phase
incompressible flow discussed in Aland & Voigt (2012). Figure 6 shows a sequence
of the evolution on a torus. Shown is the phase-field function together with the
streamlines. The parameters used are ε = 0.02, σγ = 0.001 and µΓ = 0.05.

As a second example we show the coarsening dynamics of a two-phase system
following a spinodal decomposition process. We therefore compare the evolution with
and without flow. Figure 7 shows a sequence of the evolution on a sphere. Shown
again is the phase-field function together with the streamlines. The parameters used
remain the same. The initial solution is given by c= 0.5± η, with a noise term η.

Similar coexisting liquid phases on a micrometre-scale have been observed
experimentally over a wide range of temperatures and lipid compositions in giant
unilamellar vesicles (see e.g. Veatch & Keller 2003). The morphology of the vesicle
thereby remained almost stationary, which allows at least a qualitative comparison
with our results. Experiments probing these phase separation dynamics by measuring
the average domain size over time lead to very different results (Saeki, Hamada &
Yoshikawa 2006; Yanagisawa et al. 2007) and do not agree with other computational
studies for these systems, which are based on dissipative particle dynamics (Laradji
& Kumar 2006; Ramachandran, Laradji & Kumar 2009; Ramachandran, Komura &
Gompper 2010); for a detailed comparison of the approaches, see the discussion in
Fan et al. (2010). Here we could demonstrate that the hydrodynamic flow strongly
affects the spinodal decomposition kinetics. Both simulations clearly show a faster
coarsening process with fluid flow, which might help to explain the discrepancy in
experimentally and computationally observed scaling results. In both examples an
analytic form for K is used.

6. Conclusions
Various numerical methods have been proposed to solve partial differential equations

on arbitrary surfaces. The application of these methods, however, is restricted to
scalar problems. The complexity of vector-valued equations on surfaces, which
make use of the covariant derivative, and calculations in local coordinates, which
involve the coefficients of the Riemannian connection and its derivatives, are more
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FIGURE 7. (Colour online) Time-dependent solution for coarsening on a sphere at various
times, with and without flow. The stream function and the phase-field variable are shown.

complicated. This might explain why models for surface fluids are often written
but never solved for arbitrary surfaces. Here we overcome this difficulty by using
a stream function formulation. This results in a scalar surface partial differential
equation of fourth order. A parametric finite element approach is used to solve
this equation as a system of two second-order equations. Various test cases are
considered, which demonstrate the applicability of the approach for an incompressible
surface Navier–Stokes equation. One computational example is used to show the
interplay of surface morphology and flow patterns, which has to be further investigated.
Furthermore the model is extended to consider two-phase flow problems on a manifold
using a surface Navier–Stokes–Cahn–Hilliard model. The full model is applied to
simulate a Rayleigh–Taylor instability as well as coarsening dynamics following a
spinodal decomposition process on various geometries. The last example is related to
coarsening dynamics in multicomponent biomembranes.

So far the surface model is restricted to stationary surfaces. An extension to
evolving surfaces is possible as long as the incompressibility constraint ∇Γ · v = 0
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remains. The used numerical approach requires a computation of the mean curvature
H and the Gaussian curvature K. If not known analytically, these have to be obtained
from the surface mesh. We considered three different approaches. The accuracy of
these approaches strongly depends on the quality of the surface mesh and thus limits
the applicability for complicated surfaces and any extension towards the full model
introduced in § 2. As an alternative computational approach we thus suggest the use
of a diffuse interface approximation according to Rätz & Voigt (2006) and Li et al.
(2009). The surface is then only implicity defined using a phase-field function ϕ
from which the mean and Gaussian curvature can be computed (see Kwon, Thornton
& Voorhees 2010). The dependence on the quality of the surface mesh is thereby
circumvented, at the expense of a higher computational cost, as this approach requires
the solution of a three-dimensional problem. Within the diffuse interface approach, an
extension to evolving surfaces is straightforward and thus also an extension to the full
model introduced in § 2 will be possible.
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Appendix. A primer in differential geometry
We derive the viscous stress terms for fluid flow on manifolds in § A.5, in

which we follow Arroyo & DeSimone (2009). The stream function formulation is
obtained in § A.6. The required fundamentals of exterior differential calculus necessary
to accomplish this are provided in § A.2 on exterior calculus, § A.3 on intrinsic
formulation of differential operators and finally § A.4 on Laplacians for vector fields.
Basic terms are defined in § A.1. For a more comprehensive presentation, see Fraenkel
(1997).

A.1. Basic notation
Although we aim at an intrinsic description of fluid motion independent of the
embedding of the two-dimensional manifold in three-dimensional Euclidean space,
it is helpful to have the Euclidean coordinates X of the points of the manifold in
Euclidean space available. For the intrinsic description we use local coordinates x1, x2.
The corresponding basis vectors of the tangential space TMx at x are ei = (∂X/∂xi)
– but the embedding in R3 is not necessary to define the tangential vectors. In an
intrinsic description we define ei to be the vector corresponding to the directional
derivative (∂f /∂xi) of a function f on the manifold. The tangential space is in this
setting the vector space of directional derivatives of C∞-functions. The dual space of
the tangential space is the cotangential space – the space of linear forms on TMx,
where the canonical basis is given by dxi with dxi(ej)= δij.

Upper and lower indices are used to indicate the transformation properties of
objects. A covariant object is indicated by a lower index, a contravariant object is
indicated by an upper index. When a coordinate transformation x̃ = F(x) is applied,
a contravariant object vj transforms via ṽj = (∂ x̃j/∂xi)vi, whereas a covariant object
transforms via ṽj = (∂xi/∂ x̃j)vi. This is valid for tensors of higher level, too. The
Einstein summation convention is applied throughout this section – summation over
pairs of equal upper/lower indices is implicitly assumed.
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Our manifold is a Riemannian manifold if it is equipped with a Riemannian metric
〈viei, v

jej〉 = vivjgij, where gij is the metric tensor. When an embedding is present, the
metric tensor is defined by the Euclidean inner product of tangent vectors gij = 〈ei, ej〉.
The adjoint basis ei of the tangential space is defined by 〈ei, ej〉 = δij. The inverse
metric tensor is denoted by gij = 〈ei, ej〉. A vector v ∈ TMx is defined in terms of
contravariant coordinates v = viei or covariant coordinates with respect to the adjoint
base v = viei, where raising and lowering of indices is accomplished by the metric
tensors vi = gijvj and vi = gijv

j.
Finally

√
g :=√det gij is the stretch of area in local coordinates to area on the

manifold, i.e. dA=√gdx1dx2.
The differentiation of vector fields v along tangent vectors w requires additional

concepts because tangent spaces at different points have to be mapped onto. When an
embedding is present this is done by a parallel translation and a projection. In a purely
intrinsic formulation this is accomplished by the Levi-Civita connection ∇wv. Using
the Christoffel symbols Γ k

ij it is expressed in local coordinates

∇eiej = Γ k
ij ek, (A 1)

∇wiei
vjej = wi(∂iv

j)ej + Γ k
ij wivjek. (A 2)

We abbreviate the covariant derivative ∇i := ∇ei and the derivative of scalar functions
∂i = (∂/∂xi).

A.2. Exterior differential calculus
The generalization of differential operators like div, grad, rot to Riemannian manifolds
can be accomplished in an elegant way by identifying the tangent space and the
cotangent space (space of linear forms) of the manifold.

The connection between linear forms a= aidxi ∈ T∗Mx at x ∈M and tangent vectors
v ∈ TMx is established by the metric

〈v,w〉 = a(w), ∀ w ∈ TMx. (A 3)

We simply identify the vectors ei of the adjoint basis of the tangent space with the
basis forms dxi of the dual space. Moreover, we can identify 2-forms with 2-vectors
via

α12dx1 ∧ dx2 = α12e1 ∧ e2 = α12e1 ∧ e2, (A 4)

α12 = g1ig2jαij = 1
g
α12. (A 5)

By identifying vectors with forms, we are able to apply exterior differential calculus.
At the heart of exterior differential calculus are k-forms and the exterior differential

d, which maps k-forms to (k + 1)-forms. Functions on the manifold are 0-forms,
whereas the general k-form is an alternating k-linear form. The space of k-forms is
denoted by Λk. A basis of the space of k-forms is formed by

dxi1 ∧ · · · ∧ dxik , i1 < · · ·< ik, (A 6)

where

dxi1 ∧ · · · ∧ dxik(ej1, . . . , ejk)

:=


1 if (j1, . . . , jk) is an even permutation of (i1, . . . , ik),

−1 if (j1, . . . , jk) is an odd permutation of (i1, . . . , ik),

0 otherwise.
(A 7)
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For a two-dimensional manifold we have the two-dimensional space of 1-forms Λ1

with basis forms dx1, dx2, and the one-dimensional space of 2-forms Λ2 with basis
form dx1 ∧ dx2, where

dx1 ∧ dx2(v,w)= v1w2 − v2w1. (A 8)

The exterior differential is uniquely defined by the linearity, by df being the
usual differential for functions f ∈ Λ0, by dd = 0 and the anti-derivative property
d(α ∧ β) = dα ∧ β + (−1)p α ∧ dβ whenever α is a p-form. On a two-dimensional
closed manifold we have the de Rham complex

0 → Λ0 →d Λ1 →d Λ2 →d 0. (A 9)

A form α is said to be closed when dα = 0. It is said to be exact when α = dβ.
The property dd = 0 states that every exact form is closed. When every closed form
is exact, the complex is said to be exact. For a closed two-dimensional manifold
topologically equivalent to the 2-sphere we have that every closed 1-form is exact.

The Hodge star operator ∗ maps a k-form to a (2 − k)-form on a two-dimensional
manifold. For tangent vectors, the Hodge star operator is the (up to sign) unique
isometric section of the tangent bundle with the property 〈∗v,v〉 = 0.

Finally, the codifferential δ is the adjoint operator of the differential, i.e. δ = d∗.
The adjoint property is defined with respect to the metric induced on forms by the
Riemannian metric. For a two-dimensional manifold we have δ =− ∗ d∗.

In the setting above we obtain local coordinate expressions for the Hodge star
operator ∗ :Λi→Λ2−i,

∗ f =√gf dx1 ∧ dx2, f ∈Λ0, (A 10)

∗(viei)=√g(v1e2 − v2e1)= 1√
g
(v1e2 − v2e1), (A 11)

∗(α12dx1 ∧ dx2)= 1√
g
α12, (A 12)

the exterior derivative, d :Λi→Λi+1

df = ∂f

∂xi
dxi = ∂f

∂xi
ei =∇f , (A 13)

dv=
(
∂v2

∂x1
− ∂v1

∂x2

)
dx1 ∧ dx2, (A 14)

and the codifferential δ :Λi+1→Λi, δ =− ∗ d∗,

δv=− 1√
g

∂

∂xi

√
gvi =−∇ ·v, (A 15)

δ(α12e1 ∧ e2)= 1√
g

(
∂

∂x2
(
√

gα12)e1 − ∂

∂x1
(
√

gα12)e2

)
. (A 16)

A.3. Intrinsic description of differential operators
By identifying tangent vectors with 1-forms the first-order differential operators grad
and div and the second-order Laplace–Beltrami operator 1Γ are given in terms of
exterior calculus by

grad f = df , (A 17)
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divv=−δv, (A 18)
1Γ f = div grad f =−δdf . (A 19)

By utilizing the Hodge star operator ∗ we define curl-like operators on a manifold via

rot :Λ1→Λ0, rot v := ∗dv= δ ∗ v, (A 20)

Rot :Λ0→Λ1, Rot f := ∗df =−δ ∗ f . (A 21)

For the first-order differential operators div, grad, rot,Rot and the second-order
Laplace–Beltrami operator 1Γ we have the relations

rot Rot = ∗d ∗ d=−δd=1Γ , (A 22)
rot grad= 0, (A 23)
div Rot = 0. (A 24)

Because every closed 1-form is exact, dv = 0 implies v = df , or, equivalently, δv = 0
implies v = ∗df ; we conclude that Rot maps onto the space of divergence-free vector
fields. This property justifies the stream function approach.

A.4. The Laplacian for vector fields
The generalization of the Laplacian for vector fields from Euclidean space to
manifolds is not unique.

We mention here the Hodge–de Rham Laplacian (derived from the vector identity
1v= grad divv−∇ × (∇ × v)) given in terms of exterior calculus by

1R
Γ v=−(dδ + δd)v. (A 25)

For incompressible flow we have δv= 0 and thus 1R
Γ =−δd.

The Bochner Laplacian (or rough Laplacian) is defined via

1B
Γ v := −∇∗∇v, (A 26)

where the gradient operator has to be generalized to forms. In local coordinates we
obtain

1B
Γ v=

1√
g
∇j
√

g∇ejv. (A 27)

The two operators are related by the Weitzenböck identity

1B
Γ v=1R

Γ v+ Kv (A 28)

where K is Gaussian curvature.
For a more detailed treatise of Laplacians, see Arroyo & DeSimone (2009).

A.5. Derivation of viscous terms in the Navier–Stokes equations on a manifold
The relative rate of change of the length of tangential vectors x under a flow field v on
a manifold is given by 〈∇xv, x〉, which defines the symmetric strain rate tensor

ε(x, y) := 1
2(〈∇xv, y〉 + 〈∇yv, x〉). (A 29)

The contravariant representation ε = εijei ⊗ ej is given in local coordinates by

εij = ε(ei, ej)= 1
2(〈∇eiv, ej〉 + 〈∇ejv, ei〉). (A 30)
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The resulting forces f on line elements of length ds with normal n = njej depend
linearly on nds, where the relation is given by the stress tensor τ : f = τnds,
f i = τ ijnjds. The constitutive law relates the strain rate tensor to the stress tensor.
For Newtonian fluids stress τ depends linearly on the strain, τ = 2µε. For flow on
manifolds this relation is assumed for the principal components of the strain rate
tensor. This is accomplished by

〈τn, y〉 = 2µε(n, y), ∀ y, (A 31)

⇒ 〈τei, ej〉 = 2µε(ei, ej), (A 32)

i.e. τ ij = 2µεij = µ(〈∇eiv, ej〉 + 〈∇ejv, ei〉). (A 33)

The resulting force acting on fluid particles in an area Ω with boundary Γ
is obtained by a boundary integral, where we have to interpret the forces for a
moment as vectors in R3. Nevertheless, if we utilize the Levi-Civita connection in the
divergence operator, the application of the Gauss theorem gives just the components
tangential to the manifold∫

Γ

niτ
ijej ds=

∫
Ω

1√
g
∇i(
√

gτijej) dx. (A 34)

We end up with the force term

Fvisc = µ√
g
∇i
√

g(∇eiv + 〈∇ejv, ei〉ej). (A 35)

We show below that this simplifies to µ(1B
Γ v + Kv). The first term is easily

identified as µ1B
Γ v. The second term in the viscous force evaluates to the curvature

term

1√
g
∇i
√

g〈∇ejv, ei〉ej (A 36)

= 1√
g
∇i
√

g〈∇j, ei〉ej (A 37)

= 1√
g
∇i〈∇j

√
gv, ei〉ej − 1√

g
∇i
√

gvi 1√
g
(∂j
√

g)ej (A 38)

= 1√
g
∇i

(
(∂j
√

gvi)ej +√gvk〈∇jek, ei〉ej
)− vi

∇i
1√
g
(∂j
√

g)ej (A 39)

= 1√
g
(∂j
√

gvi)∇iej − 1√
g
∇i

(√
gv∇kei

)− vi
∇i

1√
g
(∂j
√

g)ej (A 40)

=−vk
∇i∇kei − vk

∇k(Γ
i

ije
j)= vk(∇k∇i −∇i∇k)ei (A 41)

= v1(∇1∇2 −∇2∇1)e2 + v2(∇2∇1 −∇1∇2)e1 = Kv. (A 42)

For the final step, see Fraenkel (1997, § 8.5).

A.6. Intrinsic description with a stream function
The advection operator is given in intrinsic terms by the Levi-Civita connection ∇v on
the Riemannian manifold

D
Dt

v= ∂v
∂t
+∇vv. (A 43)
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A more convenient form is given by the vector identity

∇vv= 1
2∇〈v,v〉 + (∗v) rotv, (A 44)

which is derived easily in our setting as

∇vv− 1/2∇〈v,v〉 = vi
∇iv− 1

2
(∂j〈v,v〉)ej

= vi〈∇iv, ej〉ej − 〈∇jv,v〉ej = viej(〈∇iv, ej〉 − 〈∇jv, ei〉)
=√g(v1e2 − v2e1)

1√
g
(〈∇1v, e2〉 − 〈∇2v, e1〉)

= (∗v)(∗dv). (A 45)

In order to eliminate the zero-divergence condition (2.17) we substitute

v = Rotψ = ∗dψ (A 46)

into (2.26) and apply the operator rot = ∗d = δ∗. This eliminates all gradient terms
(A 23), in particular the gradients of pressure p and kinetic energy. The terms in the
Navier–Stokes equations evaluate to

rotvt = rot Rotψt =1Γψt, (A 47)
rotv=1Γψ, (A 48)

and further

∇vv = (−dψ)(1Γψ)+ 1
2 d〈v,v〉, (A 49)

rot∇vv = −δ(∗dψ)(1Γψ)= 〈∗dψ, d1Γψ〉, (A 50)
=: J(ψ,1Γψ), (A 51)

where J(f , h) := 〈∗df , dh〉 is the so-called Jacobian. In Cartesian coordinates the
Jacobian evaluates to J = fxhy − fyhx. Finally,

rot1R
Γ v= (δ∗)(−δd)(∗dψ)= (δ∗)(∗d ∗ d)(∗dψ) (A 52)

= δ(−1)d(∗d∗)dψ = δdδdΨ (A 53)
=1Γ1ΓΨ (A 54)

rot Kv= K1Γψ + 〈∇Γψ,∇ΓK〉 =∇Γ · (K∇Γψ). (A 55)

We end up with a scalar partial differential equation for the stream function ψ on a
manifold

∂t1Γψ + J(ψ,1Γψ)= µ(12
Γψ + 2∇Γ · (K∇Γψ))+ f , (A 56)

where f = rot F. For computational purposes it is convenient to represent tangent
vectors of a two-dimensional manifold as vectors in three-dimensional Euclidean space.
In this setting the Hodge star operator translates to a rotation of 90◦ in the tangential
plane and the metric is replaced by the Euclidean scalar product.
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