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a b s t r a c t

Transport and mixing processes in dynamical systems are often difficult to study analytically and
therefore a variety of numerical methods have been developed. Finite-time Lyapunov exponents
(FTLEs) or related stretching indicators are frequently used as a means to estimate transport barriers.
Alternatively, eigenvectors, singular vectors, or Oseledets vectors of numerical transfer operators find
almost-invariant sets, finite-time coherent sets, or time-asymptotic coherent sets, respectively, which
are minimally dispersed under the dynamics. While these families of approaches (geometric FTLEs and
the probabilistic transfer operator) often give compatible results, a formal link is still missing; here we
present a small step towards providing a mathematical link.

We propose a new entropy-based methodology for estimating finite-time expansive behaviour
along trajectories in autonomous and nonautonomous dynamical systems. We introduce the finite-time
entropy (FTE) field as a simple and flexible way to capture nonlinear stretching directly from the entropy
growth experienced by a small localised density evolved by the transfer operator. The FTE construction
elucidates in a straightforwardway the connection between the evolution of probability densities and the
local stretching experienced.

We develop an extremely simple and numerically efficient method of constructing an estimate of the
FTE field. The FTE field is instantaneously calculable from a numerical transfer operator — a transition
matrix of conditional probabilities that describes a discretised version of the dynamical system; once
one has such a transition matrix, the FTE field may be computed ‘‘for free’’. We also show (i) how to
avoid long time integrations in autonomous and time-periodic systems, (ii) how to perform backward
time computations by a fast matrix manipulation rather than backward time integration, and (iii) how to
easily employ adaptive methods to focus on high-value FTE regions.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The numerical analysis of transport and mixing processes in
dynamical systems and aperiodic flows has been the subject of
much research over the past 25 years. This is largely due to the
wide range of applications including astrodynamics, molecular dy-
namics, fluid dynamics, climate and ocean dynamics; see e.g. [1–4]
for discussions of transport and mixing phenomena.

Assuming that the motion of a particle is determined by an
underlying autonomous or nonautonomous dynamical system
allows for an application of different concepts from dynamical
systems theory to analyse and quantify transport. The developed
approaches fall roughly into two classes (i) geometric methods
which make use of invariant manifolds and Lagrangian coherent

∗ Corresponding author.
E-mail addresses: g.froyland@unsw.edu.au (G. Froyland),

kathrin.padberg@tu-dresden.de (K. Padberg-Gehle).

0167-2789/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2012.06.010
structures and (ii) probabilistic techniques which are based on the
notions of almost-invariant and finite-time coherent sets.

Geometrical structures such as invariant manifolds are known
to play a key role in dynamical transport and mixing. In particular,
in the context of lobe dynamics [5,6,3] one makes use of the
fact that segments of invariant manifolds of hyperbolic objects
form partial transport barriers. In the aperiodic time-dependent
settings, finite-time hyperbolic material surfaces [7–9] have been
proposed as generalisations of invariant manifolds that form
barriers to mixing. These Lagrangian coherent structures are often
studied computationally based on finite-time Lyapunov exponents
(FTLE), see e.g. [7,8,10,4,9,11]. This quantity measures the growth
of an infinitesimal perturbation under the dynamics. Ridges in
the FTLE field may indicate transport barriers, see [9] for the
mathematical conditions on Lagrangian coherent structures.

Probabilistic approaches study the evolution of densities and
aim at detecting regions in phase space that are minimally dis-
persed under the action of the dynamical system. These regions
are known as almost-invariant or metastable sets in autonomous
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systems. The concept arose about 15 years ago in the context
of dynamical systems [12,13] and time-symmetric Markov pro-
cesses [14,15]. The main theoretical and computational tool is
the Perron–Frobenius (or transfer) operator and almost-invariant
sets were estimated heuristically from eigenfunctions of the
Perron–Frobenius operator. Further theoretical and computational
extensions have since been constructed [16–18]. Very recently
a transfer operator-based treatment of coherent sets in nonau-
tonomous systems has been proposed in the time-asymptotic
[19,20] and finite-time [21,22] settings.

Both families of approaches (geometric and probabilistic) have
a number of advantages and disadvantages, but give very similar
answers in case studies; see [23] for a detailed discussion as well
as for further references on prior work. However, formal results on
the connection between the two approaches are still missing.

Work related to present paper includes [24,25], where it was
observed that information about stretching such as measured
by FTLE can also be extracted from a discretised model of
the smooth dynamics via an associated directed graph. Certain
expansion concepts related to the neighbourhood of a vertex in
the graph were studied and it was found that vertices with high
expansion correspond to regions in phase space with high FTLE
values. In [26] the covariance of an image of an initial density
under the dynamics is computed, and from this an estimate of
stretching is obtained. In [27] a very similar approach for stochastic
differential equations is proposed, whereby the covariance matrix
of stochastically integrated sample trajectories is computed to
obtain an estimate of ‘‘stretching’’. The main point of [26] is
to attempt to measure nonlinear stretching effects on a small,
but not infinitesimal, neighbourhood, although these effects are
only partly captured by the use of covariance, which is itself a
linear statistic. The methods [26,27] heavily depend on the final
geometric shape of the image of the small neighbourhood. For
example, in two-dimensions a long thin linear image (stretching
only) would receive a high ‘‘stretching’’ value, while the same
image curled around itself (stretching + folding) would receive a
low ‘‘stretching’’ value; in contrast, the method put forward in the
present paper would assign essentially equal stretching values in
these two cases.

In this paper we give a mathematically precise definition of
nonlinear stretching based on the evolution of probability den-
sities and present a very efficient computational approach that
makes direct use of a discretised transfer operator. We measure
the growth rate of uncertainty generated by a small initial random
ϵ-perturbation of the original nonlinear dynamics. This uncer-
tainty is captured by measuring the entropy increase experienced
by a probability density under the action of the dynamical sys-
tem. We show that under very general conditions (the dynamics
need not even be differentiable) a well-defined stretching quan-
tity, called finite-time entropy (FTE), exists, which defines a con-
tinuous field on the state space. Under mild conditions on the
differentiability of the system, we prove the existence of a ‘‘deter-
ministic limit’’ of the FTE fields as ϵ → 0, and show that this limit
is comparable to FTLE fields. Thus, we may view FTE as a formal
nonlinear generalisation of FTLE that operates on ϵ-scales, rather
than infinitesimal scales.

We detail a very fast numerical approximation scheme—
especially in the cases of autonomous flows/maps and time-
periodic flows. Our numerical approach easily extends to aperiodic
flows. In addition to beingmore computationally efficient than the
approaches of [24–26] and simpler to implement, our approach
has a number of theoretical advantages, including (i) provision
of a truly nonlinear stretching estimate at every ϵ-perturbation
or discretisation level, (ii) robustness to discretisation or ϵ-
perturbation level used, with a convergence result in the zero
perturbation limit, and (iii) continuity of the FTE field for every
ϵ-perturbation level.
The paper is organised as follows: in Section 2 the new
probabilistic concept of finite-time entropy is introduced and
in Section 3 we show how this approach naturally fits into a
set-oriented framework. Section 4 describes the extension to
nonautonomous dynamical systems. Computational aspects are
addressed in Section 5, before we demonstrate the strength of
our approach with several example systems and compare to other
concepts in Section 6. We conclude with a discussion about open
topics and future work in Section 7.

2. Definition and properties of finite-time entropy

For the development of the theoretical backgroundwe consider
a discrete dynamical system T : X → X , where T is assumed to be
a diffeomorphism on a compact set X ⊂ Rd. By T k, k ∈ Z we
will denote the k-fold application of T (or the inverse system T−1,
in case k < 0). Note that T might, for instance, be a time-1 flow
map of some autonomous ordinary differential equation. As will
be shown later in Section 4 there is a straightforward extension to
nonautonomous dynamical systems.

The growth of infinitesimal perturbations in the initial condi-
tions under the dynamics of the map T k, k ∈ Z, is typically mea-
sured in terms of the maximum finite-time Lyapunov exponent
(FTLE)

Ek(x0) =
1

2|k|
log


λmax[DT k(x0)⊤DT k(x0)]


, (1)

where DT k(x0) =
k−1

i=0 DT (xi), T (xi) = xi+1, i = 0, . . . , k − 1
denotes the total derivative of T k at x0 (analogously for the inverse
system) and λmax[M] is the largest eigenvalue of a matrix M .
Thus, Ek(x0) measures the largest relative length growth rate of
any vector under the action of the linearised system DT k(x0). In
the following we want to describe a probabilistic framework that
enables one to measure the growth of uncertainties under the
nonlinear dynamics.

For thiswe consider the evolution of probability densities under
the action of the dynamical system. Denote the Lebesgue measure
on X by m and let f ∈ L1(X,m) be a density; that is, f ≥ 0 and
f dm = 1. The natural push-forward of f under themap T is given

by the Perron–Frobenius operator P : L1(X,m) 	 defined by

P f (x) =
f (T−1x)

| detDT (T−1x)|
. (2)

For this definition tomake sense, T should be a non-singular trans-
formation with respect to Lebesgue measure (see eg. [28, p. 42]).
In Theorem 2.7 we ask that | detDT | be uniformly bounded away
from zero; this guarantees (and is slightly stronger than) non-
singularity.

Webegin by providing a formal definition of finite-time entropy
and later develop a very efficient set-oriented approach for its
computation in Sections 3 and 5.

Definition 2.1. Let f ∈ L1(X) be a density. The differential entropy
of f is defined by h(f ) = −


S f log f dm, where S is the support

of f .

The notion of differential entropy goes back to Boltzmann and
we refer the reader to Chapter 9 [28] for a discussion in the dy-
namical systems context. The following well-known lemma eluci-
dates the relationship between entropy and local expansion and
contraction.

Lemma 2.2. h(P kf ) = h(f ) +

f log | detDT k

| dm.

Proof. We prove the result for k = 1 and the result immediately
extends to k ∈ Z by applying the k = 1 result to the map T k.
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Fig. 1. Action of the smoothing operator Aϵ in two dimensions. An initial density
fϵ (dark disc on left) gets stretched and folded (dark, thin sausage on right) under
the evolution of the Perron–Frobenius operator. The additional application of the
smoothing operator fattens the support of the image density (light, thick sausage
on right); this thickening is more pronounced along contracting directions. This has
the (desired) effect that the finite-time entropy (Eq. (4)) measures predominantly
the nonlinear stretching.

h(P f ) = −


P f logP f dm(x)

= −


f (T−1x)

| detDT (T−1x)|
· log

f (T−1x)
| detDT (T−1x)|

dm(x)

= −


f (y) · log(f (y)/| detDT (y)|) dm(y)

(change of variables y = T−1x),

= h(f ) +


f (y) · log | detDT (y)| dm(y). �

Thus the increase in differential entropy from f to P kf is
the weighted average (according to f ) of the field of the sum
of all finite-time Lyapunov exponents. In the case of volume-
preserving systems, since DT ≡ 1, it immediately follows that
h(P kf ) = h(f ) for all k ∈ Z. Further statements relating the
entropy and conditional entropy of f to those of P kf may be
found in [28]; original work for discrete and continuous state
spaces is contained in [29,30], respectively. As we are interested
in measuring nonlinear stretching we need to find a way to isolate
expansion from contraction in the above formula. Therefore we
introduce a smoothing operator to neutralise the entropy-reducing
effect of the contractive dynamics.

Definition 2.3. Let Bϵ(x0) denote an ϵ-ball centred on x0, and
fϵ,x0 := (1/m(Bϵ(x0)))1Bϵ (x0) a uniform density supported on
Bϵ(x0). The ϵ-smoothing operator Aϵ is the averaging operator
with radius ϵ defined by Aϵ f (x) := (1/m(Bϵ(x)))


Bϵ (x) f dm.

Under the action of the Perron–Frobenius operator a uniform
density supported on a ball of radius ϵ will be stretched,
folded and contracted as prescribed by the underlying map T .
The application of the ϵ-smoothing operator fattens this image
density by increasing the density support. This fattening has a
dominant effect along contracting directions; see Fig. 1 for an
illustration. Thus the entropy increase experienced in this set-
up will predominantly be related to stretching along expanding
directions and this is what we wish to measure via finite-time
entropy:

Definition 2.4. Given ϵ > 0 we define the finite-time entropy at
x0 by

FTEϵ(x0, k) :=
1
|k|

[h(AϵP
kfϵ,x0) − h(fϵ,x0)]. (3)

We define the deterministic limit of finite-time entropy at x0 by

FTE(x0, k) := lim
ϵ→0

FTEϵ(x0, k). (4)

In words, FTEϵ(x, k) is the rate of increase in entropy experi-
enced in an ϵ-neighbourhood of x over k iterations of T , followed
by an ϵ-perturbation. This rate of increase in entropy in a neigh-
bourhood of xmay also be loosely thought of as the rate of increase
in the uncertainty in the future position of T kx under the random
ϵ-perturbed dynamics.

Theorem 2.5. Let T : X → X be non-singular. For each fixed ϵ > 0
and k, FTEϵ(x, k) is a continuous function of x ∈ X.

Proof. Fix ϵ, k and x. Let (xn)n∈N be a sequence where xn → x as
n → ∞. We show that FTEϵ(xn, k) → FTEϵ(x, k) as n → ∞.

To do this, we show |h(AϵP
kfϵ,xn) − h(AϵP

kfϵ,x)| → 0
and |h(fϵ,xn) − h(fϵ,x)| → 0. For the latter, we note that
∥(1/m(Bϵ(xn)))1Bϵ (xn) − (1/m(Bϵ(xn)))1Bϵ (x)∥1 → 0 and apply
Lemma A.1. For the former, we note that (i) ∥AϵP

k
∥1 ≤ 1

and (ii) AϵP
k(1/m(Bϵ(xn)))1Bϵ (xn) and AϵP

k(1/m(Bϵ(x)))1Bϵ (x)

are bounded densities (bounded because P k(1/m(Bϵ(x)))1Bϵ (x) is
a density and Aϵ f ≤ (1/m(Bϵ))


fdm for any f ≥ 0). We argue as

above and apply Lemma A.1 again. The result follows. �

For the special case of affine maps we make the following
observation:

Lemma 2.6. If T is affine then FTEϵ(x, k) is independent of ϵ.

Proof. We again prove the result only for k = 1, as it immediately
extends to k ∈ Z by applying the k = 1 result to T k. Let
fϵ,x := (1/m(Bϵ(x)))1Bϵ(x) and WLOG assume that the density fϵ,x
is centred at the origin; we now drop the x subscript. Denote by
σ1 ≥ σ2 ≥ · · · ≥ σd > 0 the d singular values of the linear
part of T . Since T is affine, P fϵ is a uniform density supported on a
ellipsoid with radii given by the d values ϵσ1, ϵσ2, . . . , ϵσd. WLOG
we assume below that this ellipsoid, denoted Eϵ(0) is centred at
the origin. Now,

Fϵ(x) := (AϵP fϵ)(x) =
1

m(Bϵ)


Bϵ (x)

1
m(Eϵ(0))

1Eϵ (0)(y) dy

=
1

m(Bϵ)2
d

i=1
σi


Bϵ (x)

1Eϵ (0)(y) dy

=
ϵd

m(Bϵ)2
d

i=1
σi


B1(x/ϵ)

1E1(0)(z) dz, using z = y/ϵ,

=
1

ϵdm(B1)2
d

i=1
σi


B1(x/ϵ)

1E1(0)(z) dz

= (1/ϵd)F1(x/ϵ).

A simple calculation shows h(Fϵ) = h(F1) + log ϵd. Since h(fϵ) =

h(f1) + log ϵd, the result follows. �

Wedenote by T A,k
x the affine Taylor approximation of T k centred

on x: T A,k
x (y) = T k(x) + DT k(x) · (y − x), and denote by FTEA(x, k)

the (ϵ-independent by Lemma 2.6) finite-time entropy of T A,k at x
(i.e. over k steps).

The following theorem ensures the existence of the finite-
entropy FTE(x, k) under very general conditions on T :

Theorem 2.7. Let T : X → X be C2 and | detDT (x)| be uniformly
bounded away from zero. Fix x ∈ X. Then the limit FTE(x, k) =

limϵ→0 FTEϵ(x, k) exists and equals FTEA(x, k).

Proof. See the Appendix. �
In general it is difficult to write down closed form expressions

for FTEϵ(x, k), so we provide two motivational examples to argue
that FTEϵ(x, k) is a good measure of stretching.
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Fig. 2. (a) An initial density in R2: Graph of density fϵ,0 where ϵ = 1. (b) Smoothed image of an initial density in R2: Graph of AϵP fϵ,0 where T (x, y) = (4x, y/4) and ϵ = 1.
Example 2.8 (Affine Map in 1D). Let Tx = αx + c, α > 1, c ∈

R. Consider a density f = 1I/m(I) on an interval I ⊂ R of
length L. Then it is straightforward to show that h(f ) = log L and
h(Aϵ f ) = ϵ/L + log L. In particular, for L = 2ϵ we obtain h(f ) =

log 2ϵ. As P kf is a uniform density on an interval of length αkL it
follows that h(AϵP

kf ) = ϵ/(2αkϵ)+log(2αkϵ). Thus FTEϵ(x, k) =

(1/k)(1/(2αk) + log(2αkϵ) − log(2ϵ)) = logα + 1/(2kαk) for all
ϵ > 0, x ∈ R and k ≥ 1. Thus, FTEϵ(x, k) captures the expansion
rate α plus a small error term that decreases exponentially in k.

The following example for a simple linear map of R2 gives an
indication of the approximate values of FTE(x, k).

Example 2.9 (Affine Map in 2D). Consider the affine map T (x, y)
= (4x, y/4), with singular values σ1 = 4 and σ2 = 1/4. By
Lemma 2.6 FTEϵ(x, k) is independent of ϵ and in this example we
have chosen ϵ = 1. Fig. 2(a) shows the initial uniform density f1,0
supported on a disc of radius 1 centred at the origin, while Fig. 2(b)
shows a graph of A1P f1,0.

While the support of P f1,0 is a long, thin ellipse with radii 4
and 1/4, the smoothing operator A1 spreads this support, with
the dominant effect occurring in the y-coordinate. The support of
A1P f1,0 is contained in a region [−(σ1 + 1), σ1 + 1] × [−(σ2 +

1), σ2 + 1]. For σ1 ≫ 1 ≫ σ2, this smoothed density is thus
approximately a stretching of the initial density by a factor σ1 and
so FTE(0, 1) ≈ log σ1.

In Section 6 we will demonstrate the strength of the finite-
time entropy concept in several nonlinear example systems and
also compare with the results obtained from finite-time Lyapunov
exponent computations.

3. Set-oriented description of finite-time entropy

The concept of finite-time entropy fits naturally into the set-
oriented framework for the global analysis of dynamical sys-
tems [31–33]. In particular, for reasons of computational efficiency
we wish to utilise a discrete and finite rank approximation of the
Perron–Frobenius operator P . A standard approach for numeri-
cally approximatingP is Ulam’smethod [34]; wewill describe fur-
ther computational aspects in Section 5.1. One partitions X into a
large collection of connected sets {B1, . . . , Bn}. In practice the par-
tition is defined via a regular grid and each Bi is a d-dimensional
box. One then considers a finite-rank approximation of P , re-
stricting the action of P to the basis of characteristic functions
sp{1B1 , . . . , 1Bn}. The matrix representation of this action is

Qij =
m(Bi ∩ T−1Bj)

m(Bj)
. (5)
It is usually more convenient to consider this discretised action
on probability measures rather than densities. The row stochastic
matrix

Pij =
m(Bi ∩ T−1Bj)

m(Bi)
(6)

represents the action on discrete probability measures. That is, if
v ≥ 0 is a probability vector (


i vi = 1) then the probability

vector v′ defined by v′
= vP is the push-forward of the probability

vector v under the discretised action of T .
In this discrete setting, we represent the density functions of

the previous section by discrete probability measures that assign
mass to each partition element Bi, i = 1, . . . , n. Let µ be such a
probability measure. We define the entropy of µ, denoted H(µ)
by H(µ) = −

n
i=1 µ(Bi) logµ(Bi). Writing pi = µ(Bi) we have

H(p) = −
n

i=1 pi log pi.
The natural action of T on µ is T ∗µ = µ ◦ T−1. So our discrete

approximation of T ∗µ(Bj) is
n

i=1 piPij = (pP)j.

Definition 3.1. Assume that the elements of the partition {B1, . . . ,
Bn} have equal1 volume.

Let δi denote the n-vector with a 1 in the ith position and 0
elsewhere. We define the discrete finite-time entropy on partition
set Bi to be

FTE(Bi, k) =
1
|k|

H(δiP (k)) = −
1
|k|

n
j=1

P (k)
ij log P (k)

ij (7)

where P (k) denotes the discretised transfer operator with respect
to the map T k.

In MATLAB code, one may calculate (7) as

[i,j,nonzeroPk]=find(Pk);
FTE=-(1/abs(k))*sum(sparse(i,j,nonzeroPk

.*log(nonzeroPk))’);

where Pk = P (k) is a sparse transition matrix, yielding an n-vector
FTE containing FTE(Bi, k), i = 1, . . . , n.

Eq. (7) mimics (3). The vector δi replaces fϵ,x where x ∈ Bi and ϵ
is of the order of the radius of the set Bi. The vector δiP (k) replaces
AϵP

kfϵ,x as the action of P (k) on measures is approximately that
of AϵP

k on densities, namely an application of (T k)∗ followed
by a smoothing of the order of the radii of the boxes Bj that are
intersected by T k(Bi). We could also have written FTE(Bi, k) =
1
|k| (H(δiP (k))−H(δi)) tomake the analogymore obvious asH(δi) =

0. For the purposes of estimating finite-time entropy, the sets Bi
should be close to spherically symmetric to avoid bias related to

1 The treatment of differing box volumes will be addressed in Section 5.3.
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Fig. 3. Comparison of the FTE-based expansion rates with the analytical (dashed curves) ones for the nonlinear doubling map. (a) Graph of FTE(x, 1) vs. x (dark solid (red,
online)); (b) graph of FTE(x, 2) vs. x (dark solid (red, online)), graph of FTEmult(x, 2) vs. x (light solid (green, online)); (c) graph of FTE(x, 3) vs. x (dark solid (red, online)), graph
of FTEmult(x, 3) vs. x (light solid (green, online)); (d) graph of FTE(x, 5) vs. x (dark solid (red, online)), graph of FTEmult(x, 5) vs. x (light solid (green, online)). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the orientation of the image set T k(Bi). In practice we have found
that choosing Bi as cubes is perfectly adequate.

To illustrate the discrete setting we return to the examples
(Examples 2.8 and 2.9) of the previous section as well as introduce
a nonlinear doubling map.

Example 3.2 (Affine Map in 1D). Consider a bounded interval X ⊂

R and a uniform 2ϵ-partition {B1, . . . , Bn} of X . The grid set Bi ⊂ R
has length 2ϵ and we are concerned with the image of Bi under
Tx = αx + c , for α > 1, c ∈ R. Assume that α, c and k ∈ N are
chosen so that the interval T k(Bi) ⊂ X . The interval T k(Bi), k ≥ 1,
has length 2ϵαk and will cover either ⌊αk

⌋ or ⌊αk
⌋ − 1 grid sets

with ‘‘overhang’’ fractions of 0 ≤ η1, η2 ≤ 1 on the two partially
covered grid sets. The values of η1, η2 depend on the interplay of
α, c , and the grid. The discretemeasure given by δiP has either ⌊αk

⌋

or ⌊αk
⌋ − 1 sets with measure 1/αk. We treat the former case and

the latter case follows similarly.

H(δiP) = −⌊αk
⌋((1/αk) log(1/αk)) − (η1/α

k) log(η1/α
k)

− (η2/α
k) log(η2/α

k)

= −((⌊αk
⌋ + η1 + η2)/α

k) log(1/αk)

− (η1/α
k) log(η1) − (η2/α

k) log(η2)

= k logα + (η1/α
k) log(1/η1) + (η2/α

k) log(1/η2).

Hence, for 1 ≤ i ≤ n and k ≥ 1, one has

FTE(Bi, k) = logα + (η1/kαk) log(1/η1)

+ (η2/kαk) log(1/η2). (8)

Thus, the value FTE(Bi, k) captures the logarithm of the stretch-
ing factor α with additional error terms due to the grid-based
diffusion or smoothing that decrease exponentially with k. By dif-
ferentiation, we determine that the largest error occurswhen η1 =

η2 = e−1; then FTE(Bi, k) = logα + 2/(keαk). Compare this with
Example 2.8, where the additional term was 1/(2kαk).
In practice, we typically wish to estimate FTE values for large α
corresponding to the stretching experienced under several itera-
tions of a map. The error terms will then be small in comparison to
logα.

Example 3.3 (Nonlinear Doubling Map). We illustrate the expan-
sion estimates computationally for a nonlinear expanding map.
Define a nonlinear doubling map T : [0, 1] → [0, 1] by

T (x) = 2x +
sin(2πx)

4π
mod 1.

We have modified the standard doubling map x → 2x(mod 1) by
adding a nonlinear term. The expansion now ranges from 3/2 to
5/2 (see Fig. 3(a) (dashed)).

We partition the unit interval into n = 1024 equally sized
intervals and use R = 10 000 ‘‘inner grid’’2 points per box for the
computation of the transition matrix P . This large value of R has
been deliberately chosen so that we can be sure that errors due to
sparse sampling will be negligible in our studies.

Fig. 3 shows graphs of the exact derivatives (T k)′(x) vs. x
(dashed) and graphs of FTE(x, k) vs. x (where FTE(x, k) is evaluated
at the centre point x of each interval). The FTE estimates appear to
converge very quickly to the exact derivatives, compatiblewith the
estimates from Example 3.2.

Example 3.4 (AffineMap in 2D). Consider a bounded rectangle X ⊂

R2 and a uniform partition {B1, . . . , Bn} of X into squares of side
length 2ϵ. The grid set Bi ⊂ R has area 4ϵ2 and we are concerned
with the image of Bi under T (x, y) = (αx, βy) + (c1, c2), for α > 1
and 0 < β < 1, c1, c2 ∈ R. Assume that α, β, c1, c2, k are chosen
so that the rectangle T k(Bi) ⊂ X . The rectangle T k(Bi), k ≥ 1 has

2 See [32].
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Fig. 4. Evolution of a uniform density initialised in the small black box B2048 by the discretised transfer operator. The boxes are coloured according to density (darker
colour= higher density). (a) FTE(B2048, 5) = 0.6524which corresponds to a stretching factor ofα5

= 26.1. The image density is shown as the top dark connected component
supported on 31 boxes (indicated by upper arrow). The approximation of FTE(B2048, 10) ≈ FTEmult(B2048, 10, 5) = 0.5260 via P (5) , corresponds to stretching factor α10

=

192.4. The image density is supported on 331 boxes (light-coloured tangled structure close to the boundary as indicated by lower arrow). (b) FTEmult(B2048, 10, 1) = 0.6243,
corresponding to a stretching of α10

= 514.5. The image density is supported on 1692 boxes. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
side lengths 2ϵαk and 2ϵβk. As β < 1 there are twomain cases for
the positioning of T k(Bi) relative to the grid.
Case 1: T k(Bi) fits entirely within a single horizontal strip of grid
sets and has overhang fractions η1, η2 in the x-direction as in the
one-dimensional example above. Here one has

FTE(Bi, k) = logα + (η1/kαk) log(1/η1)

+ (η2/kαk) log(1/η2). (9)

Case 2: T k(Bi) straddles two horizontal strips of grid sets and has
overhang fractions η1, η2 in the x-direction and overhang fractions
γ1, γ2 in the y-direction (note γ1 + γ2 = βk). Here one obtains

FTE(Bi, k) = logα + (η1/kαk) log(1/η1) + (η2/kαk)

× log(1/η2) + logβ + (γ1/k(γ1 + γ2))

× log(1/γ1) + (γ2/k(γ1 + γ2)) log(1/γ2). (10)

The derivation follows from repeated arguments of the type in
Example 3.2. In (9) the maximal error above logα is 2/(keαk) as
in the one-dimensional example. In (10) the maximum additional
error due to the terms involving γ1 + γ2 = βk occurs when
γ1 = γ2 = βk/2. Substituting these values into the last three
terms of (10) yields logβ+(1/2k) log(2/βk)+(1/2k) log(2/βk) =

(1/k) log 2 so that the maximum error above logα is 2/(keαk) +

(1/k) log 2.
From (9) and (10) it thus follows for this example that

logα ≤ FTE(Bi, k) ≤ logα + 2/(keαk) + (1/k) log 2, (11)

where the upper bound converges to the lower bound logα with
increasing k.

We note that similar analyses can be carried out to study the
effects of rotation (so that the sides of T k(Bi) are not parallel
with grid boundaries). The maximum errors (including possible
underestimates for some configurations) are of the same order as
the errors discussed above.

Example 3.5 (Nonlinear Stretching in 2D). We now illustrate how
FTE can quantify nonlinear stretching by studying the evolution of
an initial density concentrated in a box of side length 2−6 under
the double gyre flow.

The double gyre flow [10] is given by the time-periodic velocity
field

ẋ = −πA sin(π f (x, t)) cos(πy) (12)

ẏ = πA cos(π f (x, t)) sin(πy)
df
dx

(x, t),

where f (x, t) = ϵ sin(ωt)x2 + (1 − 2ϵ sin(ωt))x. It has become
a well-known test case for computations of FTLE fields and
Lagrangian coherent structures, see e.g. [35,23] for recent analyses.

We choose parameter values A = 0.25, ϵ = 0.25, ω = 2π
and fix t0 = 0. We obtain a flow of period τ = 1 on the domain
X = [0, 2] × [0, 1]. The time-1 map T : X → X is the Poincaré
return map on the time-expanded domain at time slice t = 0. We
compute the transition matrices for k = 5 and k = 10 iterates of
T ; more details on the computational aspects will be discussed in
Sections 5 and 6.1.

Fig. 4(a) shows the evolution of an initially uniform density
supported on the box B2048 shown in black at about [1, 0.5] under
the action of the discretised transfer operators P (5) and aswell as an
approximation of P (10) by (P (5))2, see Section 5.1 for details on such
an approximation. The side length of the box is 0.0156, mimicking
an ϵ-ball with ϵ = 0.0078.

The image density under P (5) is shown as the dark connected
component at the top of Fig. 4(a), the image density obtained by
applying (P (5))2 is supported on the complicated light-coloured
structure close to the boundary. The location of the two images is
indicated by arrows.

We obtain FTE(B2048, 5) = 0.6524 which corresponds to a
stretching factor of α5

= 26.1. The image density is supported
on 31 boxes, where visually the width of the support is for most
parts only one box. Hence the FTE-value approximately measures
– as desired – the length of the nonlinear strip (which appears
to be well approximated by the value 26.1) and thus only the
expansive behaviour. Similar estimates hold for the approximation
of FTE(B2048, 10) ≈ FTEmult(B2048, 10, 5) = 0.5260, corresponding
to a stretching factor of α10

= 192.4 with the image density
supported on 331 boxes. The width of the support is between one
and two boxes so that 192.4 appears to be a good estimate of the
length.

4. Finite-time entropy in nonautonomous systems

In this section we briefly show how the concept of finite-time
entropy extends to nonautonomous dynamical systems. For this
we assume thatwe are given a sufficiently smooth time-dependent
vector field f (x, t) where x ∈ X, t ∈ R, and where X is again a
compact subset of Rd. The flow map Φ(x, t, τ ) : X × R × R → X
outputs the final position of a point x initialised at time t after
flowing for duration τ . Similarly to (2) we can define a transfer
operator Pt,τ : L1(X,m) 	 related to the flow map Φ(·, t, τ ) by

Pt,τ f (x) =
f (Φ(x, t + τ , −τ))

| detDΦ(Φ(x, t + τ , −τ), t, τ )|
. (13)

So if f (x) is a density at time t, Pt,τ f (x) describes the density at
time t + τ evolved by the flow map.

Definition 4.1. Let ϵ > 0. In analogy to (3) and (4) we define the
finite-time entropy at x0 by

FTEϵ(x0, t, τ ) :=
1
|τ |

[h(AϵPt,τ fϵ,x0) − h(fϵ,x0)]. (14)
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We define the deterministic limit of finite-time entropy at x0 by

FTE(x0, t, τ ) := lim
ϵ→0

FTEϵ(x0, t, τ ). (15)

As in [22] we are typically not interested in considering all of
X but in analysing some subset U ⊂ X and some neighbourhood
V ⊃ Φ(U, t, τ ) of the image of U . Within a set-oriented approach
one therefore considers a fine partition {B1, . . . , Bm} of U as well
as a fine partition {C1, . . . , Cn} of V , where we for now assume
that all partition elements have equal size, in Section 5.3 this
will be generalised to differing box volumes. In analogy to (6) the
discretised action on probabilitymeasures can then be constructed
as the (possibly rectangular) row-stochastic matrix

P (τ )(t)ij =
m(Bi ∩ Φ(Cj, t + τ , −τ))

m(Bi)
, (16)

and we obtain simply

FTE(Bi, t, τ ) =
1
|τ |

H(δiP (τ )(t))

= −
1
|τ |

n
j=1

P (τ )(t)ij log P (τ )(t)ij; (17)

compare with (7). Thus the previous definitions for autonomous
systems easily extend to the case of nonautonomous systems.

5. Computational aspects

5.1. Construction of transition matrix P and fast computation of FTE

The numerical computation of P (k) is accomplished by numeri-
cal integration of trajectories of sample points.
Autonomous case: First we consider the autonomous system T :

X → X . Within each box Bi, i = 1, . . . , n of the partition of
X choose uniformly distributed (for example, on a uniform grid)
sample points qi,r , r = 1, . . . , R. Then estimate

P (k)
ij ≈

#{r : T k(qi,r) ∈ Bj}

R
. (18)

To simplify notation we set P := P (1). Repeated push-forwards
of a probability vector v are achieved by matrix multiplication.
Thus to push v forward by k iterates of our discretised action of
T we compute vk

= vPk. The matrix P is typically very sparse and
the multiplication is very fast. Therefore, for the computation of
the finite-time entropy we can exploit the approximation vk

=

vPk
≈ vP (k); i.e. the repeated pushforward of the discretised

transfer operator for T gives a similar result as a single pushforward
with P (k). The probability measure described by vk is slightly
more diffuse and has larger support than the probability measure
described by vP (k) due to repeated implicit perturbations at each
matrix iteration. We define:

FTEmult(Bi, k) =


1
k
H(δiPk), for k > 1,

1
|k|

H(δi(P (−1))|k|), for k < −1.

=


−

1
k

n
j=1

(Pk)ij log(Pk)ij, for k > 1,

−
1
|k|

n
j=1

((P (−1))|k|)ij log((P (−1))|k|)ij, for k < −1.

(19)

When treating flows, the underlying transition matrix may
not correspond to an integer amount of time. In these cases we
include a third parameter, i.e. FTEmult(·, totaltime, basetime), where
basetime denotes the integration time for setting up the transition
matrix. For instance FTEmult(·, 2, 0.5) would denote the FTEmult-
field using (P (0.5))4 as an approximation to P (2). If there are only
two arguments of FTEmult then basetime = 1 by convention.

The entries of FTEmult(·, k) in Eq. (19) can be computed for
positive k (and similarly for negative k) by directly considering
the result of the respective matrix–matrix products of the sparse
matrix P; in MATLAB simply:
Pk=P^k;
[i,j,nonzeroPk]=find(Pk);
FTE_mult=-(1/k)*sum(sparse(i,j,nonzeroPk

.*log(nonzeroPk))’);
where P is the one-step transition matrix, k the number of
iterates and FTE_mult an n-vector containing the values of
FTEmult(Bi, k), i = 1, . . . , n. However, most likely for large k the
resultingmatrix will no longer be sparse and one gains nomemory
saving from the sparse matrix representation.

In this case the rows (Pk)i can be obtained by computing
the repeated push-forward of the vector δi by the matrix P , i.e.
δiPk

= (δiPk−1)P . Here only k matrix–vector products with sparse
P are needed. In MATLAB the respective FTE calculation would be
realised by a for-loop over all boxes:
FTE_mult=zeros(1,n);
for i=1:n

delta=zeros(1,n);
delta(i)=1;
for l=1:k

delta=delta*P;
end;
I=find(delta);
FTE_mult(i)=-1/k*dot(delta(I), log(delta(I)));

end;
Here P denotes again the one-step transition matrix, n the number
of boxes, k the number of iterates and FTE_mult is the vector con-
taining the values of FTEmult(Bi, k), i = 1, . . . , n. For illustration of
this concept we briefly return to the nonlinear doubling map and
the double gyre flow (Examples 3.3 and 3.5):

Example 5.1 (Nonlinear Doubling Map). In Fig. 3 the light solid
curves correspond to the results obtained by considering Pk

instead of P (k) (dark solid curves) for the computation of finite-
time entropy. While the latter quickly converges to the analytical
values, the FTEmult-curves overestimate the true stretching—but in
a consistent manner so that the qualitative stretching behaviour
is picked up correctly. The overestimation is due to the creation
of pseudo-orbits induced by the repeated matrix multiplication,
leading to image measures with a larger support.

Example 5.2 (Nonlinear Stretching in 2d). We consider the image
density under application of P10 as shown in Fig. 4(b), with
FTEmult(B2048, 10) = 0.6243, corresponding to a stretching of
α10

= 514.5. The image density is supported on 1692 boxes,
where the width the support appears to about three boxes on
average. So α10

= 514.5 is again a good approximation for the
length of density support but due to the numerically induced
diffusion the true stretching is overestimated. In Section 6.1 we
will demonstrate that the overall overestimation is consistent and
provides qualitatively convincing results.

Nonautonomous case: In nonautonomous systems the entries
P (τ )(t)ij, i = 1, . . . ,m, j = 1, . . . , n, are approximated as

P (τ )(t)ij ≈
#{r : Φ(qi,r , t, τ ) ∈ Cj}

R
(20)

where sample points qi,r , r = 1, . . . , R are chosen from a uniform
distribution in each box Bi, i = 1, . . . ,m.

In practice, if τ is large, one may estimate P (τ )(t) as P (s1)(t) ·

P (s2)(t + s1) · · · P (sN )(t + s1 +· · ·+ sN −1)where s1 +· · ·+ sN = τ .
Larger N will lead to greater numerical diffusion as discussed for
FTEmult.
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5.2. Calculating FTE in backward time

While regions of high FTLE values in forward time indicate
stable manifolds or repelling Lagrangian coherent structures
(see e.g. [7,10,24]), unstable manifolds and attracting Lagrangian
coherent structures will appear as ridges in the backward-time
field. We will investigate the behaviour of finite-time entropy in
both time directions in Section 6. In the following we will show
how to efficiently compute FTE-fields in backward time.

Assume that we are given a row-stochastic matrix P that
represents the dynamics of some map S, which either represents
some mapping T k or the dynamics of a flow map Φ(·, t, τ ). We
now develop a simple formula for computing a suitable backward-
time transitionmatrix, thus avoiding a direct computation of a new
matrix using S−1 in place of S.

We derive the formula for the backward-time transition
matrix, denoted P̃ , to approximate P (−1) in the general case of
boxes with different volume and possibly where one has two
distinct domains at the initial and final times, partitioned as
{B1, . . . , Bm}, {C1, . . . , Cn}, respectively. If the initial domain is also
the final domain, then n = m and we identify Bi = Ci.

We are interested in volumes of intersection of sets of the form
Bi ∩ S−1Cj; the points in Bi that land in Cj under one iteration of
S. Note that m(Bi ∩ S−1Cj) = m(Bi)Pij by (16). In backward time,
the Lebesgue mass in the set Cj is ‘‘sent back’’ to sets Bi for which
m(Bi ∩ S−1Cj) > 0. The transition matrix

P̃ji =
m(Bi ∩ S−1Cj)

m(S−1Cj)

is a row-stochastic matrix of conditional probabilities that consis-
tently sends Lebesgue mass back from Cj to Bi; the normalisation
m(S−1Cj) in the denominator is the volume of the mass sent back
(measured at the initial time t in the nonautonomous setup). Now,

P̃ji =
m(Bi ∩ S−1Cj)

m(S−1Cj)
=

m(Bi)Pij
m
i=1

m(Bi)Pij
,

so that P̃ ≈ P (−1) is computable directly from P and the individual
box volumes. Ifm(Bi) = m(Cj) for all i, j, then P̃ is simply the trans-
pose of P with the row sums normalised. In MATLAB this matrix-
reversing reads:

Q=diag(sparse(m))*P;
Q=Q*diag(sparse(1./sum(Q)));
Ptilde=Q’;

Here P is the original transition matrix, m is a vector containing the
Lebesguemeasurem(Bi) for each box Bi, i = 1, . . . , n and Ptilde
is the resulting approximate backward-time matrix. We denote
the finite-time entropy with respect to P̃ (k) obtained from P (k)

by FTE(·, k) (analogously FTEmult(·, k) using P̃). In nonautonomous
systems we obtain FTE(·, t, τ ) ≈ FTE(·, t + τ , −τ).

In Section 6.1 we will demonstrate in an example system thatFTE(·, k) is a very good approximation to FTE(·, −k).

5.3. Computing FTE with boxes of differing volume

We derive extensions of (7) and (17) for the situation where
the boxes {B1, . . . , Bm} are not of equal volume. Given a discrete
probability measure µ described by the n-vector p we form a
density function f for µ as f =


i=1 f̄i1Bi where

f̄i = (1/m(Bi))


Bi
f dm = µ(Bi)/m(Bi) = pi/m(Bi).
Now,

h(f ) = −


f log f dm = −

n
i=1


Bi
f̄i log f̄i dm

= −

n
i=1

f̄im(Bi) log f̄i = −

n
i=1

pi log pi/m(Bi).

Thus we define for the autonomous case

FTE(Bi, k) = −
1
|k|


n

j=1

(δiP (k))j log
(δiP (k))j

m(Bj)
− log

1
m(Bi)



= −
1
|k|


n

j=1

(P (k))ij log
(P (k))ij

m(Bj)
+ logm(Bi)


. (21)

Example code for MATLAB reads as follows:

[i,j,s]=find(Pk);
s=log(s).*s-s.*log(m(j)’);
FTE=-1/abs(k)*(sum(sparse(i,j,s)’)+log(m));

Here Pk is the k-step transition matrix and m is a column vector
with entries corresponding to the Lebesgue measure of each box.
Of course whenm(Bi) = m(Bj) for all i, j then (21) collapses to (7).

The ability to handle partition sets of different volumes enables
the construction of adaptive algorithms that preferentially focus on
boxes with high FTE values. This application is described further in
Section 6.1 and illustrated in Fig. 8.

In the nonautonomous case if one has two distinct partitions for
the initial and final domains {B1, . . . , Bm} and {C1, . . . , Cn}, then
one defines

FTE(Bi, t, τ )

= −
1
|τ |


n

j=1

(P (τ )(t))ij log
(P (τ )(t))ij
m(Cj)

+ logm(Bi)


. (22)

This latter approach is used in the polar vortex example in
Section 6.5.

6. Examples

We demonstrate the strength of the new FTE concept by a
number of example systems and discuss computational aspects.
First we study the double gyre flow in detail before we turn to a
numerical analysis of nonlinear stretching on the Lorenz attractor.
By considering the ABC flow we demonstrate that our approach
can also calculate nonlinear stretching in three dimensions.
The idealised stratospheric flow serves as an example for a
nonautonomous system. Finally we will consider the dynamics of
the polar vortex to approximate transport barriers in a real-world
system.

For most examples we will also show the results of FTLE com-
putations for comparison. However, we note that the focus of
this paper is to introduce a purely probabilistic stretching diag-
nostic, analyse its properties and demonstrate them in example
systems.

The FTE calculations obviously depend, like FTLE, on the
number of iterations of the underlying map. As the support of the
densities AϵP

kfϵ have a minimum width of ϵ, in the presence
of hyperbolicity, this support will fill the entire space for large
enough k. For such large k, one can no longer expect an increase
in h(AϵP

kfϵ) that is linear in k. Eventually the value of h(AϵP
kfϵ)

will asymptote to the maximum possible value of logm(X). The
smaller ϵ is, the longer it will take the push-forward densities to
‘‘fill’’ the space X and linear growth of h(AϵP

kfϵ) will be observed
for longer. The same arguments hold for the discrete versions
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Fig. 5. FTE fields for the double gyre flow. The domain is partitioned in 8192 boxes and R = 100 inner grid points are iterated by the flow map T to obtain P and the
backward-time approximation P̃ . (a) FTE(·, 1) (b) FTE(·, 1); (c) FTEmult(·, 5); (d) FTEmult(·, 5); (e) FTEmult(·, 10) (f) FTEmult(·, 10).
of FTE. In discrete approximations to both FTLEs and FTE one
may monitor how long one observes exponential growth (see e.g.
[24, p. 50ff], and references therein), but we have not pursued this
in this paper. An advantage of FTEmult is that many values of kmay
be tested extremely cheaply using a single transition matrix.

For all our computations we use the software packages GAIO
[32,33] and MATLAB.

6.1. Double gyre flow

We return to the famous double gyre test case as introduced
in Example 3.5. Throughout we will fix t0 = 0 and parameters
as described above and consider the system on the domain X =

[0, 2] × [0, 1]. For this choice the time-1 flow map T : X →

X (corresponding to the Poincaré return map on time-expanded
space at time slice t = 0) has, in particular, two nontrivial
unstable fixed points at x0 ≈ (1.0808, 0) and x1 ≈ (0.9192, 1).
The stable manifold of x0 and the unstable manifold of x1 form
a striking heteroclinic tangle, which has been the focus of many
computational studies [10,35,23] and which we expect to pick up
by our new FTE approach.

To create a numerical approximation of the transfer operator
the domain X is partitioned in n = 8192 = 213 boxes. We
estimate the entries of the transition matrix P for the flow map T
by numerically integrating the system (12) on [0, 1] with respect
to 100 inner grid points per box using a Runge–Kutta scheme
with constant step size 0.01. From P we form P̃ ≈ P (−1) for an
approximation of the time-reversed dynamics. In Fig. 5 we show
the results of the approximate FTE-field computations for different
powers k of the one-step transitionmatrices P and P̃ . While for k =

1 neighbourhoods of the local stable and unstable manifolds of the
unstable fixed points are highlighted, FTEmult(·, k) for k = 5 and
k = 10 highlight increasingly large parts of the global manifolds.
The results are very similar to results of the FTLE computations E5
and E10; see Fig. 6.

To demonstrate the efficiency of our approach we compare the
CPU times of the different computations. While the computation
of the transition matrix (8192 boxes, 100 test points per box)
for a time-1 flow map is computationally demanding with about
110 s, the FTEmult(·, 5)-field takes then less than a second
and FTEmult(·, 10) about 5 s, the respective backward time
computations to obtain the FTEmult-fields take about the same time.
The FTLE computations based on solving the variational equation
need about 22 s for the time-5 map and 40 s for the time-10
map. For this FTLE run-time test only the centre point in each box
is considered, resulting in very spurious FTLE fields (not shown).
Averaging over the FTLE values over four points per box takes
already as much as 85 s for the time-5 and 168 s for the time-10
map (see Fig. 6(a), (b)) giving qualitatively similar results to the FTE
computations. To sum up, we argue that once the transitionmatrix
is set up all the respective FTE-fields of interest (forward in time,
backward in time, and for any duration that is an integer multiple
of basetime) can be approximated very efficiently.

To study the influence of the number of test points and the
integration time we also computed the transition matrix P (5) from
T 5 using R = 100 and R = 400 inner grid points per box.
Visually the resulting FTE fields FTE(·, 5) aswell as FTEmult(·, 10, 5)
agree very well; see Fig. 7. However due to the sparser sampling
the R = 100 test point computations (Fig. 7(b) and (d))
achieve slightly smaller FTE values than the higher resolution
computations (Fig. 7(a) and (c)).

Qualitatively the results also match nicely the corresponding
approximate FTE fields in Fig. 5(c) and (e) respectively. Because
of the numerical diffusion the FTEmult values obtained by using
powers of P are larger than the ones based on P (5) and are very
similar to the respective FTLE values in Fig. 6.

We also studied the error in the backward-time FTE-field
induced by using P̃ as an approximation for P (−1). With the
matrices P and P (−1) computed using only R = 100 test points
per box, we observe that the relative error for FTE(Bi, 1), i =

1, . . . , 8192 is about 2% on average and there are only a few boxes
with very high error. But the errors drops quickly increasing k,
for instance for FTEmult(·, 10) the errors takes values smaller than
0.1% altogether. Also an increase in the number of test points for
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Fig. 6. Finite-time Lyapunov exponents for double gyre system. (a) FTLE values per box E5(Bi), i = 1, . . . , 8192 obtained as average FTLE value over 4 inner grid points per
box; (b) same as (a) but E10 . (c) Ridges of a very fine representation of the FTLE-field E5 (light coloured; based on a box covering of 219 boxes)match the structures highlighted
by the FTEmult(·, 5)-field from Fig. 5(c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Influence of number of test points for the map T 5 of the double gyre system. (a) FTE(·, 5) based on transition matrix computed using R = 400 inner grid points per
box; (b) FTE(·, 5) based on transition matrix computed using R = 100 inner grid points per box; (c) FTEmult(·, 10, 5), same set-up as (a); (d) FTEmult(·, 10, 5), same as set-up
as (b).
computing P helps reducing the error. Overall we can conclude,
that in this test case, the backward-time approximation of the
dynamics using P̃ gives reliable results.

In Section 5.3 we have introduced how FTE computations can
be extended to discretisations with differing box volumes. This
allows us to develop adaptive algorithms for the refinement of
those boxes that feature high FTE values. Fig. 8 shows the result
of such a computation. We started with a box covering consisting
of 211

= 2048 boxes and successively refined those boxes Bi, i =

1, . . . , n, for which FTEmult(Bi, 5) > 0.5( 1
n


i FTEmult(Bi, 5) +

maxi FTEmult(Bi, 5)), where n denotes the current number of
boxes in the covering. This rule ensures that the threshold for
box refinement is above the arithmetic average and below the
maximum. After six steps we obtain an FTE-field with respect to
8938 boxes, which has a high resolution in the vicinity of the
stable manifold of x0 (see Fig. 8(c) for an enlarged view) and low
resolution where FTE values are low. Note that a regular covering
would consist of as many as 131072 boxes.

Finally let us comment on the artefacts observed in Fig. 5(a)
and (b). Here the FTE field displays little ‘‘ripples’’. This effect is
related to the computations in Example 3.4. The formula (9) is
for the case where the thin image of a box fits within the original
box partition elements in the contracting direction. The formula
(10) is for the case where the box image straddles the original box
partition elements in the contracting direction, leading to a higher
FTE value. For the map in Example 3.4, on average, every 1/β
horizontal strip will have the higher than usual FTE(Bi, 1) values,
leading to horizontal ‘‘ripples’’. For general maps, the structure of
these ripples will depend on the interplay between the map T and
the grid. As k increases, the ripples disappear because (i) when
using FTE(·, k) the ripple-causing terms in (10) decay to zero, and
(ii) when using FTEmult(·, k) as the images of boxes become longer
and less structurally aligned with the grid, it is more likely that the
FTE computation picks up a smoothing combination of terms from
(9) and (10). Usually one is not interested in computing FTE for
very small k, however oneway to reduce this ripple effect for small
k is to estimate the discrete entropy of a box image in a spatially
consistent way. For example, one can align the image grid so that
the image of the original box centre is a centre point of an image
grid box.

In Fig. 9(a) we show the result of such an image grid adapted
computation. The ripples are largely removed and the resulting
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Fig. 8. Adaptive refinement in regions with high FTE—covering with boxes of differing volumes is obtained. The transition matrix P is obtained by integrating the time-1
flowmap for R = 100 inner grid points per box.We consider the FTEmult(·, 5) fields. Boxes Bi are refinedwhen FTEmult(Bi, 5) > 0.5( 1

n


i FTEmult(Bi, 5)+maxi FTEmult(Bi, 5)),

where n denotes the current number of boxes in the covering. (a) Initial covering with 2048 boxes. (b) Final covering after six steps with 8938 boxes (regular covering would
consist of 131072 boxes). (c) Enlarged view of highlighted parts of (b).
Fig. 9. (a) Reducing ‘‘ripples’’ due to occasional special alignment of the image densities with the box grid set as visible in Fig. 5(a). Here we adapt the image boxes in such
a way that the image of a box centre will be the centre of a box again. (b) FTLE field E1(Bi), i = 1, . . . , 8192 obtained as averaging the FTLE values over R = 100 inner grid
points per box.
FTE field is similar to the respective FTLE computation shown in
Fig. 9(b).

6.2. Lorenz flow

The Lorenz flow [36]

ẋ = σ (y − x)
ẏ = ρx − y − xz (23)
ż = −βz + xy

with classical parameters σ = 10, β =
8
3 , ρ = 28, is known to

possess a chaotic attractor Λ with an SBR (Sinai–Bowen–Ruelle)
measure µ [37].

First, we approximate the chaotic attractor observed in the
Lorenz system using a set-oriented subdivision scheme; for
details on such computations we refer to [31–33]. We obtain an
approximation of the attractor Λ consisting of n = 96 244 equally
sized boxes. These boxes will also be the basis for approximating
the transfer operator. For this we consider the time-1 map for
R = 1000 inner grid points per box to estimate P . Our Runge–Kutta
scheme constant step size is 0.01. We then compute the FTE fields
using k = 1 and k = 2, i.e. FTE(·, 1) and FTEmult(·, 2). As the
maximum side length of each box is 0.2344, we aremimicking ϵ =

0.1172 in the definition of FTEϵ . The resulting fields are shown in
Fig. 10. The FTE fields strikingly highlight regionswhich are related
to the two-dimensional stable manifold of the hyperbolic fixed
point at the origin, i.e. high values of FTE are observed where the
manifold would intersect the numerically approximated attractor.
The influence of this invariantmanifold is also known to determine
the formation of almost-invariant sets; see [23] for more details.
Note that the corresponding FTLE field E1 obtained by considering
the average FTLE value over R = 1000 inner grid points per
box gives very comparable results (Fig. 10(c)). In Fig. 10(d) an
approximation of the FTE(·, 1) field by FTEmult(·, 1, 0.2) is shown.
Here the transitionmatrix P (0.2) results from considering the time-
0.2 flow map. The corresponding FTE field is affected by the
numerical diffusion but still picks up nicely the relevant structures.

6.3. ABC flow

To demonstrate the applicability of our methodology in three
dimensions we consider the following system of ordinary differ-
ential equations:

ẋ = A sin z + C cos y
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Fig. 10. FTE fields with respect to an approximation of the chaotic attractor in the Lorenz system and comparison with FTLE computation. The regions of high stretching
are related to the two-dimensional stable manifold of the hyperbolic fixed point at the origin. (a) FTE(·, 1); (b) FTEmult(·, 2); (c) FTLE field E1 , computed as the average FTLE
with respect to 1000 inner grid points per box for the time-1 map (compare to (a)); (d) FTEmult(·, 1, 0.2).
Fig. 11. FTE fields for ABC flow. (a) FTE(·, 5); (b) FTE(·, 5).
ẏ = B sin x + A cos z (24)
ż = C sin y + B cos x.

This class of flows is known as ABC (Arnold-Beltrami-Childress)
flows and the system (24) is notable for being an exact steady so-
lution of Euler’s equation, exhibiting a nontrivial streamline geom-
etry; see [8,38]. We consider the ABC flow on the torus T3, i.e. 0 ≤

x < 2π, 0 ≤ y < 2π, 0 ≤ y < 2π in (24) and choose parameters
A =

√
3, B =

√
2, C = 1. For the numerical approximation of the

transfer operator we partition M = [0, 2π ]
3 into n = 262 144 =

218 boxes and compute the transition matrix P (5) via the time-5
flowmap using a classical Runge–Kutta schemewith constant step
size h = 0.01. Each box is sampled uniformly with 1000 inner grid
points. The respective FTE(·, 5)-field aswell as an approximation to
the backward-time field FTE(·, 5) are shown in Fig. 11. As the side
length of each box is 0.0982, we are mimicking ϵ = 0.0491 in the
definition of FTEϵ . Here two-dimensional stable and unstableman-
ifolds of hyperbolic periodic orbits are highlighted (cf. [23, Fig. 5]).

6.4. Idealised stratospheric flow

The quasi-periodically forced flow system as discussed in [39]
is given by
dx
dt

= −
∂Ψ

∂y
dy
dt

=
∂Ψ

∂x
with streamfunction
Ψ (x, y, t) = c3y − U0L tanh(y/L) + A3U0L sech2(y/L) cos(k1x)
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Fig. 12. FTE fields for the idealised stratospheric flow. (a) FTE(·, 10, 10); (b) FTE(·, 10, 10) ≈ FTE(·, 20, −10); (c) approximation of FTLE field for same time span [10, 20]
(d) approximation of FTLE field for backward time span [20, 10].
+ A2U0L sech2(y/L) cos(k2x − σ2t)
+ A1U0L sech2(y/L) cos(k1x − σ1t).

We use the parameter values as in [22], i.e. U0 = 5.41, A1 =

0.075, A2 = 0.4, A3 = 0.2, L = 1.770, c2/U0 = 0.205, c3/U0 =

0.7, k1 = 2/re, k2 = 4/re, k3 = 6/re where re = 6.371 as well as
σ2 = k2(c2 − c3), σ1 = σ2(1+

√
5)/2, where we have dropped the

physical units for brevity. The physical assumptions underlying the
model equations and the parameters are described in detail in [39].

For the estimation of P (10)(10) we consider the flow map
Φ(10, 10, ·) and a partition of the set S1 × [−4, 4], where S1 is
a circle parameterised from 0 to 20, in m = 16 384 sets Bi, i =

1, . . . ,m. We integrate the flow map for 100 inner grid points
per box, choose a covering of the image by n = 15 763 boxes
Cj, j = 1, . . . , n, in S1×[−4.2, 4.2] and approximate the respective
transition probabilities. We compute the FTE-field FTE(·, 10, 10)
using the rectangular transition matrix P (10)(10) ∈ R16 384,15 763;
see Fig. 12(a). Moreover we consider an approximation to the
backward-time field FTE(·, 20, −10) via FTE(·, 10, 10) as outlined
in Section 5.2 (Fig. 12(b)). The results compare nicely to the
respective approximate finite-time Lyapunov fields obtained via
a relative dispersion approach; see [24] for details on such a
computation.

6.5. Stratospheric polar vortex

For the numerical analysis of transport related to the strato-
spheric polar vortex we use two-dimensional velocity data from
the ECMWF Interim data set.3 The global ECMWF data is given at a
temporal resolution of 6 h and a spatial resolution of a 121 × 240
grid in longitude and latitude directions respectively. We con-
sider the flow over a two-week period on a 475 K isentropic sur-
face. As in [22] we focus on the stratosphere over the southern
hemisphere south of 30 degrees latitude. There are strong persis-
tent transport barriers in that region that determine the Antarc-
tic polar vortex. These transport barriers have been studied using
FTLE-related stretching diagnostics (finite-size Lyapunov expo-
nents—FSLE) [40,41]; the FSLE fields were found to highlight an
area (the so-called ‘‘surf zone’’) outside the vortex boundary as de-
termined by the maximum gradient in potential vorticity. We ex-
pect the FTE approach to highlight this zone just beyond the vortex
boundary in a similar way.

We use the same setup as in [22], to which we refer the reader
for more details. We start with an initial covering of X = S1 ×

[−90◦, −30◦
], where S1 is a circle parameterised from 0° to 360°,

3 http://data.ecmwf.int/data/index.html.
by m = 13 471 boxes Bi, i = 1, . . . ,m of approximately equal
volume. Using 100 uniformly distributed sample points in each box
the approximate image Φ(X, t, τ ) is computed and covered with
n = 14 395 boxes Cj, j = 1, . . . , n. The initial time t is chosen
to be September 1, 2008 and the flow time τ as 14 days. For the
numerical approximation of the flow a Runge–Kutta scheme with
step size 45 min is used, with linear interpolation in space and
time between data points. We construct P := P (t)(τ ) using the
same sample points. From this matrix we compute the forward
time FTE-field FTE(·, t, τ ), see Fig. 13(a). In addition we construct
the approximate-backward time transition matrix P̃ and obtainFTE(·, t, τ ) as an approximation to FTE(·, t+τ , −τ); see Fig. 13(b).
Regions of high value in the resulting FTE-fields indicate the
existence of isolated transport barriers. In [22] an approximation
of the polar vortex as a finite-time coherent set is obtained using
the same transition matrix as our FTE calculations. As expected,
some of the structures highlighted in Fig. 13 by the FTE approach
delineate a region that contains the polar vortex but do not provide
a tight boundary (see Fig. 3(c) and (d) in [22] where it is found that
themaximally coherent sets (in red) on the 475K isentropic surface
almost exactly coincide with the maximum PV gradient curve
(in green)).

7. Discussion and conclusion

We have introduced a new stretching diagnostic, finite-time
entropy, that is applicable to autonomous and nonautonomous
dynamical systems. It considers the growth rate of uncertainty
generated by an initial small random ϵ-perturbation of the original
nonlinear dynamics, followed by a final small ϵ-perturbation. This
uncertainty growth is captured by measuring the entropy increase
experienced by a localised probability density of resolution ϵ > 0
under the action of the perturbed dynamical system. We have
obtained (i) a nonlinear probability-based estimate of stretching
for every ϵ-resolution, (ii) robustnessw.r.t. the ϵ-perturbation size,
with a convergence result in the zero-perturbation limit, and (iii)
continuity of the FTE field for every scale ϵ > 0.

FTE fits very well into the set-oriented numerical framework
for the global analysis of dynamical systems. This allows for
the development of extremely simple and numerically efficient
methods of constructing an estimate of the FTE field. Within
this framework the FTE field is instantaneously calculable from
a sparse transition matrix generated from the dynamics. In
particular, in the context of autonomous systems it suffices to
set up a transition matrix using short-time integrations only,
and to compute results for longer time spans by sparse matrix
multiplication. The set-oriented framework also enables adaptive

http://data.ecmwf.int/data/index.html
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Fig. 13. FTE fields in the region of the Antarctic polar vortex. (a) Forward-time field FTE(·, t, τ ) (t = September 1, 2008, τ = 14 days) indicates repelling transport barriers;
(b) backward-time field FTE(·, t, τ ) ≈ FTE(·, t + τ , −τ) highlights attracting transport barriers.
Fig. 14. FTEmult(·, 5)-field for a stochastic double gyre flow dXt = g(Xt , t)dt +

δdWt , with g corresponding to the right-hand side of (12) and δ = 0.001. For
this choice of δ the stochastic noise dominates the ε-perturbation used in the FTE
approach. For the approximation of the transition matrix (213 boxes as above) we
consider the time-1 flowmapwith periodic boundary conditions, approximated by
an Euler–Maruyama scheme with stepsize h = 0.001.

algorithms to be employed to more quickly resolve high-value FTE
regions.

We have demonstrated that the FTE approach reliably and
efficientlymeasures stretching in a completely derivative-freeway
and is capable of extracting the backward-time dynamics from the
forward-time transition matrix without any additional trajectory
integration.

For the latter we note that there is a recent related result
to compute backward-time FTLE fields from the forward-time
information [42]. However, from the computational perspective
the backward-time FTLE method of [42] is currently confined to
two-dimensional flows. Our approach only manipulates a sparse
transition matrix—so the time-reversing operation is independent
of the dimension of phase space.

The results of FTE computations in our examples are very
similar to the corresponding FTLE fields because we focussed
on deterministic dynamical systems. The FTE approach may
also easily be applied to systems with both deterministic and
stochastic parts by replacing the Perron–Frobenius operator with a
noisy Perron–Frobenius operator or general Markov operator; see
Fig. 14 for an example computation and [27] for related work. In
particular, when estimating FTLE and FTE from an embedded time
series we would expect the FTE approach to be more robust with
respect to noise becausewedo not need to estimate derivatives but
work directly with probability flow. We will pursue these aspects
further in future work.
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Appendix. Proof of existence of FTE(x)

The norm ∥ · ∥ is the L1(m) norm throughout and m is non-
normalised Lebesgue measure. We present Lemma A.1 here as
we have been unable to find the result in the literature. Some
arguments in the proof have been drawn from the proof of
Theorem 9.3.2 in [28].

Lemma A.1. Let m(X) < ∞ and let {fn}, fn : X → R+ be a sequence
of uniformly essentially bounded densities (∥fn∥L∞ ≤ Λ′

∀n ≥ 0,
Λ′ < ∞) converging in L1 to an essentially bounded density f . Then
h(fn) → h(f ).

Proof. The overall strategy is to break all functions fn, f into two
pieces: one with low values and one with high values; the latter
will carry the bulk of the L1 norms. In part 1 of the proof we
show that the entropy of the first pieces is small for fn and f
separately. In part 2 of the proofwe estimate the entropydifference
of the remainder; the individual entropies are nontrivial, but their
difference will be small.

Part 1: For some 0 < Λ ≤ min{1, Λ′
} < ∞ essentially

decompose fn = f 1n + f 2n where

f 1n (x) =


fn(x), if fn(x) < Λ;

0, otherwise. ,

f 2n (x) =


fn(x), if Λ ≤ fn(x) ≤ Λ′

;

0, otherwise.

Decompose f = f 1 + f 2 in exactly the same way using the same
Λ, Λ′. Let λn = ∥f 1n ∥, λ = ∥f1∥,. Note that λn ≤ ∥f 1n −f 1∥+∥f 1∥ ≤

∥fn − f ∥ + λ. Let D = {f ∈ L1 : f ≥ 0,

f dm = 1} be the

space of densities. It is easy to check that h(cf ) = ch(f ) − c log c
for f ∈ D and c ∈ R+. Assume λn > 0. If λn = 0, then
h(f 1n ) = 0 and there will be nothing to prove. We now bound h(f 1n )
above and below in terms of λn. Denote the entropy function by
η(u) = −u log u, u ≥ 0. First, since Λ ≤ 1 and η(u) ≥ 0 for
0 ≤ u ≤ 1, one has h(f 1n ) ≥ 0. Second, since f 1n /λn ∈ D, one has
h(λn · (f 1n /λn)) = λnh(f 1n /λn) − λn log λn. Noting that h(f 1n /λn) ≤

logm(X) (see Remark 9.2.1 in [28] or note that the maximum
entropy occurs for uniform densities f ∗

= 1/m(X) where h(f ∗) =

logm(X)), one has h(f 1n ) ≤ λn logm(X) − λn log λn. Thus, λn goes
to zero, the (nonnegative) RHS goes to zero and so |h(f 1n )| can be
made arbitrarily small by making λn sufficiently small. Completely
analogously, one has 0 ≤ |h(f 1)| ≤ λ logm(X) − λ log λ.
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Part 2:

|h(f 2n ) − h(f2)| =


supp f 2n

η(f 2n ) dm −


supp f 2

η(f 2) dm


=



supp f 2n \supp f 2

η(f 2n ) dm

+


supp f 2∩supp f 2

η(f 2n ) − η(f 2) dm (25)

−


supp f 2\supp f 2n

η(f 2) dm

 . (26)

To handle the first term above we note that

Λ · m(supp f 2n \ supp f 2) =


supp f 2n \supp f 2

Λ dm

≤


supp f 2n \supp f 2

|f 2n | dm

=


supp f 2n \supp f 2

|f 2n − f 2| dm

≤ ∥f 2n − f 2∥. (27)

Thus,m(supp f 2n \ supp f 2) ≤ ∥f 2n − f 2∥/Λ. Now
supp f 2n \supp f 2

η(f 2n ) dm
 ≤ max

Λ≤u≤Λ′
|η(u)| · (∥f 2n − f 2∥/Λ)

=: ΣΛ,Λ′∥f 2n − f 2∥/Λ. (28)

The third term in (25) is bounded similarly. For the second term
in (25),

supp f 2∩supp f 2
η(f 2n ) − η(f 2) dm


≤ max

Λ≤u≤Λ′
|η′(u)|


|f 2n − f 2| dm

=: SΛ,Λ′∥f 2n − f 2∥, (29)

where the inequality uses the mean value theorem applied
pointwise on the integrand and SΛ,Λ′ := maxΛ≤u≤Λ′ |η′(u)|.

To finish note that as the supports of f 1n and f 2n are disjoint (as
are those of f 1, f 2) wemaywrite |h(fn)−h(f )| ≤ |h(f 1n )|+|h(f 1)|+
|h(f 2n ) − h(f 2)|.

Given ε > 0 we choose Λ small enough so that |h(f 1)| ≤

|λ(Λ) logm(X) − λ(Λ) log(λ(Λ))| < ε/6. With Λ, and hence λ,
now fixed, we find an N1 large enough so that using the bound
λn ≤ λ+∥fn − f ∥ one has |h(f 1n )| ≤ λn logm(X)−λn log λn < ε/4
for n ≥ N1. Finally, we find an N2 large enough so that one has
(2ΣΛ,Λ′/Λ + SΛ,Λ′)∥fn − f ∥ < ε/2 for n ≥ N2. Thus, for n ≥

max{N1,N2}, |h(fn) − h(f )| < ε. �

Definition A.2. Denote the tangent space of X ⊂ Rd at x ∈ X by
TxX; throughout, we will identify TxX with Rd. For x ∈ X , define
Φx,ϵ : Bϵ(x) → TxX by Φx,ϵ(z) = (z − x)/ϵ. The map Φx,ϵ is a
‘‘flat’’ version of the inverse exponential map followed by a linear
expansion by factor 1/ϵ. In particular, Φx,ϵBϵ(x) = B1(0) := {y ∈

TxX : ∥y∥ < 1}.
We now construct by conjugation with Φx,ϵ the ‘‘expanded’’

action of T on TxX . Define Sx,ϵ : TxX 	 as Sx,ϵ = Φx,ϵ ◦ T ◦ Φ−1
x,ϵ .

This construction is repeated for Perron–Frobenius operators.
First, we construct the Perron–Frobenius operator for Φx,ϵ, PΦx,ϵ :

L1(X,m) → L1(TxX,m) and then via conjugacy we form PSx,ϵ :

L1(TxX,m) 	. We also construct A1,0 : L1(TxX,m) 	 as PΦx,ϵ ◦

Aϵ,x ◦ P −1
Φx,ϵ

.

Lemma A.3. Let f ∈ L1(X,m). Then h(PΦx,ϵ f ) = h(f ) −

log ϵd

f dm.

Proof.

h(PΦx,ϵ f ) = −


supp f ◦Φ

−1
x,ϵ

ϵdf ◦ Φ−1
x,ϵ log(ϵdf ◦ Φ−1

x,ϵ ) dm

= −


supp f ◦Φ

−1
x,ϵ

ϵdf (x + ϵw) log(ϵdf (x + ϵw)) dw

= −


suppΦ−1(supp f ◦Φ

−1
x,ϵ )

f (z) log(ϵdf (z)) dz

letting z = Φ−1(w) = x + ϵw

= −


supp f

f (z) log f (z) dz − log ϵd


f dz. �

Definition A.4. Define an affine approximation to T on Bϵ(x) as
T A
x (y) = T (x) + DT (x) · (y − x). Via conjugation with Φx,ϵ , define

SAx (y) = Φx,ϵ ◦ T A
x ◦ Φx,ϵ

−1.

Lemma A.5. Given ϵ0 > 0 there is a constant C = C(x, ϵ0) < ∞ so
that ∥Sx,ϵ(y) − SAx (y)∥ ≤ Cϵ for all 0 < ϵ < ϵ0 and all y ∈ B1(0).

Proof. By Taylor’s theorem, ∥T (z)− T A
x (z)∥ ≤ C(x, ϵ0)∥z − x∥2. In

particular, if z ∈ Bϵ(x), then ∥T (z) − T A
x (z)∥ ≤ Cϵ2. We now have

∥Sx,ϵ(y) − SAx (y)∥

= ∥Φx,ϵ ◦ T ◦ Φx,ϵ
−1(y) − Φx,ϵ ◦ T A

x ◦ Φx,ϵ
−1(y)∥

= ∥(T (x + ϵy) − x)/ϵ − (T A
x (x + ϵy) − x)/ϵ∥

≤ Cϵ∥y∥. �

Lemma A.6. Given ϵ0 > 0 there is a constant C = C(x, ϵ0) < ∞ so
that ∥DSx,ϵ(y)−DSAx (y)∥ ≤ Cϵ for all 0 < ϵ < ϵ0 and all y ∈ B1(0).

Proof. Note that DS(y) = D(Φx,ϵ ◦ T ◦ Φ−1
x,ϵ )(y) = DT (Φ−1

x,ϵ (y)) by
the chain rule and DΦx,ϵ ≡ ϵ · Id. Now,

∥DSx,ϵ(y) − DSAx (y)∥ = ∥DT (Φ−1
x,ϵ (y)) − DT A(Φ−1

x,ϵ (y))∥

and if y ∈ B1(0) then Φ−1
x,ϵ (y) ∈ Bϵ(x). By Taylor’s theorem, there

exists a C = C(x, ϵ0) such that ∥DT (Φ−1
x,ϵ (y)) − DT A(Φ−1

x,ϵ (y))∥
≤ Cϵ. �

Lemma A.7.

FTEϵ(x, 1) − FTEA
ϵ (x, 1) = h(A1PSx,ϵ f0,1) − h(A1PSAx

f0,1),

where f0,1 = 1/m(B1(0))1B1(0).

Proof.

FTEϵ(x, 1) − FTEA
ϵ (x, 1)

= [h(AϵPT fx,ϵ) − h(fx,ϵ)] − [h(AϵPTAx
fx,ϵ) − h(fx,ϵ)]

= h(PΦx,ϵ AϵPT fx,ϵ) − h(PΦx,ϵ AϵPTAx
fx,ϵ) by Lemma A.3

= h(A1PSx,ϵ PΦx,ϵ fx,ϵ) − h(A1PSAx
PΦx,ϵ fx,ϵ)

by defn of A1, PSx,ϵ , PSAx

= h(A1PSx,ϵ f0,1) − h(A1PSAx
f0,1). �
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Lemma A.8. Let T be C2 and | detDT | be uniformly bounded away
from zero. Then ∥PSx,ϵ f0,1 − PSAx

f0,1∥ → 0 as ϵ → 0.

Proof. We write
|PSx,ϵ f0,1 − PSAx

f0,1| dm

=

  f0,1
| detDSx,ϵ |

−
f0,1

| detDSAx,ϵ |


◦ (SAx )

−1
 dm

+

  f0,1
| detDSAx,ϵ |

◦ S−1
x,ϵ −

f0,1
| detDSAx |

◦ (SAx )
−1
 dm.

Treating the first term: a change of variables yields  f0,1
| detDSx,ϵ |

−
f0,1

| detDSAx |


◦ S−1

x,ϵ

 dm
=

 f0,1 1 −

detDSx,ϵdetDSAx

 dm
≤ sup

y∈B1(0)

1 −

detDSx,ϵdetDSAx

   f0,1 dm.

Invoking Lemma A.6 we see this first term goes to zero as ϵ → 0
since f0,1 is a density, and | detDS| = | detDT (Φ−1

x,ϵ )| is uniformly
bounded away from zero.

For the second term, we note that f0,1/| detDSAx | is a constant
function on its support, thus  f0,1

| detDSAx |
◦ S−1

x,ϵ −
f0,1

| detDSAx |
◦ (SAx )

−1
 dm

=
1

m(B1(0))| detDSAx |


|1B1(0) ◦ S−1

x,ϵ − 1B1(0) ◦ (SAx )
−1

| dm

=
m(Sx,ϵB1(0)1SAx B1(0))
m(B1(0))| detDSAx |

,

which tends to 0 as ϵ → 0 by the following Lemma A.9. �

Lemma A.9. Assume detDT (x) ≠ 0. Then m(Sx,ϵB1(0)1SAx B1(0))
→ 0 as ϵ → 0, where ∆ denotes the symmetric difference.

Proof. As detDT (x) ≠ 0, and SAx is affine, one has that SAx B1(0) is an
ellipsoid of full dimension. The set SAx B1(0) thus has a well-defined
topological boundary, which is a connected (d − 1)-dimensional
hypersurface of bounded d − 1-dimensional volume.

There is a constant C = C(x, ϵ0) such that supy∈B1(0) ∥SAx (y) −

Sx,ϵ(y)∥ ≤ Cϵ for all 0 < ϵ < ϵ0 by Lemma A.5. Define Θϵ = {y ∈

TT (x)X : d(y, ∂(SAx B1(0))) ≤ Cϵ}. Clearly, SAx B1(0)1Sx,ϵB1(0) ⊂

Θϵ . Further, we may compute the volume of Θϵ as m(Θϵ) =

md−1(∂SAx B1(0)) · 2Cϵ.
Thus m(SAx B1(0))1Sx,ϵB1(0) ≤ m(Θϵ) = md−1(∂SAx B1(0)) · 2Cϵ

approaches zero as linearly in ϵ. �

Remark. Note that Lemma A.8 also applies to the discrete approx-
imation induced by the Ulam construction: fϵ = 1Bn,i/m(Bn,i), a
density supported on a single box on an n-grid, and Aϵ = πn, the
canonical L1 projection onto the span of 1Bn,i , i = 1, . . . , n.

Existence of FTE. We conclude with proving the existence of finite-
time entropy as ϵ → 0:
Proof of Theorem 2.7. We prove the theorem for k = 1; the proof
for higher k follows in exactly the same way. By Lemma A.7 we
see that the difference |FTEϵ(x, 1) − FTEA

ϵ (x, 1)| may be studied
via the difference |h(A1PSx,ϵ f0,1) − h(A1PSAx

f0,1)|. The functions
A1PSx,ϵ f0,1, A1PSAx

f0,1 are essentially bounded, and so we may
apply Lemma A.1 to conclude the result, once we show that
∥PSx,ϵ f0,1 − PSAx

f0,1∥ → 0 (we may remove A1 since ∥A1∥ ≤ 1).
By Lemma A.8 we are done. �
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